
sensors

Article

Enabling Efficient Communications with Resource
Constrained Information Endpoints in Smart Homes

Diego Sánchez-de-Rivera , Borja Bordel * , Ramón Alcarria and Tomás Robles

Universidad Politécnica de Madrid, UPM Campus Sur, Km 7.5 de la Autovía de Valencia, 28031 Madrid, Spain;
diegosanchez@dit.upm.es (D.S.-d.-R.); ramon.alcarria@upm.es (R.A.); tomas.robles@upm.es (T.R.)
* Correspondence: bbordel@dit.upm.es; Tel.: +34-91-067-3922

Received: 15 March 2019; Accepted: 9 April 2019; Published: 13 April 2019
����������
�������

Abstract: Smart Homes are one of the most promising real applications of Internet of Things
and Cyber-Physical Systems. Devices and software components are deployed to create enhanced
living environments where physical information is captured by sensors, sent to servers and finally
transmitted to information endpoints to be consumed after its processing. These systems usually
employ resource constrained components in dense architectures supported by massive machine type
communications. Components, to adapt to different scenarios, present several configuration options.
In machine type communications, these configuration options should be selected dynamically and
automatically. Many works have addressed this situation in relation to sensor-server communications
but endpoints are still mostly manually configured. Therefore, in this paper it is proposed an automatic
and dynamic configuration algorithm, based on the idea of “efficiency,” for information endpoints
in the context of Smart Homes. Different costs associated to endpoint-server communications in
Smart Homes are identified and mathematically modelled. Using this model and real measurements,
the most efficient configuration is selected for each endpoint at each moment, not only guarantying
the interoperability of devices but also ensuring an adequate resource usage, for example, modifying
the endpoints’ lifecycle or the information compression mechanism. In order to validate the proposed
solution, an experimental validation including both real implementation and simulation scenarios
is provided.

Keywords: resource consumption; Smart Homes; information endpoints; mathematical models;
efficiency; dynamic configuration

1. Introduction

Smart Homes [1] are domestic technology enhanced living environments supported by pervasive
sensing platforms, information servers and information endpoints interacting with inhabitants [2].
The idea of “Smart Homes” is quite old but it has been adapted to different technological paradigms over
the years [3]. Nowadays, most modern deployments are based on Internet of Things [4] architectures
and Cyber-Physical Systems [5], where physical and computational processes interact and evolve
together. In that way, Smart Homes are one of the most promising application scenarios of future
engineered systems.

Smart phones, passive and active tags, personal computers and so forth, have been employed
to build Smart Homes, although currently most typical deployments follow a common scheme [6].
First, sensors (and probably actuators) capture information about the environment. Sensors include [7]
video tracking systems, wrist actigraph units, infrared sensors, ultrasonic devices, microphones and so
forth. All this information is collected and sent to a server (or probably a distributed solution) where it
is aggregated and processed. This server maintains components describing and controlling the entire
system behaviour. Prosumer environments, temporal logic, rules, executable processes and other

Sensors 2019, 19, 1779; doi:10.3390/s19081779 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4097-4737
https://orcid.org/0000-0001-7815-5924
https://orcid.org/0000-0002-1183-9579
https://orcid.org/0000-0002-6940-8421
http://dx.doi.org/10.3390/s19081779
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/8/1779?type=check_update&version=2

Sensors 2019, 19, 1779 2 of 27

similar technologies [8] may be employed to enable users to define the expected behaviour and the
help policies they desire; as the final objective of every Smart Home is helping people in their daily
living activities. Finally, although a lot of information is exclusively collected to make decisions in the
server, sometimes information is sent to information endpoints where it is consumed. Displays or
speakers are examples of information endpoints [9]. The objective of these elements is to interact with
people, making them aware about certain relevant information (collected from sensors or generated in
the server).

Both, sensors and endpoints, tend to be resource constrained devices in order to adapt the
investment as much as possible to the users’ needs. Hundreds or even thousands, of resource
constrained components are integrated into dense technological deployments, without external power
supply (devices usually employ batteries) or communication infrastructure but communicating through
Massive Machine Type Communications (MMTC) [10], which are solutions to automatically create
communication links among devices. To make viable these new solutions, two conditions are usually
considered: (i) sensors and endpoints must be interoperable with any server or Smart Home and (ii)
devices’ lifetime must be large enough compared to the system lifetime. The first condition is met
by including in every device many different configuration options; and the second one requires from
managers to configure components to make the most efficient possible use of resources. In this context,
a “configuration option” is understood as a particular set of values for the variables that control the
behaviour of the device (endpoint). For example, the transmission protocol or the update period to
refresh the displayed information.

As MMTC are automatic technologies, the (dynamic) configuration process in sensors and
endpoints must be automatic and fulfil the efficiency condition. Many different authors and works have
addressed this problem in relation to sensor-server communications but endpoint-server scenarios
have been poorly studied. In particular, no automatic solution to obtain a dynamic and efficient
configuration for endpoints has been reported. They are still, then, mostly manually configured during
the deployment phase. However, current Smart Homes present a very dynamic behaviour, where the
information characteristics (entropy, generation rate etc.) can change dramatically in short periods.

The objective of this paper is, therefore, to describe an automatic and dynamic configuration
algorithm for endpoints in Smart Homes, increasing (as much as possible) the communication efficiency
at every moment. The paper proposes a definition for “communication efficiency” considering the
most important costs associated to the operation of resource constrained endpoints and the value of
the obtained information. This mathematical model is employed to do a prediction about the server
behaviour and information characteristics, corrected with real measurements and Bayes theorem.
Once it is detected the real server pattern, the endpoint modifies its configuration to increase the
communication efficiency, according to the proposed model. Basically, two relevant configuration
parameters are controlled: the endpoint lifecycle and the information compression method.

The structure of the paper is as follows: Section 2 presents the state of the art on configuration
algorithms to improve efficiency in Smart Homes and resource constrained devices. Section 3 describes
the main proposal, including the mathematical model and the configuration algorithm. Section 4
includes an experimental validation analysing the performance of the proposed solution. Finally,
Section 5 shows the conclusions and future work.

2. State of the Art: Configuration Algorithms to Improve Efficiency in Smart Homes

Configuration process is a complex procedure in Smart Homes, so it is usually addressed at
different independent levels. Typically, two types of works may be found in the context of Smart
Homes [11]: papers about service configuration and discussions about network configuration.

Proposals for an automatic network configuration are the most common. Basically, all these
works are focused on basic interoperability, so the final objective of those algorithms is the component
installation in the Smart Home in an automatic manner [12]. To perform this installation operation
some works employ configuration robots based on artificial intelligence [12], software defined network

Sensors 2019, 19, 1779 3 of 27

(SDN) technologies [13], new architectures with specific configuration middleware [14] or Domain
Name Systems (DNS) [15]. Other works only discuss about security issues and other future challenges
in relation to Smart Homes configuration [16]. None of these works, nevertheless, consider the system
efficiency in the configuration process.

Network configuration solutions to improve the system efficiency are always focused on energy
consumption. Some proposals are focused on efficient configuration solutions employing the minimum
energy amount [17]. However, in these works, the focus is not the system operation but the configuration
algorithm itself; thus, after an energy efficient configuration the system may operate very inefficiently.
Only some very sparse proposals address the challenge of efficient operation, although limited to
the use of the minimum required energy amount [18] and focused on sensor-server communications
(through, for example, flexible configuration middleware controlling the network architecture). These
works are usually known as “energy-efficient self-adaptation” solutions and sometimes are also applied
to other similar technologies such as Internet of Things [19].

From another point of view, some authors address the Smart Homes automatic configuration at
service level. Typical proposals at this level are based on virtual sensor representations [20] which
are mapped into real deployments. Other works employ models and description languages to enable
an automatic and dynamic system configuration [21]. Although, in general, these works do not
consider the future efficient system operation, some authors refer to this requirement as a desired
objective [21,22].

In that way, as a general conclusion, automatic and dynamic configuration solutions for Smart
Homes or similar technologies (such as Smart Environments) are not focused on a future efficient
system operation [23]. To address this challenge some specific system architectures [24] have been
reported (using, for example, smart gateways) but they are focused (once more) on sensor networks
and sensor-server communications.

In this work we propose, on the contrary, a complementary configuration algorithm which may
operate together with any existing technology or architecture. Once endpoints are configured at
network and service level (and then connectivity and interoperability are guaranteed), an algorithm
to configure and probably modify, those characteristics affecting the system efficiency is periodically
executed to improve, as much as possible, the resource usage.

3. Efficient Communications with Resource Constrained Information Endpoints in Smart Homes

In this section we define our understanding of “efficiency,” including all the costs we are
considering affect this parameter. Then, probabilistic models for every cost are proposed and, finally,
based on studies about the efficiency behaviour, we are describing our dynamic configuration solution.

3.1. Global Scenario and Efficiency Definition

In general, information endpoints, to be interoperable with different systems and technological
solutions, include several configuration options. These options, as said, are usually manually selected
during the endpoint deployment. However, current Smart Homes tend to present a very dynamic
behaviour with real-time characteristics and permanent configurations do not enable efficient long-term
communications. Changes in the type of content being sent to the endpoints or in the information
renewal rate, may turn an initially very efficient configuration, into a total waste of resources.
The solution, then, is to allow a dynamic and smart configuration mechanism to be continuously
running in the endpoints.

We are assuming endpoints have been already configured at network and service level, guarantying
the connectivity and interoperability. Moreover, server may (or not) support a negotiation process to
adapt the endpoints and server’s behaviour.

Figure 1 shows the basic architecture for a communication link between a server and an endpoint
in a Smart Home.

Sensors 2019, 19, 1779 4 of 27
Sensors 2018, 18, x FOR PEER REVIEW 4 of 26

Figure 1. Architecture for a communication endpoint-server link in Smart Homes.

As can be seen, content is managed by users, who can manually trigger an information
actualization; or create automatic mechanisms through prosumer environments [25] to modify the
system behaviour and information characteristics according to a collection of rules or situations.
These information control orders are the final cause of inefficiencies in fixed configurations but they
are external to any information system or solution, so they are not considered in this work. Thus, in
our model, the information server embeds both, its own functionalities and behaviours inherited
from managers.

In this context, the efficiency in a communication link between an endpoint and an information
server 𝜂 is defined as the relation between the cost (value) of the consumed information 𝑄
and the total invested cost to recover and consume that information 𝑄𝑡𝑜𝑡𝑎𝑙 (1). 𝜂 = 𝑄𝑄௧௧ (1)

Formally, efficiency is defined following an economic understanding: as the relation between
the generated products (information blocks, in this case) and the resources invested to get those
products (energy, memory and computing time in this case). For example, the relation between the
memory required to compute an information block and the information it provides to users. To
perform a fair comparison, both amounts are represented by their value or cost (both concepts are
employed as synonyms). The cost (or value) of any resource or product is a dimensionless variable
representing how essential or sparse the resource is, in the context of the communication link. For
example, in endpoints with a low battery charge, the cost of the required current to refresh the
displayed information is very high (as charge is sparse and remaining amount is totally essential for
the endpoint’s operation).

As information blocks cannot be generated in a null time, for this analysis we are considering
time as a discrete variable 𝑛, obtained from sampling the system situation every 𝑇௦ seconds. The
value of 𝑇௦ is selected in such a way at least one information block can be generated during this
period. The total (discrete) time employed to evaluate the system efficiency is 𝑁௦௧௨ௗ௬. If a longer
operation time must be considered, it may be studied as a sequence of intervals.

Now, we are formally analysing all cost functions and values affecting the proposed efficiency
rate, so global amounts are broken down in all elemental components. As different cost values
represent the usage or different resources, to make comparable amounts, all costs are ranging in the
interval [0,1] and are dimensionless. Thus, all cost calculation expressions include normalization
parameters 𝛼 to ensure those properties.

The cost (value) of the consumed information 𝑄 is, in general, a function 𝐶ூ[∙] depending
on the block generation time 𝑛 and the time when the information is actually consumed (if so), 𝑛 (2). In general, as time passes, the value of an information block decreases. Although, as time
passes, produced information blocks may contain more valuable information (for example, first

Figure 1. Architecture for a communication endpoint-server link in Smart Homes.

As can be seen, content is managed by users, who can manually trigger an information actualization;
or create automatic mechanisms through prosumer environments [25] to modify the system behaviour
and information characteristics according to a collection of rules or situations. These information
control orders are the final cause of inefficiencies in fixed configurations but they are external to
any information system or solution, so they are not considered in this work. Thus, in our model,
the information server embeds both, its own functionalities and behaviours inherited from managers.

In this context, the efficiency in a communication link between an endpoint and an information
server ηcom is defined as the relation between the cost (value) of the consumed information Qin f o and
the total invested cost to recover and consume that information Qtotal (1).

ηcom =
Qin f o

Qtotal
(1)

Formally, efficiency is defined following an economic understanding: as the relation between the
generated products (information blocks, in this case) and the resources invested to get those products
(energy, memory and computing time in this case). For example, the relation between the memory
required to compute an information block and the information it provides to users. To perform a
fair comparison, both amounts are represented by their value or cost (both concepts are employed as
synonyms). The cost (or value) of any resource or product is a dimensionless variable representing how
essential or sparse the resource is, in the context of the communication link. For example, in endpoints
with a low battery charge, the cost of the required current to refresh the displayed information is very
high (as charge is sparse and remaining amount is totally essential for the endpoint’s operation).

As information blocks cannot be generated in a null time, for this analysis we are considering time
as a discrete variable n, obtained from sampling the system situation every Ts seconds. The value of Ts

is selected in such a way at least one information block can be generated during this period. The total
(discrete) time employed to evaluate the system efficiency is Nstudy. If a longer operation time must be
considered, it may be studied as a sequence of intervals.

Now, we are formally analysing all cost functions and values affecting the proposed efficiency rate,
so global amounts are broken down in all elemental components. As different cost values represent the
usage or different resources, to make comparable amounts, all costs are ranging in the interval [0, 1]
and are dimensionless. Thus, all cost calculation expressions include normalization parameters αi to
ensure those properties.

The cost (value) of the consumed information Qin f o is, in general, a function CI[·] depending on
the block generation time ngen and the time when the information is actually consumed (if so), ncon (2).
In general, as time passes, the value of an information block decreases. Although, as time passes,
produced information blocks may contain more valuable information (for example, first samples from
sensors are useless until a statistical equilibrium is reached and that also depends on the situation and

Sensors 2019, 19, 1779 5 of 27

on the sensor’s accuracy). All costs for all consumed blocks should be aggregated. Function CI[·] is
named as “cost function.”

Qin f o =
1

αin f o

∑

∀ consumed block
bi

CI[n
bi
gen, nbi

con]

(2)

This amount, nevertheless, may be also expressed as the balance between the (aggregated) original
value of all generated information blocks, Qin f ototal

and all lost values by those blocks, including
non-consumed (lost in the server’s queue, see Figure 1) information blocks, Qin f olost

and the degradation
suffered by consumed blocks because of time evolution, Qin f odeg

(3).

Qin f o =
1

αin f o

(
Qin f ototal

−Qin f olost
−Qin f odeg

)
(3)

Cost of consumed information, although expressed as a balance between generated and lost cost
(3), may be also calculated through cost functions (4). In this case, we are using a new cost function
CB[·], whose mathematical expression and meaning will be described in Section 3.2.

Qin f o =
1

αin f o

∑

∀ produced block
bi

CB[bi] −
∑

∀ lost block
bi

CB[bi] −
∑

∀ consumed block
bi

(CB[bi] −CI[n
bi
gen, nbi

con])

(4)

With respect to the total invested cost Qtotal, considered in the efficiency definition (1), three basic
components are identified in our model: the link management cost Qlink, the information obtention
cost Qobten and the information consumption cost, Qconsump (5).

Qtotal =
1

αtotal

(
Qlink + Qobten + Qconsump

)
(5)

The link management cost includes all effects and resource usage caused by the endpoint’s
lifecycle (6). It includes costs associated to wake up process, Qwake−up, sleep process, Qsleep and stand-by
process, Qstand−by. Costs associated to link establishment and shutdown are not considered, as these
processes are run during the system deployment (or disassembly) and, then, cannot be considered as
an operation cost.

Qlink =
1
αlink

(
Qwake−up + Qstand−by + Qsleep

)
(6)

The cost of information obtention, Qobten, includes basically two processes: the query procedure
to check for new information in the server, with a cost Qcheck and the information recovery procedure,
with a cost Qrecov. On the other hand, the information recovery cost is the aggregation of two different
costs (7): the reception (or transmission) cost, Qrecep and the decompression cost (if existing), Qdecom.
Other costly processes such as encryption or authentication could be also considered but in this initial
work we are focusing on a basic communication link configuration. Results and models might change
if additional processes and variables are considered.

Qobten =
1

αobten
(Qcheck + Qrecov) =

1
αobten

(
Qcheck + Qrecep + Qdecom

)
(7)

The last cost to be analysed is the information consumption cost, Qconsump. This cost is directly
related to the endpoints’ functionalities and procedures they must perform to consume the received

Sensors 2019, 19, 1779 6 of 27

information (if any) or to process that no new information is available (for example, to display the
received image or refresh the existing one). This cost will increment each time an endpoint looks
for new information, according to function Σ[·]. The cost to be added would be Qupdate or Qno−update
depending on whether a new information block to be consumed is received or not (8).

Qconsump = Σ
[
Qupdate, Qno−update

]
(8)

3.2. Information Model

In this work, information blocks (generated by the information server) are characterized by two
main variables:

• Information block’s lifetime: As said, current Smart Homes are real-time solutions and then
information has a very short lifetime. In particular, in real-time applications (such as video
streaming) an information block has value until a new and more recent block is produced. Then,
the old block gets valueless. Here, we are considering the same model. As a consequence,
information server (see Figure 1) may be seen as a queue with unitary capacity (Cq = 1). Thus,
any information block is stored waiting for being transmitted, until it is sent or a new block is
produced, when it is removed from the queue and replaced by the most modern block. Important
exceptions to this model may be also found, as some information blocks may provide more
durable information than others (for example, in video surveillance applications). However, in this
work, we are not considering these “backward analysis applications” (which may be supported
by storing all information blocks in a repository) but real-time solutions where information
has value for a short period of time. Contrary to scenarios where sensors send data to servers,
where information has a long lifetime but loses value (cost) as time passes [26] due to physical
processes continue evolving; in the proposed scenario (Smart Homes), where endpoints receive
information from servers, information keep the same value until it is totally replaced (valueless)
by new information. This is an intuitive notion for images to be shown in displays, music, video,
advertisements and so forth. In conclusion, for this analysis we are considering Qin f odeg

= 0,
as consumed information blocks are not degraded as time passes.

• Information Shannon’s entropy, H: For an information block B codified with k-bit symbols,
the Shannon’s entropy determines how many bits (in average) of these k bits per symbol provide
information. Considering its mathematical expression (9), this entropy parameter is maximum
(H = k bits) for totally random information blocks (equiprobable symbols); and minimum (H = 0)
for blocks where only one symbol is employed.

H (B) = −
∑

si ∈ B

p(si) log2 p(si) being si k− bit symbol (9)

Using this measure (entropy) it is possible to define an objective cost function, to obtain the value
(cost) of an information block bi; that is, we can define function CB[·]. First, considering the block
entropy and L as the block length (in k-bit symbols), we can calculate the amount of information,
I, in any block (10). Then, as any cost must range between zero and the unit but the information
amount in a block varies between zero and infinity, the cost function must be an exponential law to
agree with both ranges (11). In this cost function we introduce a free parameter, τ, representing how
fast or slow the block cost grows with the information amount in the block.

I(bi) = H(bi)·L (10)

CB[bi] = 1− e−
I(bi)
τ = 1− e−

H(bi)·L
τ (11)

In order to obtain the final information cost Qin f o, we must estimate the number of generated and
lost blocks. To perform this calculation, we must model before the endpoints and server behaviour.

Sensors 2019, 19, 1779 7 of 27

3.3. Information Endpoint and Server Models

Basically, four different endpoints are considered in this work, describing the most common and
employed behaviours for devices in Smart Homes nowadays: (i) always-on model, (ii) fixed-period
wake-up model, (iii) dynamic wake-up scheduling and (iv) exponential evolution wake-up.

Always-on model is a trivial scenario, where endpoints are always enabled and available to
receive new information from the server. Thus, endpoints are always powered, connectable and ready
to react to any request. As endpoints in this model never sleep, it is easy to see that for these endpoints
Qwake−up = Qsleep = 0. Besides, because endpoints never sleep, they do not have to query the server for
new information after waking up. If any information is available, they just receive it. Then, Qcheck = 0.

Fixed-period wake-up model is also an elemental scenario, although it considers the wake up and
sleep procedures. Basically, each Nstep time instants the endpoint wakes up, connects to the information
server looking for new information blocks, performs the corresponding actions and sleeps another
time. Figure 2a shows a schematic chronogram describing this behaviour. Being Nsleep the time the
endpoint is sleeping, this parameter has a constant value in this case (12).

Nsleep = Nstep (12)

The third model is more complicated. In the dynamic wake-up scheduling model, the information
server is aware of the generation instant of the next information block, so it sends this datum together
with the current information block to the endpoint. Then, the endpoint will sleep and wake up
according to the received temporal scheduling. This model describes a wake-up scheduling that adapts
the endpoint’s sleep time to the block generation rate. In this way, the endpoint automatically adapts to
different patterns if the system behaviour changes. This wake-up scheduling, besides, aims to reduce
inappropriate wake-up processes when there is not any new information pending in the server. See
Figure 2b.

Finally, the exponential evolution wake-up model describes a behaviour which adapts the
sleep period Nsleep between checks for new blocks, exponentially increasing that time after each
unsuccessful attempt to obtain new information from server, starting from a minimum value Nsleep−min
(13), see Figure 2c. The sleep time remains constant after reaching a certain maximum value Nsleep−max .
Besides, after a successful attempt to obtain new information from the server, the sleep time is fixed
another time to its minimum value Nsleep−min.

Nsleep =

Nsleep−min i f new block is recieved or n = 0
2·Nsleep i f no new block is recieved and Nsleep < Nsleep−max
Nsleep−max i f no new block is recieved and Nsleep ≥ Nsleep−max

(13)

Sensors 2018, 18, x FOR PEER REVIEW 7 of 26

endpoints 𝑄௪ି௨ = 𝑄௦ = 0. Besides, because endpoints never sleep, they do not have to query
the server for new information after waking up. If any information is available, they just receive it.
Then, 𝑄 = 0.

Fixed-period wake-up model is also an elemental scenario, although it considers the wake up
and sleep procedures. Basically, each 𝑁௦௧ time instants the endpoint wakes up, connects to the
information server looking for new information blocks, performs the corresponding actions and
sleeps another time. Figure 2a shows a schematic chronogram describing this behaviour. Being 𝑁௦
the time the endpoint is sleeping, this parameter has a constant value in this case (12). 𝑁௦ = 𝑁௦௧ (12)

The third model is more complicated. In the dynamic wake-up scheduling model, the
information server is aware of the generation instant of the next information block, so it sends this
datum together with the current information block to the endpoint. Then, the endpoint will sleep and
wake up according to the received temporal scheduling. This model describes a wake-up scheduling
that adapts the endpoint’s sleep time to the block generation rate. In this way, the endpoint
automatically adapts to different patterns if the system behaviour changes. This wake-up scheduling,
besides, aims to reduce inappropriate wake-up processes when there is not any new information
pending in the server. See Figure 2b.

Finally, the exponential evolution wake-up model describes a behaviour which adapts the sleep
period 𝑁௦ between checks for new blocks, exponentially increasing that time after each
unsuccessful attempt to obtain new information from server, starting from a minimum value 𝑁௦ି (13), see Figure 2c. The sleep time remains constant after reaching a certain maximum
value 𝑁௦ି௫ . Besides, after a successful attempt to obtain new information from the server, the
sleep time is fixed another time to its minimum value 𝑁௦ି.

𝑁௦ = ൞ 𝑁𝑠𝑙𝑒𝑒𝑝−𝑚𝑖𝑛 𝑖𝑓 𝑛𝑒𝑤 𝑏𝑙𝑜𝑐𝑘 𝑖𝑠 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑜𝑟 𝑛 = 02 ∙ 𝑁௦ 𝑖𝑓 𝑛𝑜 𝑛𝑒𝑤 𝑏𝑙𝑜𝑐𝑘 𝑖𝑠 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑎𝑛𝑑 𝑁௦ < 𝑁𝑠𝑙𝑒𝑒𝑝−𝑚𝑎𝑥𝑁𝑠𝑙𝑒𝑒𝑝−𝑚𝑎𝑥 𝑖𝑓 𝑛𝑜 𝑛𝑒𝑤 𝑏𝑙𝑜𝑐𝑘 𝑖𝑠 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑎𝑛𝑑 𝑁௦ ≥ 𝑁𝑠𝑙𝑒𝑒𝑝−𝑚𝑎𝑥

(13)

Figure 2. Lifecyle of endpoints according different behaviour models.

On the other hand, information server (which in our model embeds both managers’
functionalities and its own) presents a behaviour (in relation to information block creation) which
may be modelled by a discrete stochastic process, 𝒮[𝑠, 𝑛]. This process may take several different
forms, representing each one a different information block creation pattern. However, in this paper,
we are considering the three most common and relevant patterns: (i) predefined fixed pattern, (ii)
stationary Bernoulli pattern and (iii) Poisson pattern.

In servers following a predefined fixed block creation pattern, the random variable 𝑠 is a
Bernoulli variable where only two different states are considered (14). One value (𝑠 = 1) represents a
situation where an information block is generated in the corresponding time instant. The other value
represents the opposite case. In this model, only one information block (as maximum) may be
generated per time instant. As the block creation pattern is predefined, the probability of each state
is known a priori for each time instant and only takes values in the ℤଶ = {0,1} set. In particular, it is

Figure 2. Lifecyle of endpoints according different behaviour models.

Sensors 2019, 19, 1779 8 of 27

On the other hand, information server (which in our model embeds both managers’ functionalities
and its own) presents a behaviour (in relation to information block creation) which may be modelled
by a discrete stochastic process, S[s, n]. This process may take several different forms, representing
each one a different information block creation pattern. However, in this paper, we are considering the
three most common and relevant patterns: (i) predefined fixed pattern, (ii) stationary Bernoulli pattern
and (iii) Poisson pattern.

In servers following a predefined fixed block creation pattern, the random variable s is a Bernoulli
variable where only two different states are considered (14). One value (s = 1) represents a situation
where an information block is generated in the corresponding time instant. The other value represents
the opposite case. In this model, only one information block (as maximum) may be generated per time
instant. As the block creation pattern is predefined, the probability of each state is known a priori for
each time instant and only takes values in the Z2 = {0, 1} set. In particular, it is known the setNnew−block
(15) storing all time instants (14) for which ppre = p(s = 1) = 1. At any other instant ppre = 0 (16).

s =
[

1
0

]
=

[
new block in sever

no new block in server

]
(14)

Nnew−block =
[
nnew

1 , nnew
2 , . . . , nnew

M

]
(15)

S[s, n] =
{

ppre = 1 i f n ∈ Nnew−block
ppre = 0 i f n < Nnew−block

(16)

On the other hand, servers presenting a stationary Bernoulli pattern have a similar behaviour and
model but more general. In particular, the success probability pber = p(s = 1) is a real number in the
interval [0, 1], the same value for all time instants (17).

S[s, n] =
{

pber = cte ∀ n pber ε [0, 1]
qber = 1− pber = cte ∀ n

(17)

Finally, servers following Poisson patterns are completely different. These servers are characterized
by the generation of a certain mean number of information blocks λpoission each Nstudy time units. In this
case, besides, random variable s takes values in N, the set of the natural numbers (18). It represents the
number of blocks generated in a certain time instant.

s ∈ N ≡ {0, 1, 2, . . .} (18)

Poisson servers are characterized by consecutive block generations distributed in time according to
an exponential law. Statistic theory establishes that this behaviour corresponds to a Poisson distribution

with mean value
λpoisson
Nstudy

·n for each time instant (19).

S[s, n] = Poi
(
λpoisson

Nstudy
·n

)
=

1
s!

e
−
λpoisson
Nstudy

· n
·

(
λpoisson

Nstudy
·n

)s

(19)

3.4. Information Cost Calculation

As said in Section 3.2, before obtaining the information cost, we must estimate the number of
generated and lost blocks. These values, however, are random variables whose final expressions
depend on the server’s and endpoint’s behaviours.

First, we are evaluating the number of generated information blocks, MB. In this case, as generated
blocks are only dependent on the server behaviour, the endpoint model does not have to be considered.
Table 1 shows the obtained results for each server model.

Sensors 2019, 19, 1779 9 of 27

Table 1. Total number of generated blocks in the proposed scenario. Random variables.

Server Model Probability Distribution

Predefined fixed pattern MB = card{Nnew−block}

Stationary Bernoulli pattern p(MB) =

(
Nstudy

MB

)
(pber)

MB (qber)
Nstudy−MB MB ≤ Nstudy

Poisson pattern p(MB) =
1

MB ! e
−λpoisson ·

(
λpoisson

)MB

Servers behaving according to a predefined fixed pattern generate a fixed amount of information
blocks, equal to the number of time instants when an information block is predefined to be created.
Nevertheless, the other two server models generate a random number of blocks, so the corresponding
probability distribution is proposed. For Bernoulli servers, the probability distribution may be
calculated as a set of MB independent successful events, between Nstudy trials. Then, a binomial
distribution describes this distribution. For Poisson servers, the number of generated blocks is
described by a Poisson distribution.

Now, on the other hand, we must calculate the number of lost blocks, ML. Table 2 shows the
corresponding values or probability distributions (depending on the case) for all endpoint’s and
server’s types. First, always-on endpoints receive information block just at the moment they are
generated, so blocks are never lost. However, fixed-period wake-up endpoints (as well as the other
two possible endpoint’s models) may be asleep while several blocks are generated and lost. Then, all
blocks above the unit generated while endpoints are slept are lost (as only the newest information block
has value, see Section 3.2). In general, therefore, ML information blocks will be lost if ML + 1 blocks
are generated in Nsleep seconds. For predefined fixed pattern servers, this amount is easily calculated
considering the block creation pattern. Moreover, a special case is the “synchronization situation” for
fixed pattern servers. In this configuration, it is selected the sleep period Nstep to guarantee there is not
any lost block (20).

Nstep = min
{
nnew

k−1 − nnew
k

}
k ∈ N, nnew

k , nnew
k−1 ∈ Nnew−block (20)

For other server models, being Mi
L the number of lost blocks during the i-th sleep period of

a device, it is easy to calculate the probability of each value of Mi
L using the binominal or Poisson

distribution (depending on the server type).
Besides, being Csleep the number of sleep periods in Nstudy time units (21) and using a

sequential decomposition process to analyse all possible lost block distributions in Csleep periods
(and the corresponding probability) we can obtain the results shown in Table 2 for fixed-period
wake-up endpoints.

Csleep =
Nstudy

Nstep
(21)

Dynamic wake-up scheduling endpoints are more difficult to study, as their behaviour is not
predefined by any function. As said, in general, these endpoints adapt to the server behaviour. Then,
we are assuming (hereinafter) their behaviour is as follows (previous works have proved these are the
most efficient behaviours for each case [9]):

• For predefined fixed pattern servers dynamic wake-up scheduling endpoints are configured to
follow the same server’s pattern (so there are not any lost blocks)

• For stationary Bernoulli servers, where all time instants have the same probability to generate an
information block, it is selected (for this work) as the most profitable endpoint model a fixed-period
wake-up model.

Sensors 2019, 19, 1779 10 of 27

• Finally, for Poisson servers which generate information blocks according to an exponential law,
it is selected (for this work) as the most profitable endpoint model an exponential evolution
wake-up model.

Thus, considering previous assumptions, the number of lost blocks in each case may be obtained
as explained for the corresponding endpoint model.

Finally, we must analyse exponential evolution wake-up endpoints. In predefined fixed pattern
servers, it is possible to calculate the exact number of lost blocks as no random component is affecting
the result. For Bernoulli servers, as well as for Poisson servers, the probability distribution may be
also calculated using a sequential decomposition process where Cexp different time (sleep) periods are
considered. As time periods have not a homogeneous duration, Cexp is variable depending on each
situation. Nevertheless, for clarity in the mathematical analysis (which in this case is pretty complex)
we are considering in this initial work Cexp is constant and its value is fixed to the mean value among
the possible variance interval (22).

Cexp ∈

[
1, . . . ,

Nstudy

Nmin

]
⇒ E

[
Cexp

]
=

Nstudy

2·Nmin
= 2rexp ·Nmin (22)

Now, the loss probability depends on the real duration of each sleep period, which depends on the
duration and number of generated blocks in the previous period. Then, conditional probabilities appear
(to be aggregated and obtain the final absolute value). Besides, the sleep period gets increased only if
no block is generated during the previous period, whose probability is controlled by the server natural
probability distribution pn, following a Binomial (or Poisson) distribution. Besides, all probabilities are
parametric on the sleep period length, including the absolute loss probability pl, employed to obtain
the conditional probabilities. Finally, we must consider the probability of a unique information block
to be generated at each time (sleep) period, psucess, which is calculated aggregating all possible cases
according to probability laws (23).

p(A) =
∑
∀B

p(A |B)·p(B) (23)

The final expression deduction is a complex induction process and mathematical expressions turn
especially large if recursive loops are removed but obtained results allow estimating in a very precise
manner the lost block rate.

Table 2. Total number of lost blocks in the proposed scenario. Random variables.

Server
Model Endpoint Model

Predefined
fixed

pattern

Always-on ML = 0

Fixed-period
wake-up model

ML =
∑

∀ r ∈ N
rNstep ≤ Nstudy

(
card

{[
nnew

k , k ∈ N, (r− 1)·Nstep ≤ nnew
k < r·Nstep

]}
− 1

)

Msyn
L = 0

Dynamic
wake-up

scheduling
ML = 0

Exponential
evolution
wake-up

ML =
∑
i

Mi
L

Mi
L max. integer number such that nnew

ki−1 − nnew
ki

> Nmin and

nnew
ki−1 − nnew

ki+Mi
L
> 2r
·Nmin and nnew

ki−1 − nnew
ki+Mi

L
< 2r+1

·Nmin

Sensors 2019, 19, 1779 11 of 27

Table 2. Cont.

Server
Model Endpoint Model

Stationary
Bernoulli
pattern

Always-on ML = 0

Fixed-period
wake-up model p(ML) =

ML∑
r0=0

r0∑
r1=0
· · ·

rCsleep−1∑
rCsleep=0

p
(
M0

L = ML − r0
)
·

rCsleep∏
i=1

p
(
Mi

L = ri−1 − ri
) ·p(MCsleep

L = rCsleep

)
p
(
Mi

L = M
)
=

(
Nstep

M + 1

)
(pber)

M+1(qber)
Nstep− M−1 1 ≤M ≤ Nstep − 1

Dynamic
wake-up

scheduling

Exponential
evolution
wake-up

p(ML) =
ML∑

r0=0

r0∑
r1=0
· · ·

rCexp−1∑
rCexp=0

pl
(
M0

L = ML − r0 ; Nmin
)
·

(rCexp∏
i=1

p
(
Mi

L = ri−1 − ri
∣∣∣ Mi−1

L

))
·p
(
MCexp

L = rCexp

∣∣∣∣ MCexp−1
L

)
p
(
Mk

L = M
∣∣∣ Mk−1

L

)
=

k∑

i =0
pl
(
Mk

L = M ; 2i
·Nmin

)(i−1∏
r=0

pn(0 ; 2r
·Nmin)

)
psuccess(k− 1− i) i f Mk−1

L = 0

pl
(
Mk

L = M ; Nmin
)

i f Mk−1
L , 0

pl
(
Mi

L = M ; N
)
=

(
N

M + 1

)
(pber)

M+1(qber)
N− M−1 1 ≤M ≤ N − 1

pn(M ; N) =

(
N
M

)
(pber)

M(qber)
N− M 0 ≤M ≤ N

psuccess(k) =
k∑

r0=0

k−r0−1∑
r1=0

k−2−(r0+r1)∑
r2= 0

· · ·

1−(r0+···+rk−2)∑
rk−1=0

k−1∏
i=0

[pn(1 ; 2ri

·Nmin)

(
ri−1∏
z=0

pn(0 ; 2z
·Nmin)

)]
pn(1 ; Nmin)

Poisson
pattern

Always-on ML = 0

Fixed-period
wake-up model

p(ML) =
ML∑

r0=0

r0∑
r1=0
· · ·

rCsleep−1∑
rCsleep=0

p
(
M0

L = ML − r0
)
·

rCsleep∏
i=1

p
(
Mi

L = ri−1 − ri
)·p(MCsleep

L = rCsleep

)
p
(
Mi

L = M
)
= 1

(M+1)! e
−λpoisson·

Nstep
Nstudy ·

(
λpoisson·

Nstep
Nstudy

)M+1
M ≥ 1

Dynamic
wake-up

scheduling

p(ML) =
ML∑

r0=0

r0∑
r1=0
· · ·

rCexp−1∑
rCexp=0

pn
(
M0

L = ML − r0 ; Nmin
)
·

(rCexp∏
i=1

p
(
Mi

L = ri−1 − ri
∣∣∣ Mi−1

L

))
·p
(
MCexp

L = rCexp

∣∣∣∣ MCexp−1
L

)
p
(
Mk

L = M
∣∣∣ Mk−1

L

)
=

k∑

i =0
pl
(
Mk

L = M ; 2i
·Nmin

)(i−1∏
r=0

pn(0 ; 2r
·Nmin)

)
psuccess(k− 1− i) i f Mk−1

L = 0

pl
(
Mk

L = M ; Nmin
)

i f Mk−1
L , 0

pl
(
Mi

L = M ; N
)
= 1

(M+1)! e
−λpoisson·

N
Nstudy ·

(
λpoisson·

N
Nstudy

)M+1
M ≥ 1

pn(M ; N) = 1
M! e
−λpoisson·

N
Nstudy ·

(
λpoisson·

N
Nstudy

)M
M ≥ 0

psuccess(k) =
k∑

r0=0

k−r0−1∑
r1=0

k−2−(r0+r1)∑
r2= 0

· · ·

1−(r0+···+rk−2)∑
rk−1=0

k−1∏
i=0

[pn(1 ; 2ri

·Nmin)

(
ri−1∏
z=0

pn(0 ; 2z
·Nmin)

)]
pn(1 ; Nmin)

Exponential
evolution
wake-up

3.5. Link Management Cost Calculation

The link management cost is totally caused by device lifecycle. Basically, costs under this name
(cost of wake-up Qwake−up, stand-by Qstand−by and sleep Qsleep processes) are associated to an energy
consumption. All (mobile) endpoints have an independent and limited-capacity battery with an
available electrical charge BAT, measured in ampere-hour. As, in this work, we are considering time as
a discrete variable, it is necessary to obtain first the battery charge in ampere-discrete time units (24).

BAT(An) =
BAT(Ah)

1h
·
1h
Ts

(24)

Now, the cost of each charge unit should be variable and depend on the resting charge: as the
battery is running out charge, the value of the resting energy grows up. Several different cost functions
CE [·] could be selected but all of them should fulfil the requirements described in Section 3.1 (cost

Sensors 2019, 19, 1779 12 of 27

ranges between zero and the unit). However, many different works [27,28] have proved the value of
any resource goes up exponentially as it is sparser. Thus, we are also employing an exponential law as
cost function (25a). In this case it is a function with memory as previous consumptions, BATi

con, affect
the resting energy cost. This function may be also written in a memory-less form if a new parameter
BATlevel is considered (25b). In both cases, parameter τ (a real value) determines how fast the energy
cost grows.

CE = 1− e−
BAT

BAT−
∑

i BATi
con
−1

τ (25a)

CE[BATlevel] = 1− e−
BAT

BAT−BATlevel
−1

τ being BATlevel =
∑

i

BATi
con (25b)

Previously presented cost function enables us to determine the cost of each charge unit but some
processes (such as stand-by) are running for several time units or consume higher current amounts.
Then, the cost of a certain amount of charge units Ei may be obtained integrating along the cost
function (26).

CE[Ei; BATlevel] =
∫ BAT

BAT−(BATlevel+Ei)
BAT

BAT−BATlevel

(
1− e−

x−1
τ

)
dx = A + BAT

BAT−(BATlevel+Ei)
+ τ·e−

BAT
BAT−(BATlevel+Ei)

− 1

τ

A = − BAT
BAT−BATlevel

− τ·e−
BAT

BAT−BATlevel
− 1

τ

(26)

Considering these mathematical expressions, we can now obtain the values for the three costs
studied in this subsection. With respect to the wake-up process, we are considering it occurs in
a one-time unit, consuming Iwake−up amperes. Then, the unitary cost of each wake-up in any endpoint,

Qunitary
wake−up may be easily calculated using the cost function (27). The same assumptions are applied

to the sleep process, which consumes Isleep amperes; thus, the unitary cost of each sleep process

Qunitary
sleep is also easily calculated (28). BATlevel parameter must be fixed dynamically depending on the

endpoint’s situation.
Qunitary

wake−up(BATlevel) = CE
[
Iwake−up·1; BATlevel

]
(27)

Qunitary
sleep (BATlevel) = CE

[
Isleep·1; BATlevel

]
(28)

While endpoints are slept, they do not consume energy, so no cost must be considered. However,
while endpoints are on, a stand-by cost appears. While endpoints are in a stand-by state they consume
Istand−by amperes. Considering the endpoint is on for a Nstand−by length period, the unitary cost of

a stand-by period Qunitary
stand−by may be calculated through the cost function (29). For endpoints which are

on only to look for updates, no stand-by cost is produced.

Qunitary
stand−by (N; BATlevel) = CE

[
Istand−by·N; BATlevel

]
(29)

Then, for different endpoint’s models, the global costs associated to wake-up and sleep processes
and stand-by periods are different. Table 3 shows the calculation expressions for each case. We are
assuming at n = 0 batteries are totally charged.

For always-on endpoints, only the cost associated to the permanent stand-by state must be
considered. For other endpoint’s models no stand-by cost must be calculated. However, wake-up and
sleep processes generate other costs to be obtained. In particular, the number of sleep periods for each
model was calculated in Section 3.4. Therefore, it is enough to consider an aggregation of unitary costs,
considering for each sleep period that one sleep and one wake-up processes occur. Besides, the battery
charge decreases linearly according to consumed current for each process, so it is simple to obtain the
battery level at each moment.

Sensors 2019, 19, 1779 13 of 27

Table 3. Link management costs for different endpoint’s models.

Endpoint Model Cost

Qwake−up Qstand−by Qsleep

Always-on 0 Qunitary
stand−by

(
Nstudy; 0

)
0

Fixed-Period Wake-up Model Csleep∑
i=1

Qunitary
wake−up

(
(i− 1)Iwake−up

) 0 Csleep∑
i=1

Qunitary
sleep

(
(i− 1)Isleep

)
Dynamic Wake-up

Scheduling
Bernoulli Server

0
Poisson Server Cexp∑

i=1
Qunitary

wake−up

(
(i− 1)Iwake−up

) Cexp∑
i=1

Qunitary
sleep

(
(i− 1)Isleep

)
Exponential Evolution Wake-up 0

3.6. Information Obtention Cost Calculation

Once evaluated the loss probability and the link management cost, we must address the cost
associated to information obtention (considering the server has a new information block to be sent).
This cost, Qobten, is the composition of two partial costs: query process cost, Qcheck and the recovery
process cost, Qrecov.

The query process cost refers the usage of hardware resources such as communications modules.
Each query has a unitary cost, Qunitary

check . As the elements affecting this cost are not consumable, we
are assuming it has a constant value selected according to the endpoint implementation (we are not
addressing hardware details in this work). Besides, as always-on endpoints never sleep, they never
query the server for new blocks: if any block is available, the server just sends it. Table 4 shows the
cost calculation for the different endpoint models, considering the number of sleep periods (a query
process is performed after wake-up).

Table 4. Query process cost for different endpoint’s models.

Endpoint model Cost Qcheck

Always-on 0

Fixed-Period Wake-up Model
Csleep · Q

unitary
check

Dynamic Wake-up Scheduling Bernoulli Server

Poisson Server
Cexp · Q

unitary
check

Exponential Evolution Wake-up

Now, the information recovery cost is not related to endpoints’ characteristics but to communication
system’s configuration. This cost is the aggregation of two amounts: the information reception cost,
Qrecep and the decompression cost, Qdecom.

With respect to the information reception cost, we are assuming a unitary cost describing the
cost of receiving a bit, Qunitary

recep . This cost includes spectrum reservation, reception buffers and so forth.
Then, for a received information block with a length of L h-bit symbols (see Section 3.2), the reception
cost may be easily obtained (30).

Qrecep = L ·h · Qunitary
recep (30)

Now, to analyse the decompression cost we must consider different compression methods. In this
work we take into account three different algorithms: (i) Run-length encoding (RLE), (ii) Huffman-Qopt
method (where Q is a parameter indicating the number of symbols to be employed in compressed
blocks) and (iii) no compression (raw transmission). All decompression methods are modelled
as the following sequence: a compressed symbol is read and then the equivalent decompressed
symbol is written. This sequence is repeated until the entire message is read. Mathematically, then,
the decompression cost may be modelled as an algebraic operation (31).

Qdecom = (h·Qunitary
read + k·Qunitary

write ·L
decompressed
symbol)·Lcompressed + QRAM (31)

Sensors 2019, 19, 1779 14 of 27

In this expression, different unitary costs are considered referring the consumed processing time:
the unitary cost of reading a bit Qunitary

read and the unitary cost of writing a bit, Qunitary
write . In general,

compressed symbols are h-bit symbols, where k , h. Besides, Lcompressed refers to the compressed

information block length in h-bit symbols; and Ldecompressed
symbol refers to the number of k-bit symbols

obtained from a compressed h-bit symbol. Finally, QRAM is the cost of all transitory data structures (in
volatile memory) needed to perform the decompression process. Considering an endpoint has a RAM
memory with capacity RAM, the cost may be calculated using a cost function CM[·] (32) isomorphic to
the one described for energy cost (26) and considering RAMcon the consumed memory amount.

CM = 1− e−
RAM

RAM−RAMcon
−1

τ (32)

For raw transmission the decompression cost is zero, Qdecom = 0, as no compression method is
employed. Besides, RLE does not require any transitory data structure, so QRAM = 0. Table 5 shows
the relation between the compressed and raw length of an information block bi, depending on its
entropy. These expressions may be deducted considering how the different algorithms work [9]. For
Huffman Q-optimum algorithm HQ+1

min (bi) represents the minimum entropy for a block bi, calculated
among all possible dictionaries with Q + 1 symbols.

Table 5. Query process cost for different endpoint’s models.

Compression
Method

Message Length
(Raw)

k-bit Symbols

Message Length (Compressed)
h-bit Symbol

Lcompressed

Number of k-bit Symbols Per
Compressed Symbol

Ldecompressed
symbol

Raw L L (h = k) 1

RLE L
L

(2h−k−1)−(2h−k−2)·
H(bi)

k

(
2h−k
− 1

)
−

(
2h−k
− 2

)
·
H(bi)

k

Huffman-Qopt L

L
h ·

k
kQ
·HQ+1

min (bi)

kQ = log2(Q + 1)

HQ+1
min (bi)

= min
Dictionary Q+1

(H(bi))

(
h−kQ

k

)
H(bi) + kQ

In these expressions, randomness is embedded by block’s entropy, which is at the end a
stochastic term.

3.7. Information Consumption Cost Calculation

Finally, once an information block is received by an endpoint (or not), it must be consumed and
operations related to actualization, decision and device management must be taken. These operations
have a cost Qconsump. Basically, two different costs may appear each time an endpoint looks for new
information blocks:

• If server has in the queue any new information block, the endpoint (after obtaining it) must
consume it (for example, display the retrieved image). Later, memory must be cleaned, timers
programmed and so forth. All this process has a cost Qupdate.

• On the other hand, if no new block is available, the endpoint only must refresh the existing
information, program timers and so forth. All these operations have a cost, Qno−update, which is
usually lower than the cost including the new information processing. In always-on endpoints,
this cost is not applicable as they develop an alternative stand-by cycle.

Sensors 2019, 19, 1779 15 of 27

For server following a deterministic behaviour, then, Qconsump may be directly calculated. For
servers with a random behavior (Poisson and Bernoulli servers), a probability distribution is obtained.
Table 6 shows the obtained expression for each case.

Table 6. Information consumption cost in the proposed scenario. Random variables.

Server
Model Endpoint Model

Predefined
fixed

pattern

Always-on Qconsump = card{Nnew−block}·Qupdate

Fixed-period
wake-up model

Qconsump =
Csleep∑
i=1

Qstep(i)

Qstep(i) =

 Qupdate i f ∃ nnew
k ∈ Nnew−block

... (i− 1)Nstep ≤ nnew
k < i·Nstep

Qno−update else

Dynamic
wake-up

scheduling
Qconsump = card{Nnew−block}·Qupdate

Exponential
evolution
wake-up

Qconsump =
∑

Nnew−block

Qupdate + M·Qno−update

M integer number such that nnew
ki−1 − nnew

ki
> Nmin and

nnew
ki−1 − nnew

ki+r > 2M−1
·Nmin and nnew

ki−1 − nnew
ki+r < 2M

·Nmin

Stationary
Bernoulli
pattern

Always-on p
(
Qconsump = M·Qupdate

)
=

(
Nstudy

M

)
(pber)

M(qber)
Nstudy− M

Fixed-period
wake-up model p

(
Qconsump = M1·Qupdate + M2·Qno−update

)
=

(
Csleep
M1

)
(psuccess)

M1 (1− psuccess)
Csleep−M1

psuccess =
Nstep∑
k=1

(
Nstep

k

)
(pber)

k(qber)
Nstep− k being M1, M2 ∈ N M1 + M2 = Csleep

Dynamic
wake-up

scheduling

Exponential
evolution
wake-up

p
(
Qconsump = M1·Qupdate + M2·Qno−update

)
=

(
Cexp
M1

)
(psuccess)

M1 (1− psuccess)
Cexp−M1

psuccess =
kexp∑
r0=0

kexp−1−r0∑
r1=0

kexp−2−(r0+r1)∑
r2= 0

· · ·

1−(r0+···+rkexp−2)∑
rkexp−1=0

kexp−1∏
i=0[

pb(2ri ·Nmin)

(
ri−1∏
z=0

1− pb(2z
·Nmin)

)]
pb(Nmin)

being M1, M2 ∈ N M1 + M2 = Cexp

pb(N) =
∞∑

k=1

(
N
k

)
(pber)

k(qber)
N− k

Poisson
pattern

Always-on
p
(
Qconsump = M·Qupdate

)
=

(
Nstudy

M

)
(psuccess)

M(1− psuccess)
Nstudy−M

psuccess =
∞∑

k=1

1
k! e
−
λpoisson
Nstudy ·

(
λpoisson
Nstudy

)k

Fixed-period
wake-up model

p
(
Qconsump = M1·Qupdate + M2·Qno−update

)
=

(
Csleep
M1

)
(psuccess)

M1 (1− psuccess)
Csleep−M1

psuccess =
∞∑

k=1

1
k! e
−
λpoisson
Nstudy

Nstep
·

(
λpoisson
Nstudy

Nstep

)k

being M1, M2 ∈ N M1 + M2 = Csleep

Dynamic
wake-up

scheduling p
(
Qconsump = M1·Qupdate + M2·Qno−update

)
=

(
Cexp
M1

)
(psuccess)

M1 (1− psuccess)
Cexp−M1

psuccess =
kexp∑
r0=0

kexp−1−r0∑
r1=0

kexp−2−(r0+r1)∑
r2= 0

· · ·

1−(r0+···+rkexp−2)∑
rkexp−1=0

kexp−1∏
i=0[

pb(2ri ·Nmin)

(
ri−1∏
z=0

1− pb(2z
·Nmin)

)]
pb(Nmin)

being M1, M2 ∈ N M1 + M2 = Cexp

pb(N) =
∞∑

k=1

1
k! e
−

λpoisson
Nstudy

· N
·

(
λpoisson
Nstudy

·N
)k

Exponential
evolution
wake-up

First, we must consider that, contrary to other costs, information consumption cost Qconsump cannot
take any real or integer value. Only values decomposable as a combination of Qupdate and Qno−update

Sensors 2019, 19, 1779 16 of 27

costs are possible values (33). Additional limits could be applied for certain combinations of server
and endpoint models.

Qconsump = M1·Qupdate + M2·Qno−update being M1, M2 ∈ N (33)

Now, for always-on endpoints, it is easy to obtain the value (or probability distribution) of the
global cost, as only an amount of Qupdate units must be added each time the server generates a new
information block. Equally, for fixed-period wake-up endpoints, it is only needed to evaluate the
probability of generating, at least, one information block in each sleep period. That may be done
directly using the Binomial or Poisson distribution, depending on the server type (Bernoulli or Poisson).

As said in Section 3.5, dynamic wake-up scheduling endpoints follow other models depending on
the server type, so no new calculation is required.

Finally, exponential evolution wake-up endpoints require larger and more complex discussions.
When employed with predefined fixed pattern servers, a deterministic calculation may be done.
However, when employed Poisson or Bernoulli servers it is necessary to consider the Bayes laws (23)
to obtain the global probability distribution. This mathematical development has been also employed
in other subsections, although in this case a binary probability pb is defined, to calculate the natural
probability of a Bernoulli (and Poisson) distribution to generate any amount of information blocks or
(in the opposite case) not generate any block.

The last problem we must address in this subsection is the calculation of partial costs Qupdate and
Qno−update. Basically, these costs refer to the usage of hardware components such as microprocessors,
RAM memory, displays and so forth. A combination of different cost functions depending on
the endpoint implementation should be employed. In this initial work, as we are not addressing
implementation particularities, we are assuming these two partial costs have a predefined value
representing the resource consumption according to the endpoint hardware.

3.8. Proposed Algorithm for Optimizing Communication Efficiency

In order to propose an optimization algorithm in a reasoned manner, we firstly analyse the
behaviour of the communication efficiency according to some relevant parameters using the previously
described models. A multi-dimensional analysis would be required to consider all possible cases
and situations but this approach cannot be implemented in practice for more than two parameters.
Therefore, we are focusing our analysis on those parameters the endpoints may change or negotiate:
the endpoint’s lifecycle and the compression method.

Figure 3 shows the evolution of the mean communication efficiency for the different endpoint’s
lifecycles, considering a server following a predefined pattern. Results are evaluated for
different values of card{Nnew−block} (number of generated information blocks). Specific values
for communication efficiency depend on many variables at this point but our objective is only a
comparative study between the different endpoint’s lifecycle; thus, no values are shown in axes
in Figure 3. As can be seen, dynamic wake-up scheduling endpoints present the best efficiency,
as their lifecycle is always synchronized with the servers, reducing the information losses and
the link management and information consumption costs. Both, fixed-period wake-up model and
exponential evolution wake-up endpoints present a variable behaviour as costs tend to be similar
but information losses grow as more blocks are generated. Anyway, exponential evolution wake-up
endpoints are slightly better as they can adapt, increasing or reducing the sleep period. Always-on
endpoints present a low efficiency

Sensors 2019, 19, 1779 17 of 27

Sensors 2018, 18, x FOR PEER REVIEW 16 of 26

𝑝(𝑁) = 1𝑘! 𝑒ି ఒೞೞேೞೠ ∙ ே ∙ ቆ𝜆௦௦𝑁௦௧௨ௗ௬ ∙ 𝑁ቇஶ
ୀଵ

The last problem we must address in this subsection is the calculation of partial costs 𝑄௨ௗ௧ and 𝑄ି௨ௗ௧ . Basically, these costs refer to the usage of hardware components such as
microprocessors, RAM memory, displays and so forth. A combination of different cost functions
depending on the endpoint implementation should be employed. In this initial work, as we are not
addressing implementation particularities, we are assuming these two partial costs have a predefined
value representing the resource consumption according to the endpoint hardware.

3.8. Proposed Algorithm for Optimizing Communication Efficiency

In order to propose an optimization algorithm in a reasoned manner, we firstly analyse the
behaviour of the communication efficiency according to some relevant parameters using the
previously described models. A multi-dimensional analysis would be required to consider all
possible cases and situations but this approach cannot be implemented in practice for more than two
parameters. Therefore, we are focusing our analysis on those parameters the endpoints may change
or negotiate: the endpoint’s lifecycle and the compression method.

Figure 3 shows the evolution of the mean communication efficiency for the different endpoint’s
lifecycles, considering a server following a predefined pattern. Results are evaluated for different
values of 𝑐𝑎𝑟𝑑{𝒩௪ି} (number of generated information blocks). Specific values for
communication efficiency depend on many variables at this point but our objective is only a
comparative study between the different endpoint’s lifecycle; thus, no values are shown in axes in
Figure 3. As can be seen, dynamic wake-up scheduling endpoints present the best efficiency, as their
lifecycle is always synchronized with the servers, reducing the information losses and the link
management and information consumption costs. Both, fixed-period wake-up model and
exponential evolution wake-up endpoints present a variable behaviour as costs tend to be similar but
information losses grow as more blocks are generated. Anyway, exponential evolution wake-up
endpoints are slightly better as they can adapt, increasing or reducing the sleep period. Always-on
endpoints present a low efficiency

Figure 3. Mean communication efficiency for predefined pattern servers.

Figure 4 shows the shows the evolution of the mean communication efficiency for the different
endpoint’s lifecycles, considering a server following a Bernoulli pattern. Results are evaluated for
different values of the block generation probability 𝑝 . Always-on endpoints present a similar
efficiency to other cases but fixed-period wake-up model and exponential evolution wake-up
endpoints have a variable behaviour. For low block generation probabilities, the link management
cost is much bigger than the value of the obtained information and efficiency is low. On the other
hand, for large block generation probabilities the information losses go up and efficiency is also low.

Figure 3. Mean communication efficiency for predefined pattern servers.

Figure 4 shows the shows the evolution of the mean communication efficiency for the different
endpoint’s lifecycles, considering a server following a Bernoulli pattern. Results are evaluated for
different values of the block generation probability pber. Always-on endpoints present a similar
efficiency to other cases but fixed-period wake-up model and exponential evolution wake-up endpoints
have a variable behaviour. For low block generation probabilities, the link management cost is much
bigger than the value of the obtained information and efficiency is low. On the other hand, for large
block generation probabilities the information losses go up and efficiency is also low. For values
in the middle, a balance is reached and efficiency is maximum. Besides, for low block generation
probabilities, fixed-period wake-up endpoints are more efficient and for high block generation
probabilities exponential evolution wake-up endpoints are better.

Sensors 2018, 18, x FOR PEER REVIEW 17 of 26

For values in the middle, a balance is reached and efficiency is maximum. Besides, for low block
generation probabilities, fixed-period wake-up endpoints are more efficient and for high block
generation probabilities exponential evolution wake-up endpoints are better.

Figure 4. Mean communication efficiency for Bernoulli pattern servers.

Finally, Figure 5 shows the evolution of the mean communication efficiency for the different
endpoint’s lifecycles, considering a server following a Poisson pattern. Results are evaluated for
different values of the mean number of generated blocks 𝜆௦௦. It is similar to that obtained for
Bernoulli servers, although in this case (globally), exponential evolution wake-up endpoints are more
efficient.

Figure 5. Mean communication efficiency for Poisson pattern servers.

On the other hand, we are evaluating the system efficiency depending on the compression
algorithm. Figure 6 shows the obtained results for different values of entropy. For low entropy
information blocks, RLE algorithm is very efficient but as entropy grows the efficiency goes down.
The same behaviour is shown for Huffman algorithm but it is a very costly algorithm (code is very
complex and large and large transitory data structures are needed) and only for a small number of
situations its use is efficient. For high entropy information blocks the transmission in raw format is
finally more efficient.

Figure 4. Mean communication efficiency for Bernoulli pattern servers.

Finally, Figure 5 shows the evolution of the mean communication efficiency for the different
endpoint’s lifecycles, considering a server following a Poisson pattern. Results are evaluated for
different values of the mean number of generated blocks λpoisson. It is similar to that obtained for
Bernoulli servers, although in this case (globally), exponential evolution wake-up endpoints are
more efficient.

Sensors 2019, 19, 1779 18 of 27

Sensors 2018, 18, x FOR PEER REVIEW 17 of 26

For values in the middle, a balance is reached and efficiency is maximum. Besides, for low block
generation probabilities, fixed-period wake-up endpoints are more efficient and for high block
generation probabilities exponential evolution wake-up endpoints are better.

Figure 4. Mean communication efficiency for Bernoulli pattern servers.

Finally, Figure 5 shows the evolution of the mean communication efficiency for the different
endpoint’s lifecycles, considering a server following a Poisson pattern. Results are evaluated for
different values of the mean number of generated blocks 𝜆௦௦. It is similar to that obtained for
Bernoulli servers, although in this case (globally), exponential evolution wake-up endpoints are more
efficient.

Figure 5. Mean communication efficiency for Poisson pattern servers.

On the other hand, we are evaluating the system efficiency depending on the compression
algorithm. Figure 6 shows the obtained results for different values of entropy. For low entropy
information blocks, RLE algorithm is very efficient but as entropy grows the efficiency goes down.
The same behaviour is shown for Huffman algorithm but it is a very costly algorithm (code is very
complex and large and large transitory data structures are needed) and only for a small number of
situations its use is efficient. For high entropy information blocks the transmission in raw format is
finally more efficient.

Figure 5. Mean communication efficiency for Poisson pattern servers.

On the other hand, we are evaluating the system efficiency depending on the compression
algorithm. Figure 6 shows the obtained results for different values of entropy. For low entropy
information blocks, RLE algorithm is very efficient but as entropy grows the efficiency goes down.
The same behaviour is shown for Huffman algorithm but it is a very costly algorithm (code is very
complex and large and large transitory data structures are needed) and only for a small number of
situations its use is efficient. For high entropy information blocks the transmission in raw format is
finally more efficient.Sensors 2018, 18, x FOR PEER REVIEW 18 of 26

Figure 6. Mean communication efficiency for different compression algorithms.

Then, considering all showed results, the proposed algorithm follows some rules according the
previous figures. Namely:

• By default, all endpoints follow an always-on lifecycle and using a raw transmission system.
This approach, although it is the least efficient, allow us to collect information about the system
behaviour in the fastest manner, so a more efficient configuration may be easily selected.

• If low entropy information blocks are detected, the RLE compression algorithm will be selected.
For high entropy blocks, raw transmission will be employed; and for intermedium situation the
Huffman QOpt algorithm will be configured. Considering Figure 6 and the fact that entropy
ranges in the interval [0, 𝑘], Table 7 shows the proposed operation limits.

Table 7. Application limits for each compression algorithm.

Compression Algorithm Application Limits

RLE 𝐻(𝑏) ∈ 0, 𝑘2൨

Raw 𝐻(𝑏) ∈ 3 𝑘2 , 𝑘൨

Huffman QOpt 𝐻(𝑏) ∈ 𝑘2 , 3 𝑘2൨

• For predefined pattern servers, a dynamic wake-up scheduling will be negotiated with the
server. If it is not available, an exponential evolution wake-up model will be employed.

• For Bernoulli pattern servers, two different situations are clearly shown (see Figure 4). For low
values of the block creation probability (for example, 𝑝 < 0,5), the fixed-period wake-up
model is more efficient. In any other case, the exponential evolution wake-up model will be
employed by endpoints.

• Finally, for Poisson pattern servers, an exponential evolution wake-up model will be employed
by endpoints.

Now, in order to detect the server configurations and, then, change dynamically the endpoints’
configurations to increase as much as possible the communication efficiency, we are using the Bayes
theorem (34). It is important to note that server may not be aware about certain behaviours inherited
from managers (such as the information generation rate). 𝑝(𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝐴𝑇 | 𝑄) = 𝑝(𝑄 | 𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝐴𝑇)∑ 𝑝(𝑄 | 𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝐴𝑇) ∙ 𝑝(𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝐴𝑇)∀ ் 𝑝(𝑠𝑒𝑟𝑣𝑒𝑟 = 𝑃𝐴𝑇) (34)

All endpoints may easily calculate the described costs, 𝑄 (such as the information value 𝑄)
considering the proposed cost functions and the real resource consumption and/or number of
received information blocks. Then, after collecting data for a certain time period, it is possible (using
previously described expressions) to evaluate the probability of the server to follow a certain pattern

Figure 6. Mean communication efficiency for different compression algorithms.

Then, considering all showed results, the proposed algorithm follows some rules according the
previous figures. Namely:

• By default, all endpoints follow an always-on lifecycle and using a raw transmission system.
This approach, although it is the least efficient, allow us to collect information about the system
behaviour in the fastest manner, so a more efficient configuration may be easily selected.

• If low entropy information blocks are detected, the RLE compression algorithm will be selected.
For high entropy blocks, raw transmission will be employed; and for intermedium situation the
Huffman QOpt algorithm will be configured. Considering Figure 6 and the fact that entropy
ranges in the interval [0, k], Table 7 shows the proposed operation limits.

• For predefined pattern servers, a dynamic wake-up scheduling will be negotiated with the server.
If it is not available, an exponential evolution wake-up model will be employed.

Sensors 2019, 19, 1779 19 of 27

• For Bernoulli pattern servers, two different situations are clearly shown (see Figure 4). For low values
of the block creation probability (for example, pber < 0, 5), the fixed-period wake-up model is more
efficient. In any other case, the exponential evolution wake-up model will be employed by endpoints.

• Finally, for Poisson pattern servers, an exponential evolution wake-up model will be employed
by endpoints.

Table 7. Application limits for each compression algorithm.

Compression Algorithm Application Limits

RLE H(bi) ∈
[
0, k

2

]
Raw H(bi) ∈

[
3 k

2 , k
]

Huffman QOpt H(bi) ∈
[

k
2 , 3 k

2

]
Now, in order to detect the server configurations and, then, change dynamically the endpoints’

configurations to increase as much as possible the communication efficiency, we are using the Bayes
theorem (34). It is important to note that server may not be aware about certain behaviours inherited
from managers (such as the information generation rate).

p(server = PAT | Qi) =
p(Qi | server=PAT)∑

∀ T p(Qi | server=PAT)·p(server=PAT)
p(server = PAT) (34)

All endpoints may easily calculate the described costs, Qi (such as the information value Qin f o)
considering the proposed cost functions and the real resource consumption and/or number of
received information blocks. Then, after collecting data for a certain time period, it is possible
(using previously described expressions) to evaluate the probability of the server to follow a certain
pattern PAT, that is, p(Qi | server = PAT), known the costs Qi. Thus, using the Bayes theorem
and the proposed expression (34) it is evaluated the “posteriori” probability of a server to follow
the pattern PAT. For this calculation we are considering all server’s pattern equally probable, so
p(server = PAT) = 1

3 .
As three different costs related to the server pattern have been defined (Qin f o, Qlink and Qconsump),

three different probabilities will be obtained. Each probability will be mapped into three different
integer numbers, according to two thresholds pmin and pmax (35).

G(pi) =

1 i f pi < pmin
2 i f pmin ≤ pi ≤ pmax

3 i f pi > pmax

(35)

Finally, an aggregated estimator will be employed (36) to rank all possible server patterns.
The pattern with a higher mark is selected as the real pattern. Only patterns with a mark above the
global threshold Gthreshold will be considered in the decision process.

Gtotal = G
(
p
(
server = PAT

∣∣∣ Qin f o
))
·G(p(server = PAT | Qlink))·G

(
p
(
server = PAT

∣∣∣ Qconsump
))

(36)

In order to select the most efficient compression algorithm it is enough to evaluate the entropy
of the received information blocks. If the central server allows stablishing a negotiation process,
the compression method will be changed according to previously indicated rules. On the contrary,
no change will be applied.

In order to avoid transitory effects (temporary behaviour that are not stable nor permanent),
the same result must be obtained in several different and independent evaluations, Neval, across Nhist
sequential evaluations, to change the endpoint’s configuration. Once efficiency is above a certain
threshold ηthreshold the dynamic configuration process stops and will be run again if the efficiency
monitoring procedure detects efficiency goes down.

Algorithm 1 codifies the described behaviour.

Sensors 2019, 19, 1779 20 of 27

Algorithm 1: Dynamic Communication Efficiency Optimization

Input: Set of received information blocks B
Set of battery consumptions BATi

con
Estimated costs Qconsump and Qobten (hardware dependent)
Circular buffer BUFF with Nhist last GPAT−max evaluations
Circular buffer ENT with Nhist last H(B) evaluations

Output: Endpoint configuration
Calculate Qin f o for the set of received information blocks B, Qin f o = CI[B]
Calculate Qlink using the set of battery consumptions BATi

con, Qlink = CE
[
BATi

con

]
Calculate the mean entropy of the information blocks, H(B)
Obtain the mean communication efficiency η = η

(
Qin f o, Qlink, Qobten, Qconsump

)
if η < ηthreshold or endpoint is not configured then

CONFselected = ALWAYS−ON
for every server pattern PAT ∈

{
prede f ined, Bernoulli, Poisson

}
do

for every cost Qi ∈
{
Qin f o, Qlink, Qobten, Qconsump

}
do

Calculate pi = p(Qi | server = PAT) using the proposed mathematical model
Obtain pPAT, i = p(server = PAT | Qi) using Bayes theorem

end for
Calculate GPAT−total =

∏
i

G
(
pPAT, i

)
end for
Calculate GPAT−max = max

{
GPAT−total, being GPAT−total > Gthreshold

}
Insert GPAT−max in BUFF
if Gprede f ined−max is contained in BUFF at least Neval times then

if server allows dynamic scheduling then
CONFselected = DYNAMIC

else
CONFselected = EXPONENTIAL

end if
else if GBernoulli−max is contained in BUFF at least Neval times then

Estimate pber using the set of received information blocks B
if pber < 0, 5 then

CONFselected = FIXED
end if

else
if GPoisson−max is contained in BUFF at least Neval times then

CONFselected = EXPONENTIAL
end if

end if
Insert H(B) in ENT
if server allows negotiation then

if H(B) ∈
[
0, k

2

]
in ENT at least Neval times then

COMPRESSION = RLE
else if H(B) ∈

[
k
2 , 3 k

2

]
in ENT at least Neval times then

COMPRESSION = HUFFMAN
else

if H(B) ∈
[
3 k

2 , k
]

in ENT at least Neval times then
COMPRESSION = RAW

end if
end if

end if
end if

Sensors 2019, 19, 1779 21 of 27

4. Experimental Validation and Results

In order to evaluate the performance and validate the proposed solution, in this section it is
described an experimental validation based on simulation scenarios and a first real implementation.

4.1. Experiment Description

Four experiments were carried out. The first group includes the three initial experiments and
are based on simulation scenarios and tools. The second group, including only the fourth and final
experiment, employs as main element an initial real implementation of the proposed solution.

Simulation scenarios and experiments are built using the NS3 network simulator. NS3 is a research
simulation tool where scenarios and networks are described using C++ language. Results are obtained
as a discrete sequence of events which may be processed and analysed after finishing the simulation.
This network simulator considers three basic elements: information sources, communication networks
and information endpoints. As seen, these elements perfectly fit the elements in our scenario
(see Figure 1).

All simulations are carried out using a Linux architecture (Linux 16.04 LTS) with the following
hardware characteristics: Dell R540 Rack 2U, 96 GB RAM, two processors Intel Xeon Silver 4114 2.2G,
2TB SATA 7.2K rpm.

Basically, the first three experiments are performed in the same scenario. A Smart Home, where
connectivity is supported by Wi-Fi solutions and where only one information source emulating the
server behaviour and functions is considered. The number of endpoints in the same scenario is variable,
as well as the characteristics of content generated by the information source. All elements are considered
to be configured at network and service level, to guarantee the connectivity and interoperability.

In order to implement the proposed configuration algorithm in the endpoints and obtain relevant
results, endpoints are connected to virtual instances running over the same operating system. These
virtual machines are created and maintained through LXC technologies (Linux Containers) and the libvirt
interface which enable the automatic creation and monitoring of these instances. Containers execute a
unique process consisting of the described solution in Algorithm 1. Using ghost nodes and TAP bridges
the output and inputs of these virtual instances is connected to the simulation elements representing the
endpoints. In that way, it is possible to evaluate the performance of the proposed solution and enrich our
simulation with real information. All the virtual machines are monitored in the use of their resources
through the libvirt interface in order to feed the proposed algorithm with these data.

Using this scheme three different experiments were carried out. The first one considers fifteen
endpoints in the scenario. Seven endpoints are receiving content with a low entropy (text) and eight
endpoints are receiving data with a high entropy (images). The experiment studies the efficiency
evolution in the proposed scenarios for the two different endpoints groups. Three cases are considered.
In each case the server behaviour is changed: predefined fixed pattern, Bernoulli pattern and Poisson
pattern. For each case, twelve simulations were developed and presented results are the mean of all
obtained realizations. One hundred operation hours are simulated in each case.

The second experiment analyses the delay required by our solution to react and change the
endpoints’ configuration to the most efficient scheme after a spontaneous change in the server or
information characteristics. To perform this analysis, fifteen endpoints receiving all of them the same
information are considered. Three cases are considered: change in the server pattern, change in the
information entropy, change in the server pattern and information entropy at the same time. For each
case, twelve simulations were developed and presented results are the mean of all obtained realizations.
One hundred operation hours are simulated in each case.

The third experiment, the last one using simulation tools, is focused on comparing the proposed
solution to existing proposals in the state of the art. The efficiency reached by the proposed solution
is compared to the efficiency reached by a standard solution [11]. The same scenario than in second
experiment was employed. Five hundred simulations were performed for each algorithm and
maximum reached efficiency was measured.

Sensors 2019, 19, 1779 22 of 27

The four experiment is quite different. In order to evaluate the performance of the proposed
solution in a real deployment, it is developed a first initial system implementation. The proposed
Smart Home consisted of a central server where a web server generated the information blocks. Then,
five information endpoints were connected to this server thought a Smart Gateway implemented using
the Samsung Artik 530 (Linux) architecture. Endpoints are electronic ink displays, where images are
shown. These endpoints are based on Artik 020 architecture and connected through Bluetooth wireless
technology to the Smart Gateway. Figure 7 shows the described deployment.

Sensors 2018, 18, x FOR PEER REVIEW 21 of 26

machines are monitored in the use of their resources through the libvirt interface in order to feed the
proposed algorithm with these data.

Using this scheme three different experiments were carried out. The first one considers fifteen
endpoints in the scenario. Seven endpoints are receiving content with a low entropy (text) and eight
endpoints are receiving data with a high entropy (images). The experiment studies the efficiency
evolution in the proposed scenarios for the two different endpoints groups. Three cases are
considered. In each case the server behaviour is changed: predefined fixed pattern, Bernoulli pattern
and Poisson pattern. For each case, twelve simulations were developed and presented results are the
mean of all obtained realizations. One hundred operation hours are simulated in each case.

The second experiment analyses the delay required by our solution to react and change the
endpoints’ configuration to the most efficient scheme after a spontaneous change in the server or
information characteristics. To perform this analysis, fifteen endpoints receiving all of them the same
information are considered. Three cases are considered: change in the server pattern, change in the
information entropy, change in the server pattern and information entropy at the same time. For each
case, twelve simulations were developed and presented results are the mean of all obtained
realizations. One hundred operation hours are simulated in each case.

The third experiment, the last one using simulation tools, is focused on comparing the proposed
solution to existing proposals in the state of the art. The efficiency reached by the proposed solution
is compared to the efficiency reached by a standard solution [11]. The same scenario than in second
experiment was employed. Five hundred simulations were performed for each algorithm and
maximum reached efficiency was measured.

The four experiment is quite different. In order to evaluate the performance of the proposed
solution in a real deployment, it is developed a first initial system implementation. The proposed
Smart Home consisted of a central server where a web server generated the information blocks. Then,
five information endpoints were connected to this server thought a Smart Gateway implemented
using the Samsung Artik 530 (Linux) architecture. Endpoints are electronic ink displays, where
images are shown. These endpoints are based on Artik 020 architecture and connected through
Bluetooth wireless technology to the Smart Gateway. Figure 7 shows the described deployment.

Figure 7. First real implementation of information endpoints for Smart Homes using the proposed
configuration algorithm.

Figure 7. First real implementation of information endpoints for Smart Homes using the proposed
configuration algorithm.

Artik 020 architecture is based on a high Performance 32-bit 40 MHz ARM Cortex®-M4 with
DSP instruction and floating-point unit for efficient signal processing. It also includes a 256 kB flash
program memory and a 32 kB RAM data memory. Using these resource-constrained devices it is
evaluated the real consumption caused by the proposed solution. A very important aspect in our
proposal is the possibility of the algorithm to be implemented and executed in resource constrained
endpoints. The described deployment was operated for three days and data about the resource
consumption was collected through the debugging interface. In particular, the use of data memory
(RAM), program memory (flash) and processing time is evaluated. The resource consumption was
evaluated for different situations and configuration actions.

Finally, for all four experiments, the Table 8 represents the value of all the configuration parameters
described in the mathematical model.

Table 8. Configuration parameters for the experimental validation.

Parameter Value

Nstep 10
λpoission 50
Nstudy 5000

pber 0.7
Ts 1 s

Nmin 2
k 8
h 1

BAT 7200 mAh

Sensors 2019, 19, 1779 23 of 27

4.2. Results

Figure 8 shows the results of the first experiment. As can be seen, the efficiency evolves according
to a staircase function. This is caused by the double analysis described in our proposal: first the
endpoint lifecycle and later the compression algorithm. In fact, calculations associated to compression
algorithms (i.e., the information entropy calculation) are more stable in time, so the most efficient
compression algorithm is selected much faster than the most efficient lifecycle, whose analysis includes
many random variables.

Sensors 2018, 18, x FOR PEER REVIEW 22 of 26

Artik 020 architecture is based on a high Performance 32-bit 40 MHz ARM Cortex®-M4 with DSP
instruction and floating-point unit for efficient signal processing. It also includes a 256 kB flash
program memory and a 32 kB RAM data memory. Using these resource-constrained devices it is
evaluated the real consumption caused by the proposed solution. A very important aspect in our
proposal is the possibility of the algorithm to be implemented and executed in resource constrained
endpoints. The described deployment was operated for three days and data about the resource
consumption was collected through the debugging interface. In particular, the use of data memory
(RAM), program memory (flash) and processing time is evaluated. The resource consumption was
evaluated for different situations and configuration actions.

Finally, for all four experiments, the Table 8 represents the value of all the configuration
parameters described in the mathematical model.

Table 8. Configuration parameters for the experimental validation.

Parameter Value 𝑁௦௧ 10 𝜆௦௦ 50 𝑁௦௧௨ௗ௬ 5000 𝑝 0,7 𝑇௦ 1 second 𝑁 2 𝑘 8 ℎ 1 𝐵𝐴𝑇 7200 mAh

4.2. Results

Figure 8 shows the results of the first experiment. As can be seen, the efficiency evolves
according to a staircase function. This is caused by the double analysis described in our proposal:
first the endpoint lifecycle and later the compression algorithm. In fact, calculations associated to
compression algorithms (i.e., the information entropy calculation) are more stable in time, so the most
efficient compression algorithm is selected much faster than the most efficient lifecycle, whose
analysis includes many random variables.

Figure 8. First experiment: results.
Figure 8. First experiment: results.

Thus, the first step in the stair corresponds to the compression method selection and the second
step to the lifecycle selection. Anyway, as can be seen, the proposed algorithm increases the efficiency
operation above 60% in all cases. Even, for predefined servers (where the analysis considers few
variables and then statistical noise is less relevant) efficiency reaches up to 90% (approximately). On the
other hand, as Poisson servers are studied with expressions where probabilistic variables have a
higher weight, statistical noise in this case is higher and present greater fluctuations. Besides, in this
case, time required to obtain the most appropriate lifecycle is also higher than in any other case (and
minimum for predefined servers where probabilistic variables have a smaller impact). On the other
hand, in endpoints receiving messages with a high entropy, the time required to select the most efficient
compression method is much smaller than in endpoint receiving low entropy messages. That is caused
by the behaviour of entropy function (logarithmic) which is more stable as the independent variable
goes up. Finally, in some situations (see “Poisson server, high entropy” figure) temporary states may
appear caused by false convergences (which are lately corrected).

Figure 9 shows the results of the second experiment. As can be seen, changes in the information
blocks’ entropy are solved much faster than any other change; approximately 50% faster than changes in
the server pattern. In standard time, changes in the information entropy are addressed in, approximately,
50 (fifty) seconds, while changes in the server pattern require around one hundred twenty (120) seconds.
Dispersion (jitter) is also higher for changes in the server pattern, although it is especially relevant for
situations when server patterns and information entropy suffer changes at the same time. In particular,
situations where both changes occur together present a dispersion 100% higher than any other situation.

Sensors 2019, 19, 1779 24 of 27

Sensors 2018, 18, x FOR PEER REVIEW 23 of 26

Thus, the first step in the stair corresponds to the compression method selection and the second
step to the lifecycle selection. Anyway, as can be seen, the proposed algorithm increases the efficiency
operation above 60% in all cases. Even, for predefined servers (where the analysis considers few
variables and then statistical noise is less relevant) efficiency reaches up to 90% (approximately). On
the other hand, as Poisson servers are studied with expressions where probabilistic variables have a
higher weight, statistical noise in this case is higher and present greater fluctuations. Besides, in this
case, time required to obtain the most appropriate lifecycle is also higher than in any other case (and
minimum for predefined servers where probabilistic variables have a smaller impact). On the other
hand, in endpoints receiving messages with a high entropy, the time required to select the most
efficient compression method is much smaller than in endpoint receiving low entropy messages. That
is caused by the behaviour of entropy function (logarithmic) which is more stable as the independent
variable goes up. Finally, in some situations (see “Poisson server, high entropy” figure) temporary
states may appear caused by false convergences (which are lately corrected).

Figure 9 shows the results of the second experiment. As can be seen, changes in the information
blocks’ entropy are solved much faster than any other change; approximately 50% faster than changes
in the server pattern. In standard time, changes in the information entropy are addressed in,
approximately, 50 (fifty) seconds, while changes in the server pattern require around one hundred
twenty (120) seconds. Dispersion (jitter) is also higher for changes in the server pattern, although it is
especially relevant for situations when server patterns and information entropy suffer changes at the
same time. In particular, situations where both changes occur together present a dispersion 100%
higher than any other situation.

Figure 9. Second experiment: results.

Figure 10 presents the results of the third experiment. Maximum reached efficiency is evaluated
for different simulations, showing an increase up to 70% when employing the proposed solution.
However, the main difference is the probability distribution for each case. Solutions in the state of the
art are not focused on a future efficient operation, so the maximum reached efficiency is a totally
random value with a uniform distribution and almost every possible value has a non-null probability.
On the contrary, using the proposed solution, maximum efficiency is a gaussian distribution with a
quite low dispersion and centred around 𝜂௫ = 0,7 (approximately). As can be seen, it is a very
relevant improvement.

Figure 9. Second experiment: results.

Figure 10 presents the results of the third experiment. Maximum reached efficiency is evaluated
for different simulations, showing an increase up to 70% when employing the proposed solution.
However, the main difference is the probability distribution for each case. Solutions in the state of
the art are not focused on a future efficient operation, so the maximum reached efficiency is a totally
random value with a uniform distribution and almost every possible value has a non-null probability.
On the contrary, using the proposed solution, maximum efficiency is a gaussian distribution with
a quite low dispersion and centred around ηmax = 0.7 (approximately). As can be seen, it is a very
relevant improvement.

Sensors 2018, 18, x FOR PEER REVIEW 24 of 26

Figure 10. Third experiment: results.

Table 9 shows the results of the fourth and last experiment. As can be seen, the size of the
program, although relevant, it is acceptable for resource constrained endpoints. Moreover, the use of
memory RAM is low (below 20%), which fits the requirements of endpoints in Smart Homes. Besides,
the consumed processing time is always below three (3) seconds per actualization (execution).

Table 9. Fourth experiment: results.

Configuration Action Use of RAM Use of Program
Space

Processing Time to Perform an
Actualization

Predefined server to Bernoulli
server

16% 34% 2.2 s

Predefined server to Poisson
server

18% 34% 1.9 s

Bernoulli server to Poisson
server

18% 34% 1.9 s

Entropy increasing 12% 34% 1.5 s
Entropy decreasing 12% 34% 1.5 s

5. Conclusions and Future Work

In this work we propose a new configuration algorithm for endpoints in Smart Homes, so that
they can operate in the most efficient way according to the dynamic characteristics of received
information blocks and central server behaviour. The proposed algorithm makes predictions using a
mathematical model, where all involved costs in the information reception and consumption are
identified and quantified. Different server patterns and information block types (presenting different
entropies) are considered in the model, to select the most appropriate endpoint lifecycle and
compression method to increase efficiency as much as possible.

Predictions are corrected using the Bayes theorem with real measurements about the real
resource consumption. The proposed solution is complementary to any other installed configuration
solution to guarantee the system connectivity and interoperability.

In order to validate the proposed solution an experimental validation was carried out using
simulation scenarios and real deployments. Results show a good performance of the proposed
solution and a relevant efficiency increase in the system operation in comparison to previous
proposals.

Figure 10. Third experiment: results.

Table 9 shows the results of the fourth and last experiment. As can be seen, the size of the
program, although relevant, it is acceptable for resource constrained endpoints. Moreover, the use of
memory RAM is low (below 20%), which fits the requirements of endpoints in Smart Homes. Besides,
the consumed processing time is always below three (3) seconds per actualization (execution).

Sensors 2019, 19, 1779 25 of 27

Table 9. Fourth experiment: results.

Configuration Action Use of RAM Use of Program Space Processing Time to Perform
an Actualization

Predefined server to Bernoulli server 16% 34% 2.2 s
Predefined server to Poisson server 18% 34% 1.9 s
Bernoulli server to Poisson server 18% 34% 1.9 s

Entropy increasing 12% 34% 1.5 s
Entropy decreasing 12% 34% 1.5 s

5. Conclusions and Future Work

In this work we propose a new configuration algorithm for endpoints in Smart Homes, so that they
can operate in the most efficient way according to the dynamic characteristics of received information
blocks and central server behaviour. The proposed algorithm makes predictions using a mathematical
model, where all involved costs in the information reception and consumption are identified and
quantified. Different server patterns and information block types (presenting different entropies) are
considered in the model, to select the most appropriate endpoint lifecycle and compression method to
increase efficiency as much as possible.

Predictions are corrected using the Bayes theorem with real measurements about the real resource
consumption. The proposed solution is complementary to any other installed configuration solution to
guarantee the system connectivity and interoperability.

In order to validate the proposed solution an experimental validation was carried out using
simulation scenarios and real deployments. Results show a good performance of the proposed solution
and a relevant efficiency increase in the system operation in comparison to previous proposals.

As future work, more complex models should be considered and a unique general expression for
all possible server patterns should be created. Besides, more advanced artificial intelligence instruments
could be integrated into the described algorithm to replace the Bayes theorem which may be limited
for certain situations (for example, when hidden patterns govern the system behaviour).

Author Contributions: The contributions described in this work are distributed among the authors as follows:
All the authors wrote the paper. R.A. and B.B. contributed to the theoretical formalization and to the proposal.
D.S.-d.-R. provided the implementation of the system and D.S.-d.-R. and T.R. proposed the validation experiments
and collected the results.

Funding: The research leading to these results has received funding from the Ministry of Economy and
Competitiveness through SEMOLA (TEC2015-68284-R) project and the Ministry of Science, Innovation and
Universities through VACADENA (RTC-2017-6031-2) project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alam, M.R.; Reaz, M.B.I.; Ali, M.A.M. A review of smart homes—Past, present and future. IEEE Trans. Syst.
Man Cybern. 2012, 42, 1190–1203. [CrossRef]

2. Chan, M.; Campo, E.; Estève, D.; Fourniols, J.Y. Smart homes—Current features and future perspectives.
Maturitas 2009, 64, 90–97. [CrossRef] [PubMed]

3. Chan, M.; Estève, D.; Escriba, C.; Campo, E. A review of smart homes—Present state and future challenges.
Comput. Methods Progr. Biomed. 2008, 91, 55–81. [CrossRef] [PubMed]

4. Bordel, B.; Alcarria, R.; Manso-Callejo, M.Á.; Jara, A. Building enhanced environmental traceability solutions:
From Thing-to-Thing communications to Generalized Cyber-Physical Systems. J. Int. Serv. Inf. Secur. 2017, 7,
17–33.

5. Bordel, B.; Alcarria, R.; Robles, T.; Martín, D. Cyber–physical systems: Extending pervasive sensing from
control theory to the Internet of Things. Pervasive Mob. Comput. 2017, 40, 156–184. [CrossRef]

6. Wilson, C.; Hargreaves, T.; Hauxwell-Baldwin, R. Smart homes and their users: A systematic analysis and
key challenges. Pers. Ubiquitous Comput. 2015, 19, 463–476. [CrossRef]

http://dx.doi.org/10.1109/TSMCC.2012.2189204
http://dx.doi.org/10.1016/j.maturitas.2009.07.014
http://www.ncbi.nlm.nih.gov/pubmed/19729255
http://dx.doi.org/10.1016/j.cmpb.2008.02.001
http://www.ncbi.nlm.nih.gov/pubmed/18367286
http://dx.doi.org/10.1016/j.pmcj.2017.06.011
http://dx.doi.org/10.1007/s00779-014-0813-0

Sensors 2019, 19, 1779 26 of 27

7. Liu, L.; Stroulia, E.; Nikolaidis, I.; Miguel-Cruz, A.; Rincon, A.R. Smart homes and home health monitoring
technologies for older adults: A systematic review. Int. J. Med. Inf. 2016, 91, 44–59. [CrossRef] [PubMed]

8. Alcarria, R.; Bordel, B.; Martín, D.; de Rivera, D.S. Rule-based monitoring and coordination of resource
consumption in smart communities. IEEE Trans. Consum. Electron. 2017, 63, 191–199. [CrossRef]

9. Sánchez-de-Rivera, D.; Alcarria, R.; Martín, D.; Huecas, G. Proposal and Assessment of Algorithms for Power
Consumption Reduction in Wireless Networks with E-Ink Displays. J. Int. Technol. 2018, 19, 2035–2046.

10. Dawy, Z.; Saad, W.; Ghosh, A.; Andrews, J.G.; Yaacoub, E. Toward massive machine type cellular
communications. IEEE Wirel. Commun. 2017, 24, 120–128. [CrossRef]

11. Bordel, B.; Alcarria, R.; Sánchez de Rivera, D.; Martín, D.; Robles, T. Fast self-configuration in service-oriented
Smart Environments for real-time applications. J. Ambient Intell. Smart Environ. 2018, 10, 143–167. [CrossRef]

12. Al-Khawaldeh, M.; Al-Naimi, I.; Chen, X.; Moore, P. Ubiquitous robotics for knowledge-based
auto-configuration system within smart home environment. In Proceedings of the 7th International
Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 5–7 April 2016; pp. 139–144.

13. Lee, M.; Kim, Y.; Lee, Y. A home cloud-based home network auto-configuration using SDN. In Proceedings
of the 2015 IEEE 12th International Conference on Networking, Sensing and Control, Taipei, Taiwan, 9–11
April 2015; pp. 444–449.

14. Shon, T.; Park, Y. Implementation of rf4ce-based wireless auto configuration architecture for ubiquitous
smart home. In Proceedings of the 2010 International Conference on Complex, Intelligent and Software
Intensive Systems, Krakow, Poland, 15–18 February 2010; pp. 779–783.

15. Lee, S.; Jeong, J.P.; Park, J. DNSNA: DNS name autoconfiguration for Internet of Things devices. In Proceedings
of the 2016 18th International Conference on Advanced Communication Technology (ICACT), Pyeongchang,
Korea, 31 January–3 February 2016; pp. 410–416.

16. Lin, H.; Bergmann, N. IoT privacy and security challenges for smart home environments. Information 2016,
7, 44. [CrossRef]

17. Rust, P.; Picard, G.; Ramparany, F. Using Message-Passing DCOP Algorithms to Solve Energy-Efficient
Smart Environment Configuration Problems. In Proceedings of the IJCAI’16 Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; pp. 468–474.

18. Byun, J.; Jeon, B.; Noh, J.; Kim, Y.; Park, S. An intelligent self-adjusting sensor for smart home services based
on ZigBee communications. IEEE Trans. Consum. Electron. 2012, 58, 794–802. [CrossRef]

19. Sen, S. Context-aware energy-efficient communication for IoT sensor nodes. In Proceedings of the 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 5–9 June 2016; pp. 1–6.

20. Evensen, P.; Meling, H. Sensewrap: A service oriented middleware with sensor virtualization and
self-configuration. In Proceedings of the 2009 International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP), Melbourne, VIC, Australia, 7–10 December 2009; pp. 261–266.

21. Cetina, C.; Giner, P.; Fons, J.; Pelechano, V. Using feature models for developing self-configuring smart
homes. In Proceedings of the 2009 Fifth International Conference on Autonomic and Autonomous Systems,
Valencia, Spain, 20–25 April 2009; pp. 179–188.

22. Aberer, K.; Hauswirth, M.; Salehi, A. The Global Sensor Networks Middleware for Efficient and Flexible
Deployment and Interconnection of Sensor Networks. Technical Report. LSIR-REPORT-2006–006. 2006,
pp. 1–21. Available online: https://infoscience.epfl.ch/record/83891/ (accessed on 11 April 2019).

23. Mayer, S.; Verborgh, R.; Kovatsch, M.; Mattern, F. Smart configuration of smart environments. IEEE Trans.
Autom. Sci. Eng. 2016, 13, 1247–1255. [CrossRef]

24. Ding, F.; Song, A.; Tong, E.; Li, J. A smart gateway architecture for improving efficiency of home network
applications. J. Sens. 2016, 2016, 2197237. [CrossRef]

25. Bordel, B.; Iturrioz, T.; Alcarria, R.; Sanchez-Picot, A. Provision of next-generation personalized cyber-physical
services. In Proceedings of the 13th Iberian Conference on Information Systems and Technologies (CISTI),
Cáceres, Spain, 13–16 June 2018; pp. 1–6.

26. Alcarria, R.; Bordel, B.; Robles, T.; Martín, D.; Manso-Callejo, M.-Á. A Blockchain-Based Authorization
System for Trustworthy Resource Monitoring and Trading in Smart Communities. Sensors 2018, 18, 3561.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ijmedinf.2016.04.007
http://www.ncbi.nlm.nih.gov/pubmed/27185508
http://dx.doi.org/10.1109/TCE.2017.014849
http://dx.doi.org/10.1109/MWC.2016.1500284WC
http://dx.doi.org/10.3233/AIS-180479
http://dx.doi.org/10.3390/info7030044
http://dx.doi.org/10.1109/TCE.2012.6311320
https://infoscience.epfl.ch/record/83891/
http://dx.doi.org/10.1109/TASE.2016.2533321
http://dx.doi.org/10.1155/2016/2197237
http://dx.doi.org/10.3390/s18103561
http://www.ncbi.nlm.nih.gov/pubmed/30347844

Sensors 2019, 19, 1779 27 of 27

27. Karlan, D.; Zinman, J. Price and control elasticities of demand for savings. J. Dev. Econ. 2018, 130, 145–159.
[CrossRef]

28. Bordel, B.; Miguel, C.; Alcarria, R.; Robles, T. A Hardware-Supported Algorithm for Self-Managed and
Choreographed Task Execution in Sensor Networks. Sensors 2018, 18, 812. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jdeveco.2017.10.004
http://dx.doi.org/10.3390/s18030812
http://www.ncbi.nlm.nih.gov/pubmed/29518986
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State of the Art: Configuration Algorithms to Improve Efficiency in Smart Homes
	Efficient Communications with Resource Constrained Information Endpoints in Smart Homes
	Global Scenario and Efficiency Definition
	Information Model
	Information Endpoint and Server Models
	Information Cost Calculation
	Link Management Cost Calculation
	Information Obtention Cost Calculation
	Information Consumption Cost Calculation
	Proposed Algorithm for Optimizing Communication Efficiency

	Experimental Validation and Results
	Experiment Description
	Results

	Conclusions and Future Work
	References

