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Abstract

Spindly leg syndrome (SLS) is a relatively common musculoskeletal abnormality associated

with captive-rearing of amphibians with aquatic larvae. We conducted an experiment to

investigate the role of environmental calcium and phosphate in causing SLS in tadpoles.

Our 600-tadpole experiment used a fully-factorial design, rearing Atelopus varius tadpoles

in water with either high (80mg/l CaCO3), medium (50mg/l CaCO3), or low calcium hardness

(20mg/l CaCO3), each was combined with high (1.74 mg/l PO4) or low (0.36 mg/l PO4) phos-

phate levels. We found that calcium supplementation significantly improved tadpole survival

from 19% to 49% and that low calcium treatments had 60% SLS that was reduced to about

15% at the medium and high calcium treatments. Phosphate supplementation significantly

reduced SLS prevalence in low calcium treatments. This experimental research clearly links

SLS to the calcium: phosphate homeostatic system, but we were unable to completely elimi-

nate the issue, suggesting an interactive role of other unidentified factors.

Introduction

Spindly leg syndrome (SLS) is a musculoskeletal abnormality commonly associated with cap-

tive-rearing of amphibian aquatic larvae, resulting in underdeveloped limbs that cannot sup-

port the body of newly metamorphosed animals [1–5]. Animals have malformed joints and

reduced numbers of shortened, thinner muscle fibers in the limbs, some of which are detached

[6]. The issue has been widely discussed in the amphibian husbandry community as a limiting

factor for captive-breeding efforts of frogs with aquatic larvae. While there are many specu-

lated causes of SLS, there have been few adequately replicated studies on the topic. Nutritional
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deficiencies in the diet have been most widely postulated as the causative factor in SLS, but one

recent study found that SLS was prevalent, even when feeding presumed nutritionally-com-

plete diets [4].

Four independent studies suggested that soft water was related to skeletal deformities in

tadpoles and metamorphs [4,6–8]. Calcium is an important mineral for tadpoles because as

they metamorphose, their cartilage skeletons begin to ossify, creating a high demand for cal-

cium [9]. The calcium is stored in endolymphatic sacs and used in metamorphosis, and the Ca

plasma concentrations in larval amphibians are substantially lower than adults [9–11]. Tad-

poles reared in deionized water experience poor neurological development leading to limb

malformation [7], but addition of calcium improves survival [6], reduces larval deformities

[8], and reduces the incidence of malformations in the limbs [7]. A previous study by our own

research group found that SLS incidence was aggravated by overfeeding tadpoles, and amelio-

rated by filtering the water through a reverse-osmosis (RO) membrane and then reconstituting

it [4]. We hypothesized that soft tap water at our facility may have led to calcium being a limit-

ing factor and that adding calcium chloride to RO water may have reduced SLS prevalence.

We also hypothesized that phosphates released from uneaten food may have altered the Ca:P

ratio of the water in the overfed treatments, further aggravating the problem [4,5].

Serum calcium and phosphate concentrations are homeostatically regulated through intes-

tinal absorption, bone mineral deposition, and kidney mineral excretion (DiMeglio and Imel,

2019). When serum concentrations of Ca are low, parathyroid hormone increases intestinal

absorption, bone and renal resorption (Blaine et al., 2015; DiMeglio and Imel, 2019). Inade-

quate Ca:P ratios in diets or factors affecting the regulation of calcium metabolism such as

insufficient UVb exposure and vitamin D3 deficiencies have been associated with symptoms of

a metabolic bone disease in adult amphibians [9,12–14]. While dietary Ca:P ratios of 1:1–1.2

are recommended for feeding adult reptiles and amphibians [14], it is unclear whether high

phosphate concentrations in the water affects calcium metabolism in tadpoles. Experimental

evaluations of phosphate toxicity found no effect on tadpole survival, growth or development

[15], but there is a perception among amphibian husbandry professionals that excessive phos-

phates are undesirable for tadpole development [16].

We conducted a controlled, laboratory-rearing experiment to determine the effects of cal-

cium and phosphate concentrations on the prevalence of SLS in Atelopus tadpoles. We hypoth-

esized that SLS is induced by insufficient bodily stores of calcium for metamorphosis, or an

imbalance in calcium: phosphate ratios in the water.

Methods

Experimental design

We used a fully-factorial design with high, medium, and low calcium, each replicated with

high or low phosphate levels for a total of six treatment groups. Each treatment was replicated

in five tanks with 20 tadpoles per tank for a total of 30 tanks and 600 Atelopus varius tadpoles.

Water for each treatment was prepared by filtering tap water (through an AquaFX 100 GPD

reverse osmosis membrane) that removed 80–90% of the total dissolved solids. The RO water

was reconstituted using 46.5 mg MgSO4 35.8 mg KHCO3, and 29.8 mg NaHCO3 per liter fol-

lowing Association of Zoos and Aquariums (AZA) RO reconstitution recipe [17]. Calcium

treatments were prepared with 0 (low), 39.5 (medium), or 79 (high) mg CaCl2 per liter of

reconstituted water. The same medium calcium concentrations are recommended in the AZA

recipe used by Camperio Ciani et. al. [4], and we doubled that concentration for the high treat-

ment. The phosphate treatments were obtained by adding either 0 or 2.71 mg Na3PO4 per liter

of water for the low and high treatments respectively. We selected a quantity of sodium
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orthophosphate that would increase the phosphorous (P) concentration in the RO water by

0.5mg/l. About 87% of natural streams in the US have phosphorous (P) concentrations lower

than 0.5mg/l, which is considered a high concentration in streams [18]. As reference to natural

conditions, calcium hardness and phosphate levels were measured in 2 streams with healthy

populations of Atelopus varius; which were determined to be classified as “soft” (14.2– 18mg/l

hardness) and low in phosphates (0–0.07 mg/l) (S1 Data, Atelopus Stream Water Quality).

This design received approval from the Smithsonian Tropical Research Institute’s Animal

Care and Use Committee 2018-0427-2021.

Husbandry

A clutch of Atelopus varius eggs was laid at the Panama Amphibian Rescue and Conservation

Project’s Gamboa facility on Jan 10, 2019 and reared in that tank containing carbon-filtered

tap water for 27 days until Feb 6, 2019. We then collected 600 Atelopus varius tadpoles from

the same clutch of eggs and divided into thirty randomly selected groups of 20 tadpoles at Gos-

ner stage 20–25 [19] before placing them in the 20-litre aquariums 40cm long x 20 cm wide x

25 cm high without any gravel or lighting other than ambient fluorescent ceiling lights. Water

was filtered using a small Hikari Aquarium Solutions Bacto-Surge Foam Filter with an airstone

in each tank plus one supplemental air stone to improve circulation. Water was partially (30%)

changed three times per week through siphoning. Each tank was fed 0.125g of a nutritionally-

balanced food developed at the Waltham Center for Pet Nutrition that contained 1.8% calcium

(Table 1). The food was weighed then mixed with water to make a paste that was spread to

~1mm thickness on an acrylic plate and dried as a film. Each day the feeding plates were

replaced in each tank. Once per month, immediately prior to water changes, CaCO3 and PO4

levels were measured using HANNA HI720 and HI713 test kits. For all tanks, the mean tem-

perature was 20.9˚C +/- 0.7 ˚C SD (stream temperatures at sites where parents were collected

ranged from 22–26˚C RI, unpublished data); the mean pH 7.5 +/- 0.2 SD; the mean dissolved

oxygen 89.7% +/- 3.7% SD; the mean NH4 2.1 mg/l +/- 1.1 mg/l SD; and NH3 was not detected

(S1 Data, Water Quality).

When tadpoles developed hind limbs, floating polystyrene slices were placed in the tanks to

facilitate froglet emergence. For each tank we recorded 1) prevalence of SLS by classifying each

metamorph into ‘spindly’ or ‘healthy’. All SLS frogs exhibited in SLS in the fore-limbs only

(Claunch and Augustine, 2015, Fig 1); 2) mortality or survival through metamorphosis Gosner

Stage 46, [19]; and 3) snout-vent-length (SVL) and weights of metamorphs. Any animals with

SLS were euthanized by 20% benzocaine gel applied directly to the skin as advocated in

AVMA humane euthanasia guidelines (AVMA, 2007).

Statistical analysis

A previous study demonstrated that this sample size was sufficient to highlight a 10% differ-

ence in survival between groups with a power of 80% [4]. Data were visualized by plotting

mean values for each tank, which served as the experimental unit, with corresponding stan-

dard error bars. We examined data for assumptions of normality and homogeneity of variance

by examining residual plots, difference showing P<0.05 were considered significant. Only ani-

mals reaching metamorphosis are included in the statistical analysis. The independent effects

of calcium and phosphate, and their interaction were modeled using a linear model in R with

the package ‘car’ testing the experimental treatment effects on the following response variables;

1) SLS prevalence in metamorphs; 2) tadpole survival to metamorphosis; and 3) size of meta-

morph measured by SVL and weight. Model = lm(“responsevariable” ~ phosphate + calcium

+ phosphate: calcium, data = data), results were reported as a type II ANOVA [20]. We used
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Table 1. Nutritional analysis of tadpole food (% dry matter basis) batch prepared by the Waltham Petcare Science

Institute.

Analysis Unit

Proximates

Ash 11.7 %

Crude Fibre 1.8 %

Fat 7.5 %

Moisture 3.2 %

Protein 38.5 %

Vitamins

Vitamin B1 28.8 mg/kg

Vitamin B2 41.1 mg/kg

Vitamin D3 4790 IU/kg

Vitamin A 30400 IU/kg

Vitamin E 510 mg/kg

Pantothenic acid 163 mg/kg

K3 15.9 mg/kg

Niacin (B3) 391 mg/kg

Choline 2910 mg/kg

B6 28.9 mg/kg

B12 0.084 mg/kg

Folic acid 14.4 mg/kg

Vitamin C 2220 mg/kg

Minerals

Copper 20.3 mg/kg

Calcium 1.82 %

Magnesium 0.187 %

Manganese 73.7 mg/kg

Iron 723 mg/kg

Potassium 0.764 %

Sodium 0.772 %

Zinc 96.7 mg/kg

Phosphorus 1.12 %

Essential Fatty Acids

Linoleic 0.578 %

Linolenic 0.087 %

Arachidonic 0.055 %

Eicosapentaenoic 0.343 %

Docosahexaenoic 0.301 %

Amino Acids

Aspartic acid 3.15 %

Serine 1.54 %

Glutamic Acid 6.15 %

Glycine 2.4 %

Histidine 0.8 %

Arginine 2.19 %

Threonine 1.43 %

Alanine 2.05 %

Proline 2.14 %

(Continued)
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survdiff in the R package survival for R [21] to conduct a log-rank test [22] for differences in

survivorship between the 6 treatment groups.

Results

The addition of calcium to create a mean calcium hardness of�50mg/l markedly improved

Atelopus varius tadpole survival to metamorphosis (P< 0.0001) (Fig 2, Table 2). Overall, the

four treatments with added calcium experienced 49% survivorship, but this was reduced to

19% in the treatment groups with no additional calcium which had a mean calcium hardness

of about 20mg/l (Fig 2). The addition of phosphate had no significant effect on survival

(P = 0.1461, Table 1), and there was no significant interaction between Ca and P. A survivor-

ship analysis indicated that the largest differences from expected values were in the medium

Ca, added PO4 treatments and the two low Ca treatments (Fig 3, Table 3).

Adding calcium was associated with a highly significant reduction in SLS prevalence from

about 60% without supplemented calcium to 15% in high and medium calcium-supplemented

treatments (P< 0.0001, Fig 2, Table 1). As with survival, it appears that once a threshold of

50mg/l CaCO3 was reached, additional calcium did not further reduce the incidence of SLS.

The addition of phosphate to the water also reduced SLS prevalence in the low-calcium treat-

ment (P <0.05, Fig 2, Table 1). Overall, SLS prevalence averaged 23% in groups with added

phosphate and 39% in groups with no added phosphate.

Table 1. (Continued)

Analysis Unit

Tyrosine 1.12 %

Valine 1.63 %

Methionine - Total Analysis 1 %

Lysine 2.49 %

Isoleucine 1.4 %

Leucine 2.53 %

Phenylalanine 1.5 %

Cysteine 0.37 %

https://doi.org/10.1371/journal.pone.0235285.t001

Fig 1. Atelopus varius metamorphs: Typical spindly leg syndrome posture (left) and normal, healthy posture (right).

https://doi.org/10.1371/journal.pone.0235285.g001
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Fig 2. Effects of phosphate and calcium on survival to metamorphosis and prevalence of spindly leg syndrome

among surviving Atelopus varius metamorphs. Shown are means +/- SE (bars). Each treatment was replicated in 5

tanks of 20 tadpoles, CaCO3 and PO4 was measured monthly in each tank for 4 months.

https://doi.org/10.1371/journal.pone.0235285.g002
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There was no significant effect of any treatment on the size or weight of froglets at meta-

morphosis which took 105 days +/- 15 days (SD). Atelopus varius size at emergence measured

8 mm SVL +/- 0.6mm SE, and weighed 0.086 g +/- 0.06g SE and SLS metamorphs did not sig-

nificantly differ from healthy metamorphs in weight, length, or number of days to metamor-

phosis (two sample t test, P> 0.05, S1 Data, Experimental Data).

Table 2. 2-way ANOVA testing for the experimental effects of added calcium and phosphate on Atelopus varius tadpole survival, and prevalence of spindly leg syn-

drome in A. varius metamorphs.

% Survival

Sum of Squares DF F Value Probability

Phosphate 0.0507 1 2.263 0.1461

Calcium 0.6912 2 5.406 0.00006 ���

PhosphateCalcium 0.0326 2 0.726 0.4942

% Spindly Leg Syndrome

Sum of Squares DF F Value Probability

Phosphate 0.1729 1 4.817 0.038 �

Calcium 1.2135 2 16.90 0.00003 ���

Phosphate�Calcium 0.1739 2 2.422 0.111

https://doi.org/10.1371/journal.pone.0235285.t002

Fig 3. Survival probability curves for the 6 experimental treatment groups, cross hatches indicate censored animal(s) that metamorphosed and were

censored from this survivorship analysis at that point. A log-rank test (Table 3) revealed highly significant differences between groups, Chisq = 94 on 5

degrees of freedom, p =<2e-16.

https://doi.org/10.1371/journal.pone.0235285.g003
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Discussion

Even though the diet offered to tadpoles contained 1.8% calcium, we found lower tadpole sur-

vival and increased prevalence of SLS in water with calcium hardness lower than 50mg/l. Tad-

poles absorb calcium from their environment primarily across the gills (70%) and skin (25%)

[23], thus the supplementation of calcium to the water is likely more effective for tadpoles

rather than by diet. Others have reported that limitation of calcium in the rearing water is

directly correlated with the accumulation of calcium in endolymphatic sacs and skeletal miner-

alization [11]. Our observed threshold for calcium hardness as a limiting factor was between

20–50mg/l CaCO3 for Atelopus varius. Water hardness of the tap water in the facility fluctu-

ated from 5–50 mg/l (S1 Data, Source Water Quality), levels classified by the United States

Geological Survey as “soft”. This may explain some of the observed variation in SLS prevalence

over time. Supplementation of filtered tap water with CaCl2 was more cost-effective than pre-

paring fully reconstituted RO water. It is unclear whether the observed CaCO3 threshold will

apply to other taxa or situations. Haakvoort et al. [6]. reported 100% cases of SLS in dart frogs

at 100, 10 and 1 mg/l CaCO3.

Water supplementation of phosphate was associated with a significant reduction of SLS.

The experimental effect, however, was less pronounced than the supplementation of calcium

(Fig 2, Table 2), and phosphate supplementation did not significantly affect survivorship. This

finding provides further evidence that SLS, at least in Atelopus varius, is connected to an

imbalance in calcium and phosphate homeostasis, but it suggests that the hypothesis that high

phosphate levels and high calcium: phosphorous ratios in the water are the not the cause of

SLS in this species.

In this experiment, even the unsupplemented group’s water would fall within the ranges of

those parameters in the two natural reference streams. Experimentally, calcium water supple-

mentation accounted for most of the observed variation in survival and SLS prevalence, but

there still was 10–20% SLS in calcium-supplemented treatments; suggesting a potential role of

some other factor, such as overfeeding [4], which was untested in this experimental design.

Alternatively, SLS may be a more common condition in nature than is currently appreciated,

there is at least one anecdotal report of SLS in the wild Ranitomeya ventrimaculata from Rı́o

Napo/ Ecuador (pers. comm. H. Divossen).

All tadpoles were fed the same quantity of food, but we have not yet determined a feeding

regime where food quantity limits growth. It is possible, therefore, that all tadpoles in this

experiment were overfed as uneaten food remained on food plates at each change of food

plates. Growth and differentiation may be partially decoupled from each other in poikilo-

therms through genetic modification or through rapid growth associated with high food avail-

ability [24]. For example, growth-enhanced transgenic salmon are known to be inferior

swimmers with muscle hyperplasia and reduced muscle fiber size [25,26]. Faster growth rates

are associated with reduced burst swimming speed in tadpoles [27], shorter legs in froglets

Table 3. Log-Rank test for differences in survival probability between the 6 treatment groups. Chisq = 94 on 5 degrees of freedom, p =<2e-16.

N Observed Expected (O-E)^2/V (O-E)^2/E

High Ca Added PO4 100 58 68.4 1.59 2.04

High Ca Low PO4 100 59 67 0.964 1.23

Low Ca Added PO4 100 75 46.5 17.417 20.79

Low Ca Low PO4 100 88 44.8 41.69 51.75

Medium Ca Added PO4 100 34 75.5 22.82 30.13

Medium Ca Low PO4 100 52 63.7 2.148 2.71

https://doi.org/10.1371/journal.pone.0235285.t003
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[28], and food-limited tadpoles have improved bone ossification in froglets [29]. One potential

explanatory hypothesis tying these observations together is that rapid growth rates through

calories absorbed in the intestinal tract could become decoupled from rates of normal seques-

tration of calcium across the gills, that may manifest as SLS, particularly in low calcium, low

phosphate environments. The fact that we only observed SLS in the forelimbs, which are the

last to emerge, may be indicative of depletion of reserves that were available to the tadpoles

earlier in metamorphosis.

In conclusion, our management recommendations for husbandry and veterinary profes-

sionals seeking to reduce or eliminate SLS in anurans are to 1) test water hardness and con-

sider supplementing water softer than 50 mg/l calcium hardness with CaCl2 (this study) and 2)

to avoid overfeeding tadpoles which was associated with increased SLS prevalence in an earlier

study [4]. Future SLS studies may benefit by incorporating calorie limitation or examining

other potentially synergistic factors that may decouple growth and development in calcium-

limited environments to obtain further insights into the mechanisms responsible for SLS. A

detailed comparison of husbandry and feeding protocols and water chemistry with other Ate-
lopus rearing programs that have had no SLS may help to identify alternate factors.
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Roberto Ibáñez, Brian Gratwicke.

Resources: Donna Snellgrove, Roberto Ibáñez.
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