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ABSTRACT
The role of CD161+CD127+CD8+ T cells in non-small cell lung cancer (NSCLC) patients with diabetes 
remains unexplored. This study determined the prevalence, phenotype, and function of CD8+ T cell 
subsets in NSCLC with diabetes. We recruited NSCLC patients (n = 436) treated with anti-PD-1 immu
notherapy as first-line treatment. The progression-free survival (PFS), overall survival (OS), T cells infiltra
tion, and peripheral blood immunological characteristics were analyzed in NSCLC patients with or without 
diabetes. NSCLC patients with diabetes exhibited shorter PFS and OS (p = 0.0069 and p = 0.012, respec
tively) and significantly lower CD8+ T cells infiltration. Mass cytometry by time-of-flight (CyTOF) showed a 
higher percentage of CD161+CD127+CD8+ T cells among CD8+T cells in NSCLC with diabetes before anti- 
PD-1 treatment (p = 0.0071) than that in NSCLC without diabetes and this trend continued after anti-PD-1 
treatment (p = 0.0393). Flow cytometry and multiple-immunofluorescence confirmed that NSCLC with 
diabetes had significantly higher CD161+CD127+CD8+ T cells to CD8+T cells ratios than NSCLC patients 
without diabetes. The RNA-sequencing analysis revealed immune-cytotoxic genes were reduced in the 
CD161+CD127+CD8+ T cell subset compared to CD161+CD127−CD8+ T cells in NSCLC with diabetes. 
CD161+CD127+CD8+ T cells exhibited more T cell-exhausted phenotypes in NSCLC with diabetes. 
NSCLC patients with diabetes with ≥ 6.3% CD161+CD127+CD8+ T cells to CD8+T cells ratios showed 
worse PFS. These findings indicate that diabetes is a risk factor for NSCLC patients who undergo anti- 
PD-1 immunotherapy.CD161+CD127+CD8+ T cells could be a key indicator of a poor prognosis in NSCLC 
with diabetes. Our findings would help in advancing anti-PD-1 therapy in NSCLC patients with diabetes.
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Introduction

According to GLOBOCAN 2020, lung cancer is the leading 
cause of cancer-related death, with an age-standardized rate of 
cancer mortality of 30.2 per 100,000 population.1 The number 
of new cases of lung cancer in China has continued to rise, and 
non-small cell lung cancer (NSCLC) accounts for 80–85% of all 
lung cancer cases.2,3 As our understanding of tumor immunity 
has increased, immunotherapy has become a conventional 
treatment for NSCLC.4–6 In recent years, the application of 
anti-programmed cell death protein 1 (PD-1), anti-pro
grammed cell death protein ligand 1 (PD-L1) and cytotoxic T 
lymphocyte antigen-4 (CTLA-4) to advanced NSCLC patients 
with nonsensitive gene mutations has received widespread 
attention in immuno-oncology.7–9

Diabetes mellitus (DM) is associated with significant mor
tality and comorbidities, including cardiovascular disease, kid
ney disease, retinopathy, peripheral vascular disease, and 

neuropathy.10–12 DM is also related to the increased incidence 
and mortality of several cancers, such as colorectal, prostate, 
breast, and pancreatic cancers.13 Furthermore, patients with 
DM-related cancer and poor glycemic control have poor long- 
term clinical outcomes and survival rates.14 The mechanism 
underlying high sugar-induced cancer aggressiveness differs 
among different cancer types. Glucose can activate many sig
naling pathways, including extracellular signal-regulated 
kinase (ERK), signal transducer and activator of transcription 
(STAT)-3, and nuclear factor (NF)-κB, which are involved in 
cancer cell proliferation, metastasis, and resistance to 
chemotherapy.15–17 The activation of these intracellular path
ways regulates the transcription of specific downstream target
ing elements and promotes tumor aggressiveness. Therefore, 
DM has been identified as an indicator of cancer progression.18

The number of patients with both DM and lung cancer has 
been increasing annually. DM is considered an independent
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prognostic factor for overall survival (OS) in patients with DM 
and NSCLC who receive a standard treatment.19 The tumor 
microenvironment of NSCLC is important for its progression 
and metastasis. Interestingly, the infiltration of immune cells, 
especially T cells, into the tumor microenvironment is linked to 
the metabolic features of tumors that are important for thera
peutic strategies.20,21 Glucose metabolism is pivotal to the pro
liferation, differentiation, and effect of various immune cells in 
changing the tumor microenvironment.22,23 The impaired anti
tumor activity of γδ T cells due to dysglycemia may lead to the 
occurrence of cancer in patients with diabetes.24 Hyperglycemia 
induces the M2 polarization of tumor-associated macrophages 
and reduces anti-tumor immunity.25 Furthermore, hyperglyce
mia can impair the expression of granulocyte colony-stimulating 
factors, thus impeding the mobilization of anti-tumor neutro
phils and increasing tumor metastatic burden.26 Metformin, a 
type 2 DM drug, can attenuate CD4+CD25+ regulatory T cells in 
the tumor microenvironment, which is related to the mechan
istic targeting of rapamycin complex 1 (mTORC1) activation 
and metabolic reprogramming toward glycolysis.27 Recently, 
researchers have developed a method for obtaining comprehen
sive immune cells from peripheral blood.28,29 However, to the 
best of our knowledge, no studies have focused on the character
istics of infiltrating immune cells using mass cytometry by time- 
of-flight (CyTOF) in NSCLC patients with diabetes.

In the present study, we examined a possible link between 
DM and immune cell infiltration in patients with NSCLC. 
Differences in tumor microenvironment profiles were com
pared between NSCLC patients with and without diabetes 
using CyTOF to explain the poor progression-free survival 
(PFS) and OS observed in NSCLC patients with diabetes. 
Furthermore, we determined the prevalence, phenotype, and 
function of CD8+ T cell subsets defined by the expression of 
CD161 and CD127 in NSCLC with diabetes. Our findings 
demonstrate for the first time that these CD8+ T subsets have 
prognostic relevance in NSCLC with diabetes.

Materials and methods

Study design and patients

We recruited patients with NSCLC treated with anti-PD-1 immu
notherapy from the Department of Respiratory Disease, First 
Affiliated Hospital, Zhejiang University School of Medicine, 
between November 2018 and December 2021 in the retrospective 
cohort. The study was conducted in accordance with the 
Declaration of Helsinki and approved by the Ethics Committee 
of The First Affiliated Hospital of Zhejiang University School of 
Medicine (Approval No. 2023–0343). The performance status of 
patients before anti-immunotherapy was evaluated using the 
Eastern Cooperative Oncology Group (ECOG) performance 
scale. Patient recruitment for the retrospective and validation 
cohorts included in this study adhered to the following inclusion 
and exclusion criteria: patients were included if they had been 
diagnosed with locally advanced or metastatic NSCLC based on 
histological or cytological analysis, had received at least two 
courses of treatment of immune checkpoint inhibitors (ICIs) 
therapy, or had a performance status of 0–1 and no organ dysfunc
tion. All patients received anti-PD-1 therapy as the first-line 

treatment. Patients were excluded if they had an ECOG score 
of ≥ 2, had received anti-PD-1 therapy as second-line treatment 
or later, or had sensitive driver gene mutations, such as epidermal 
growth factor receptor (EGFR) mutations, ROS1 rearrangement, 
and anaplastic lymphoma kinase (ALK)-positive NSCLC. Patients 
with serious adverse events, who discontinued treatment due to 
adverse events, or who received < 2 cycles of immunotherapy were 
also excluded. The included patients were separated into two 
groups: NSCLC patients with diabetes and without diabetes. To 
evaluate the treatment efficacy, collected patient information 
included demographics, clinical characteristics, treatment infor
mation, and other relevant data, including the date of disease 
progression or death.

The primary outcomes of this study were the objective 
response rate (ORR), PFS, and OS. The ORR is the percentage 
of patients who achieved complete response/partial response as 
determined by an investigator, based on the Response 
Evaluation Criteria in Solid Tumors, version 1.1.30 OS was 
defined as the time from the initiation of ICIs administration 
to death for any reason or to the final follow-up. PFS was 
defined as the time from the initiation of ICIs administration 
to first sign of disease progression or death from any cause.

Animal model

Six-week-old C57BL/6J male mice were purchased from 
Hangzhou Medical College (Hangzhou, China). All animal 
experimental procedures were approved by the Ethics Review 
Committee of the Experimental Animal Center of Zhejiang 
University School of Medicine (ethical approval number: 
2023–974). C57BL/6J mice were fasted for 12 h and then intra
peritoneally (i.p.) injected with 180 mg/kg body weight strep
tozotocin (STZ; S0130, Sigma-Aldrich, Darmstadt, Germany), 
which was dissolved in 0.05 M citrate buffer. The control group 
received the citrate buffer at the same volume. The concentra
tion of blood glucose (≥12 mmol/L) in the mice was verified for 
the DM model. Each mouse was injected subcutaneously with 
5 × 105 Lewis lung cancer cells. When the tumor had grown to 
50 mm3, the anti-mouse-PD-1 mAb (BioXcell, Cat#BE0146, 
New Hampshire, USA) or IgG isotype control (BioXcell, 
Cat#BE0089) was injected intraperitoneally into the mice for 
therapeutic treatment (every 2 days, three times in total, 10 μg/ 
g anti-PD-1 per mouse). The tumor was checked using a digital 
caliper, and the tumor volume was calculated using the follow
ing formula: tumor volume = (width2 × length)/2.

Peripheral blood mononuclear cell isolation

To collect peripheral blood mononuclear cells (PBMCs), 5 mL 
fresh blood was collected from each patient before anti-PD-1 
therapy and after one cycle of anti-PD-1 treatment. PBMCs 
were separated from whole blood through density and gradient 
centrifugation using Ficoll referred by the previous study.31 

PBMCs were washed and resuspended in pre-cooled fluores
cence activated cell sorting (FACS) buffer [1× phosphate buf
fered saline (PBS) along with 0.5% bovine serum albumin 
(BSA)], and they were centrifuged at 400 × g for 5 min at 4°C. 
The cells were counted with a hemocytometer, and more than
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3 × 106 cells were ready for further staining. The viability rate 
was > 85%.

CyTOF preparation and data analysis

The antibody combination contained 42 antibodies involved 
in various immune subpopulations. Information on clone 
number, company, and catalog number is shown in 
Supplementary Table S1, including antibody labeling with 
the indicated mass tag, which was used according to the 
Maxpar antibody conjugation kit (Fluidigm, San Francisco, 
CA, USA). The cells were washed with 1 × PBS and stained 
with 100 μL of 250 nM cisplatin (Fluidigm) for 5 min. They 
were then incubated in an Fc receptor blocking solution 
before staining with a surface antibody cocktail for 30 min 
on ice. Then the cells were washed three times with FACS 
buffer (including 1 × PBS + 0.5% BSA), centrifuged at 800 × g 
and 4°C for 5 min. The supernatant was discarded. The cells 
were fixed with 200 μL intercalation solution (Maxpar Fix and 
Perm Buffer containing 250 nM 191/193Ir, Fluidigm) over
night (~8–16 h). After fixation, the cells were washed once 
with FACS buffer and then with Perm Buffer (eBioscience, 
San Diego, CA, USA), stained with an intracellular antibody 
cocktail for 30 min. Subsequently, the cells were rinsed with 
FACS buffer and incubated in 1× PBS on ice for 20 min with a 
barcode. Then, the cells were washed, resuspended in deio
nized water with 20% EQ beads (Fluidigm), and evaluated 
using a mass cytometer (Helios, Fluidigm, USA). Samples 
were sent to PLTTECH (Hangzhou, China), who conducted 
the CyTOF experiments.28 Before loading each batch of sam
ples, the instrument adjusted the signaling intensity of each 
channel to maintain the same bead signal (140Ce, 151Eu, 
153E u, 165Ho, and 175 Lu).

The FCS data for each sample were debarcoded from the 
raw data according to a doublet-filtering scheme based on 
special mass-tagged barcodes.32 The FCS files from different 
batches were standardized using bead normalization.33 

Following data standardization, debris, dead cells, and doublets 
were manually removed using the FlowJo software, leaving 
single live immune cells. We used the PhenoGraph clustering 
algorithm34 to cluster all cells according to the marker expres
sion level in single cells, adjust the clustering parameters to 
obtain an appropriate number of cell subpopulations, and 
annotate the cell types of each cluster via the marker gene 
expression profiles on a heatmap of clusters. Meanwhile, the 
dimensionality reduction algorithm, t-distributed stochastic 
neighbor embedding, was applied to visualize the high-dimen
sional data in two dimensions to indicate the distribution of 
each cluster on a two-dimensional graph and the expression of 
each marker or sample type.35

Multiplex immunohistochemistry/immunofluorescence

Paraffin sections were obtained from the Department of 
Respiratory Disease, Thoracic Disease Center, First Affiliated 
Hospital, Zhejiang University School of Medicine for immu
nostaining. Immunostaining was performed according to a 
previous study, using the primary antibodies CD3 (17617–1- 

AP, Proteintech; 1:200) and CD8 (Ab237709, Abcam; 
1:200).31,36 The immunostained tissue sections were checked 
and counted under a microscope (Olympus BX53, Japan). Each 
sample was counted separately by at least two pathologists and 
examined until a consensus was reached.

Multiplex immunofluorescence staining was performed 
using the Opal Polaris 7 Color Multiplex IHC kit 
(NEL861001KT, Akoya Biosciences, Delaware, USA). The 
slides were dewaxed and antigenic repair was performed 
using EDTA buffer (pH 9.0). The slides were washed with 3% 
H2O2 for 15 min and sealed with 3% BSA (B2064-100 G, 
Sigma-Aldrich). The slides were then incubated with primary 
antibodies against CD3 (17617–1-AP, Proteintech; 1:1000), 
CD8 (Ab237709, Abcam; 1:2000), CD161 (Ab302564, Abcam; 
1:300), CD127 (Ab180521, Abcam; 1:50), CD57 (72031, Cell 
Signaling Technology; 1:300), and GZMB (13588–1-AP, 
Proteintech; 1:50), followed by Opal Polymer HRP Ms+Rb 
(Akoya Biosciences). The samples were subjected to optical 
fluorophore-conjugated tyramide signal amplification (Akoya 
Biosciences). The dyes used to detect each antibody were Opal 
570 dye (CD3), Opal 520 dye (CD8), Opal 690 dye (CD161), 
Opal 620 dye (CD57 or CD127) and Opal 480 (GZMB). These 
steps were repeated until cells were labeled with the expected 
markers and 4’,6-diamidino-2-phenylindole. Slices were visua
lized using the Vectra Polaris Quantitative Pathological 
Imaging System (Akoya Biosciences) and analyzed using the 
InForm software (Akoya Biosciences).

Flow cytometry

PBMCs were isolated using Ficoll (Cytiva)-based density gradi
ent centrifugation according to the manufacturer’s instructions. 
For flow cytometric analysis, PBMC samples were pretreated 
with human IgG blocker (BioLegend, Cat#422302) for 20 min. 
Then, the cells were washed thrice with FACS buffer (including 
1× PBS + 0.5% BSA) and centrifuged at 800 × g and 4°C for 5  
min. All flow cytometry antibodies were purchased from 
BioLegend (San Diego, CA, USA). We used phytohemagglutinin 
(PHA, Dakewe, Cat#2030411) to stimulate T cells. PBMCs were 
incubated with the following antibody conjugates on ice in the 
dark: APC/Cyanine 7-CD3 (Cat#300425), PerCP/Cyanine 5.5- 
CD8a (Cat#301031), PE-CD57 (Cat#393307), APC-CD127 
(Cat#351315), FITC-granzyme B (GZMB) (Cat#515403), and 
PE/Cyanine7-CD161 (Cat#339917), PE-granulysin (GNLY) 
(Cat#348003), PE-LAG3 (Cat#369305), FITC-KLRG1 
(Cat#367713), PE-TIGIT (Cat#372703), and FITC-PD-1 
(Cat#329903). All cell surface reactions (CD3, CD8, CD57, 
CD127, CD161, KLRG1, TIGIT, LAG3, and PD-1) were per
formed at 4°C for 30 min. The permeabilization step that 
allowed for intracellular staining (GZMB and GNLY) was per
formed according to the manufacturer’s protocol (BioLegend, 
Cat#426803). Finally, the cells were resuspended in 300 μL FACS 
buffer. Flow cytometric analysis was performed using a BD 
FACS Fortessa multicolor flow cytometer (BD Biosciences). 
For the mouse model flow cytometry test, the samples were 
subjected to flow cytometry analysis following staining with 
surface markers APC-CD127 (Cat#135011, BioLegend), 
PerCP/Cyanine5.5-CD3(Cat#100327,BioLegend), APC/
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Cyanine7-CD8a (Cat#100713, BioLegend), and FITC-CD161 
(Cat#108705, BioLegend). The data were further analyzed with 
FlowJo vX.07 software (Tree Star).

RNA-sequencing

For mRNA sequencing, RNA samples were prepared using 
the TruSeq RNA Sample Preparation according to the 
manufacturer’s instructions and performed by GENEWIZ 
from Azenta Life Sciences (Suzhou, China). Briefly, the 
poly-A-containing mRNA molecules were purified from 
total RNA using poly-T oligo-attached magnetic beads. 
The cleaved RNA fragments were then reverse transcribed 
into first-strand cDNA (complementary DNA) using ran
dom hexamers, followed by second-strand cDNA synthesis. 
The cDNA fragments were purified, end blunted, “A” 
tailed, and adaptor ligated. Polymerase chain reaction 
(PCR) was used to selectively enrich DNA fragments with 
adapter molecules on both ends and amplify the amount of 
DNA in the library. The library was qualified using an 
Agilent 2100 bioanalyzer and quantified using Qubit and 
qPCR. The produced libraries were sequenced on the HiSeq 
2500 platform, and differential expression analysis was per
formed using DESeq2. Significant differentially expressed 
genes (DEGs) were defined as having a Q value < 0.05. 
The expression patterns of genes among different groups 
and samples were determined using hierarchical cluster 
analysis of DEGs in the R software.

Statistical analysis

Descriptive statistics were calculated to summarize baseline 
characteristics and primary tumor response. Categorical vari
ables were compared using the chi-squared test or Fisher’s 
exact probability method. The Kaplan – Meier method and 
log-rank test were applied to estimate the PFS and OS with 
associated two-sided 95% confidence intervals (CIs). Hazard 
ratios (HRs) and the associated 95% CIs were calculated using a 
stratified Cox proportional hazards model. All statistical ana
lyses were performed using GraphPad Prism 8 (GraphPad 
Software, San Diego, CA, USA) and R software version 4.1.0 
(R Project for Statistical Computing). Significance was 
assumed at p < 0.05.

Results

NSCLC patients with diabetes shortens survival period and 
inhibits CD8+ T cells function

Overall, 436 patients with advanced or metastatic NSCLC who 
received anti-PD-1 immunotherapy as a first-line treatment 
between November 2018 and December 2021 were enrolled 
in the study. Demographic and baseline characteristics of the 
patients are presented in Table 1. Patients with and without 
diabetes accounted for 16.3% (71/436) and 83.7% (365/436), 
respectively. The median age was 68 (range: 52–89) and 65 
(range: 39–85) years for patients with and without diabetes, 
respectively. Disease stage, smoking history, comorbidities,

Table 1. Baseline of patients’ demographics and clinical characteristics in retrospective cohort.

All patients (n = 436) Nondiabetic patients (n = 365) Diabetic patients (n = 71) p value

Gender 0.275
Male 393(90.1%) 326(89.3%) 67(94.4%)
Female 43(9.9%) 39(10.7%) 4(5.6%)
Median age, years 66.5(39–89) 65(39–85) 68(52–89) 0.438
Disease stage 0.574
IIIb-IIIc 130(29.8%) 111(30.4%) 19(26.8%)
IV 306(70.2%) 254(69.6%) 52(73.2%)
Smoking status 0.575
Never smoker 134(30.7%) 110(30.1%) 24(33.8%)
Smoker 302(69.3%) 255(69.6%) 47(66.2%)
Comorbidities 0.176
Hypertension 138(31.7%) 108(29.6%) 30(42.3%)
COPD 142(32.6%) 121(33.2%) 21(29.6%)
Cerebralcardio vascular diseases 20(4.6%) 15(4.1%) 5(7.0%)
Coronary artery disease 22(5.0%) 15(4.1%) 7(9.9%)
Histology 0.585
Adenocarcinoma 193(44.3%) 159(43.6%) 34(47.9%)
Squamous cell carcinoma 230(52.8%) 196(53.7%) 34(47.9%)
Poorly-differentiated NSCLC 13(2.9%) 10(2.7%) 3(4.2%)
PD-L1 expression 0.264
≥50% 51(11.7%) 42(11.5%) 9(12.7%)
1%-49% 98(22.5%) 76(20.8%) 22(31.0%)
<1% 141(32.3%) 121(33.2%) 20(28.2%)
Un-detect 146(33.5%) 126(34.5%) 20(28.2%)
Immunotherapy regimens
Monotherapy 35(8.0%) 29(7.9%) 6(8.5%) 0.814
Combination with chemotherapy 401(92.0%) 336(92.1%) 65(91.5)
Sites of distant metastases at first diagnosis 0.260
Bone 97(22.2%) 81(22.2%) 16(22.5%)
Lung 65(14.9%) 55(15.1%) 10(14.1%)
Liver 30(6.9%) 20(5.5%) 10(14.1%)
Adrenal 25(5.7%) 20(5.5%) 5(7.0%)
CNS 56(12.8%) 49(13.4%) 7(9.9%)
Pleura 101(23.2%) 82(22.5%) 19(26.8%)

CNS: Central nervous system; COPD:Chronic Obstructive Pulmonary Disease.

4 J. QU ET AL.



histology results, immunotherapy regimen, PD-L1 expression, 
and sites of distant metastases at first diagnosis did not differ 
significantly between patients with and without diabetes.

We analyzed the ORR, PFS, and OS in patients with or 
without diabetes. The final follow-up date was November 30, 
2023. For the 365 NSCLC patients without diabetes who 
underwent ICIs therapy as a first-line treatment, 0.3% (1/365) 
achieved a complete response (CR), 43.3% (158/365) achieved 
a partial response (PR), 41.4% (151/365) showed stable disease 
(SD), and 4.7% (17/365) had progressive disease (PD). For 
10.4% (38/365) of the patients, data on treatment efficacy 
were unavailable because patients had postoperative recur
rence, and no target lesions were identified for evaluation. 
Among patients with diabetes, 35.2% (25/71) achieved PR, 
53.5% (38/71) showed SD, and 5.6% (4/71) had PD. For 5.6% 
(4/71) of patients, efficacy evaluation was lacking. The ORR 
was 43.6% and 35.2% for patients without and with diabetes, 
respectively. Patients with diabetes showed a shorter PFS than 
those without diabetes (7.0 vs. 11.0 months). The stratified HR 
for disease progression or death was 1.5 (95% CI: 1.1–2.0; p =  
0.0069) (Figure 1a). The OS was 17.0 and 26.0 months in 
patients with and without diabetes, respectively (HR: 1.5, 95% 
CI: 1.0–2.1; p = 0.0122) (Figure 1b). This indicated that patients 
with diabetes had worse ORR, PFS, and OS than those without 
diabetes.

We analyzed T-cells infiltration in 148 patients with NSCLC 
(121 patients without diabetes and 27 with diabetes). We per
formed immunohistochemical staining of CD3 and CD8 and 
found that patients without diabetes had high CD8+ T cells 
infiltration (Figure 1c). Patients with diabetes had significantly 
less CD8+ T cells infiltration than patients without diabetes 
(45.96 vs. 151.9, p = 0.0374, Figure 1d). Furthermore, we ana
lyzed PBMCs from 43 patients with NSCLC (16 with diabetes 
and 27 without diabetes) using flow cytometry to determine 
the numbers of CD8+ T cells (Figure 1e). The results were 
consistent with those of human lung tissue. Patients with 
diabetes had significantly lower percentages of CD8+ T cells 
than those without diabetes (np = 0.0299, Figure 1f). Moreover, 
the expression of immunosuppressive checkpoints such as PD- 
1, T-cell immunoreceptor with Ig and ITIM domains (TIGIT), 
and lymphocyte activation gene-3 (LAG3) were significantly 
higher in NSCLC patients with diabetes (Figure 1g). The pro
portion of killer cell lectin-like receptor G1 (KLRG1) and 
GNLY-positive cells were significantly lower among infiltrat
ing CD8+ T cells in NSCLC with diabetes, and the proportion 
of GZMB exhibited no significant difference (Figure 1h).

Major peripheral immune components in NSCLC patients 
with or without diabetes

To investigate the peripheral blood immunological characteristics 
of patients with or without diabetes, we enrolled 17 patients with 
advanced NSCLC who received first-line immunotherapy from 
July 2022 to December 2022. Among these 17 patients, 7 were 
diabetes and 10 were without diabetes. The clinical characteristics 
of these patients are shown in Supplementary Table S2. We 
obtained CyTOF data from the 17 patients at baseline before 
anti-PD-1 treatment and matched PBMC samples 3 weeks after 
first-line anti-PD-1 treatment (Figure 2a). After processing the 

original file 70,000 cells were obtained from each sample. Thirty- 
three major immune cell clusters were identified using the classic 
PhenoGraph clustering method. Based on the canonical cell sur
face markers, we defined 33 major cell clusters, including 7 of 
CD4+ T cells (CD3+CD4+), 7 of CD8+ T cells (CD3+CD8+), 2 of B 
cells (CD3−CD19+), 4 of natural killer cells (NK, CD3−CD56+), 4 
of monocytes (CD14+CD86+HLA-DR+), and 8 of other subsets, 
including γδ T cells (CD3+γδ TCR+), natural killer T cells (NKT, 
CD3+CD56+), double-positive T cells (DPT, CD3+CD4+CD8+), 
double-negative T cells (CD3+CD4−CD8−), and dendritic cells 
(CD11c+HLA-DR+; pDC, CD123+HLA-DR+). The C32 cluster 
was undefined for lacking classic markers (Supplementary 
Figure S1A, B). The different marker expression levels of the 33 
clusters are shown in Supplementary Table S3. All cell clusters 
were divided into 13 subsets; CD4+T cells accounted for 29.33%, 
CD8+T cells accounted for 16.39%, NK cells accounted for 18.3%, 
and monocytes accounted for 23.15% (Figure 2b, c). We then 
analyzed the differences in patients with or without DM before 
and after anti-PD-1 treatment and found evident differences for 
some cell subsets (Figure 2d). We also compared the proportion of 
immune clusters in patients with or without diabetes before and 
after anti-PD-1 treatment, and the results showed that the propor
tion of immune clusters highly differed among NSCLC patients 
with diabetes before anti-PD-1 treatment (DMB), NSCLC with 
diabetes after anti-PD-1 treatment (DMA), NSCLC without dia
betes before anti-PD-1 treatment (NDMB), and NSCLC without 
diabetes after anti-PD-1 treatment (NDMA) (Supplementary 
Figure S1C). In most patients, CD4+ and CD8+ T cells accounted 
for the largest proportion. However, NK cells accounted for the 
largest population of B005. These results indicated tumor hetero
geneity among PBMC samples from different patients 
(Supplementary Figure S1D). Furthermore, we compared the 
proportion and frequency of immune subsets before anti-PD-1 
treatment and 3 weeks after anti-PD-1 treatment between the two 
groups, but there were no significant differences in DMB, NDMB, 
DMA, and NDMA patients (Figure 2e). The expression of multi
ple PBMC-derived immune cell markers in patients with or with
out diabetes before and after anti-PD-1 immunotherapy is shown 
in Supplementary Figure S1E-F. The expression of T cell activa
tion and toxicity markers such as CD38, GZMB, and HLA-DR 
were obviously increased after anti-PD-1 treatment in the group 
without diabetes.

NSCLC patients with diabetes showed higher 
CD161+CD127+CD8+ T cells proportions in CD8+T cells

Furthermore, we identified the clusters and distribution of 
immune cell subsets in CD8+ T cells to compare the differences 
between patients with or without diabetes before and after anti- 
PD-1 therapy. 21 clusters of CD8+ T cells were analyzed, including 
4 naïve CD8+ T cells (CD45RA+CCR7+), 8 effector memory CD8+ 

T cells (CD45RA−CCR7−), 6 effector CD8+ T cells 
(CD45RA+CCR7−), 2 CD161+CD127+CD8+ T cells, and 1 
CD57+CD161+GZMB+CD8+ T cell clusters (Figure 3a, b). The 
expression levels of different markers in the 21 clusters are shown 
in Supplementary Table S4. The percentage of 21 clusters for 
immune cell subpopulations in DMB, NDMB, DMA, and 
NDMA patients were analyzed and shown in Figure 3c. First, 
we compared the different immune cell clusters between DMB
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and NDMB patients. Compared to that in NDMB patients, the 
C01 cluster (CD161+CD127+CD8+ T cells) was evidently 
increased in DMB patients compared with NDMB patients (p =  
0.0071), and this trend was also observed in DMA patients when 
compared with NDMA patients (p = 0.0393, Figure 3d). 
Furthermore, we found that at baseline, NDMB patients were 
more enriched in the C19 cluster (CD57+CD161+GZMB+CD8+ 

T cells) than DMB patients (p = 0.0149), and this difference was 
also observed after anti-PD-1 treatment (p = 0.0219, Figure 3e). 
The functional markers used to identify subpopulations are 
shown in Figure 3f. Cluster 19 in NDMA patients had higher 
GZMB expression than that in DMA patients. Additionally, we 
analyzed the developmental trajectory of CD8+ T cells to explore 
the developmental trajectory of the C01 and C19 clusters. We 
found that all CD8+ T cells could be grouped with three develop
mental states, mainly from naive CD8+ T cells to effector CD8+ T 
cells. The C01 cluster was in state 1, and the C19 cluster was in 
state 3 (Figure 3g).

CD161+CD127+CD8+ T cells exhibit capacity for producing 
immune-exhaustion markers in NSCLC with diabetes

To verify CD161+CD127+CD8+ T cells proportions among 
CD8+T cells among PBMCs, we prospectively identified an 
independent validation cohort consisting of 74 patients with 
advanced NSCLC from July 2022 to September 2023 (38 
patients without diabetes and 36 patients with diabetes). The 
characteristics of these patients are presented in Table 2. Flow 
cytometry was performed to analyze PBMCs obtained from the 
validation cohort at baseline (Figure 4a). Patients with diabetes 
showed evidently higher CD161+CD127+CD8+ T cells/CD8+ T 
cells ratios than those in patients without diabetes (6.3% vs. 
3.9%, p = 0.0059; Figure 4b). However, the percentage of 
CD57+CD161+GZMB+CD8+ T cells among CD8+ T cells did 
not significantly differ between the patients with or without 
diabetes (3.1% vs. 4.4%, p = 0.1813, Supplementary Figure S2A, 
B). Next, we determined cytotoxic molecule and immune- 
exhaustion markers production by CD161+CD127+CD8+ T 
cell subsets in NSCLC with diabetes. We found that 
CD161+CD127+CD8+ T cells in NSCLC with diabetes were 
functionally superior to those in NSCLC without diabetes 
based on the percentage of PD-1 (p = 0.0011), LAG3 (p =  
0.0082), and TIGIT (p < 0.0001) (Figure 4c). However, produc
tion of the cytotoxic molecules KLRG1 (p = 0.0329), GZMB (p  
= 0.0387), and GNLY (p = 0.0395) was lower in the 
CD161+CD127+CD8+ T cell subsets in patients with diabetes 
than those in patients without diabetes (Figure 4d).

To further determine the infiltration of CD161+CD127+CD8+ 

T cells among CD8+T cells in patients with NSCLC, we collected 
formalin-fixed and paraffin-embedded tissues from 64 patients 
before anti-PD-1 therapy to perform multiplex immunohisto
chemistry/immunofluorescence testing (34 patients with diabetes 

and 30 patients without diabetes). The patients with diabetes had 
significantly higher infiltration of CD161+CD127+CD8+ T cells/ 
CD8+ T cells than those without diabetes (P=0.0036) (21.4% vs. 
12.0%, Figure 4e, f). Simultaneously, we investigated 
CD57+CD161+GZMB+CD8+ T cell infiltration among CD8+ T 
cells in patients with and without diabetes (Supplementary 
Figure S2C). As CD57+CD161+GZMB+CD8+ T cells did not sig
nificantly differ in the flow cytometry validation between the 
patients with and without diabetes, statistical analysis was not 
performed on the data from the tissue samples.

Transcriptomic analysis revealed differences between 
CD161+CD127+CD8+ T cells and CD161+CD127−CD8+ T 
cells in NSCLC with diabetes

To elucidate the molecular mechanisms of 
CD161+CD127+CD8+ T cells, we conducted RNA-seq using 
sorted cells from NSCLC patients with diabetes prior to immu
notherapy. RNA-bulk analysis showed 88 downregulated and 
114 upregulated DGEs in CD161+CD127+CD8+ T cells con
pared to CD161+CD127−CD8+ T cells respectively (Figure 5a). 
Clustering analysis of gene expression separated the samples 
into two clusters: CD161+CD127+CD8+ T cells and 
CD161+CD127−CD8+ T cells. It further revealed that GZMB, 
GZMH, GNLY, and KLRD1 were downregulated in 
CD161+CD127+CD8+ T cells (Figure 5b). This identified 
DEGs provide novel insights into the molecular characteristics 
and potential functional roles of CD161+CD127+CD8+ T cells 
in the context of PD-1 inhibitor treatment of NSCLC patients. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses were performed to analyze DEG 
functions. Based on the 88 downregulated DGEs in 
CD161+CD127+CD8+ T cells, most of the DEGs were asso
ciated with immune-related biological process, including nat
ural killer cell-mediated immunity and cytotoxicity (Figure 5c). 
Subsequently, 88 downregulated DEGs could be annotated 
using the KEGG database. Based on the KEGG pathway 
enrichment analyses, DEGs were significantly enriched in nat
ural killer cell-mediated cytotoxicity pathways (Figure 5d). 
These findings demonstrate the distinctive molecular features 
and potential functions of CD161+CD127+CD8+ T cells during 
anti-PD-1 treatment of NSCLC patients with diabetes, which 
may facilitate future investigations.

CD161+CD127+CD8+ T cells to CD8+T cells ratio is 
associated with survival outcomes in NSCLC with diabetes

We investigated whether the level of CD161+CD127+CD8+ T 
cells among CD8+T cells influenced the clinical prognosis of 74 
patients with NSCLC. The final follow-up was on November 
30, 2023. Flow cytometric analysis revealed that, within CD8+ 

T cells, the median level of CD161+CD127+ CD8+ T cells in the

Figure 1. NSCLC patients with diabetes shortens survival period and inhibits CD8+ T cells function. (a) Progression-free survival in patients without (n = 365) and with (n  
= 71) diabetes (11.0 vs. 7.0 months, p = 0.0069). (b) Overall survival in patients without and with diabetes (26.0 vs. 17.0 months, p = 0.0122). (c) Immunohistochemical 
staining analysis of CD3+ T cells and CD8+ T cells in NSCLC patients with or without diabetes. (d) Patients with diabetes had lower CD8+ T cells infiltration than those 
without diabetes (p = 0.0374). (e) Flow cytometry analysis of the percentage of CD3+CD8+ T cells in NSCLC patients. (f) Patients with diabetes had a significantly lower 
percentage of CD8+ T cells than those without diabetes (p = 0.0299). (g) Percentages of immunosuppressive checkpoints secreting PD-1, TIGIT, and LAG3 in CD3+CD8+ T 
cells are summarized. Unpaired Student’s t test (p < 0.001). (H) Percentages of cytokines secreting KLRG1, GNLY, and GZMB in CD3+CD8+ T cells are summarized. 
Unpaired Student’s t test (p < 0.05 except for GZMB). NSCLC :non-small-cell lung cancer, P1: Patient 1, P2: Patient 2, P3: Patient 3, P4: Patient 4.
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diabetic patients with metastatic NSCLC was 6.3%, thus this 
value was used as a cutoff to stratify patients. First, we analyzed 
PFS in 74 NSCLC patients and found that the differences were 
insignificant in the CD161+CD127+CD8+ T cells to CD8+T 
cells ratios (≥6.3% and < 6.3%) between the groups 

(p = 0.7243, Figure 6a). Furthermore, Kaplan – Meier survival 
analysis showed that patients with diabetes with 
CD161+CD127+CD8+ T cells to CD8+T cells ratios ≥ 6.3%(n  
= 13) exhibited shorter PFS than those with 
CD161+CD127+CD8+ T cells to CD8+T cells ratios < 6.3%

Figure 2. Major peripheral immune components in NSCLC patients with or without diabetes. (a) CyTOF, multiplex IF, and flow cytometry workflow. CyTOF data from 7 
patients with diabetes and 10 patients without diabetes at the baseline before anti-PD-1 treatment and matched PBMC samples 3 weeks after first-line anti-PD-1 treatment. 
Flow cytometry from patients with or without diabetes at the baseline before anti-PD-1 treatment. Multiplex if from patients with or without diabetes at the baseline before 
anti-PD-1 treatment. (b) Proportion of 13 cell subsets in 33 clusters. (c) Exemplary t-distributed stochastic neighbor embedding plots showed the distribution of all 33 
clusters. Signature markers (e.g., CD4, CD19, and CD56) revealed the distribution of immune clusters. (d) Different frequencies of all 33 clusters in DMB, NDMB, DMA, and 
NDMA patients. (e) Proportion of immune cell subsets in DMB, NDMB, DMA, and NDMA patients. NSCLC: non-small-cell lung cancer; DMB: NSCLC patients with diabetes 
before anti-PD-1 treatment. DMA: NSCLC patients with diabetes after anti-PD-1 treatment. NDMB: NSCLC patients without diabetes before anti-PD-1 therapy. NDMA: 
NSCLC patients without diabetes after anti-PD-1 therapy. IF: Immunofluorescence; CyTOF: Mass cytometry by time-of-flight. NK: Natural killer cells; NKT: Natural killer T 
cells; DPT: Double positive T cells; DNT: Double negative T cells; cDCs: Conventional dendritic cells; pDCs: Plasmacytoid dendritic cells.

8 J. QU ET AL.



Figure 3. NSCLC patients with diabetes showed higher CD161+CD127+CD8+ T cells proportions in CD8+T cells. (a) Heatmaps showing the distribution of all 21 clusters in 
CD8+ T cells. (b) T-distributed stochastic neighbor embedding plots showing the distribution of all 21 clusters in DMB, NDMB, DMA, and NDMA patients. (c) Different 
frequency of all 21 clusters in CD8+ T cells in DMB, NDMB, DMA, and NDMA patients. (d) C01 cluster (CD161+CD127+CD8+ T cells) was significantly increased in patients 
with diabetes compared to that in those without diabetes before and after anti-PD-1 treatment. (e) C19 cluster (CD57+CD161+GZMB+CD8+ T cells) was significantly 
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(n = 23, 3.7 months vs. NR, p = 0.0212, Figure 6b). Notably, 
patients without diabetes with CD161+CD127+CD8+ T cells 
to CD8+T cells ratios ≥ 6.3% (n = 8) exhibited longer PFS 
than those with CD161+CD127+CD8+ T cells to CD8+T cells 
ratios < 6.3% (n = 30, NR months vs. 8.5, p = 0.0338, Figure 6c). 
Kaplan – Meier survival analysis did not show significant 
changes in OS in patients with CD161+CD127+CD8+ T cells 
to CD8+T cells ratios ≥ 6.3% and < 6.3% because of the short 
follow-up period (Figure 6d–f). Moreover, the 
CD57+CD161+GZMB+CD8+ T cell to CD8+ T cell ratio was 
not related to survival outcomes in patients with diabetes 
(Supplementary Figure S2D).

Decreased anti-tumor effect of PD-1 blockade in lung 
cancer mice with diabetes

We established a subcutaneous tumor-bearing mouse model of 
lung cancer with or without diabetes (Figure 7a) and compared 
the changes in tumor volume, body weight, and 
CD161+CD127+CD8+ T cells under anti-PD-1 treatment. 
After intraperitoneal injection of STZ or citrate buffer and 

testing of the plasma glucose concentration on day 14, the 
plasma glucose concentration of mice in the STZ group was 
much higher than that in the citrate buffer group (p < 0.001) 
(Figure 7b). Anti-PD-1 treatment significantly reduced tumor 
load and volume in lung cancer mice without diabetes 
(P=0.021), whereas no significant difference was observed 
between the anti-PD-1 treatment and control group of lung 
cancer mice with diabetes (Figure 7c, d, e, f). Moreover, the 
body weight of the mice did not differ between the anti-PD-1 
treatment and control groups in both the diabetes and non
diabetic mice (Figure 7g, h).

In addition, we compared changes in CD161+CD127+CD8+ 

T cells under anti-PD-1 treatment in the tumor-bearing model 
in C57BL/6 mice and subjected the tumor immune cells to flow 
cytometry (Figure 7i). In the diabetic group without anti-PD-1 
treatment, the distribution of CD161+CD127+CD8+ T cells 
among CD8+ T cells was consistent with our previous results 
in human samples (p = 0.0259, Figure 7j). Following anti-PD-1 
treatment, the infiltration of CD161+CD127+CD8+ T cells in 
CD8+ T cells was higher than that of the nondiabetic group (p

decreased in patients with diabetes compared to that in those without diabetes before and after anti-PD1 treatment. (f) Marker density in C01 and C19 clusters. (g) 
Developmental trajectory of CD8+ T cells to explore the developmental trajectory of C01 and C19 clusters. At node 1, all cells are divided into three states, with state 1 on 
the left, predominantly consisting of Naïve CD8 T cells, and state 3 on the right, predominantly consisting of Effector CD8 T cells. NSCLC: non-small-cell lung cancer; 
DMB: NSCLC patients with diabetes before anti-PD-1 treatment; DMA: NSCLC patients with diabetes after anti-PD-1 treatment. NDMB: NSCLC patients without diabetes 
before anti-PD-1 therapy. NDMA: NSCLC patients without diabetes after anti-PD-1 therapy. CD8+Tn: Naïve CD8+T cells; CD8+Tem: Effector memory CD8+T cells; CD8 
+Teff: Effector CD8+T cells.

Table 2. The characteristics of patients who received flow cytometry validation.

All patients (n = 74) Nondiabetic patients (n = 38) Diabetic patients (n = 36) p value

Gender 0.082
Male 65(87.8%) 36(94.7%) 29(80.6%)
Female 9(12.2%) 2(5.3%) 7(19.4%)
Median age, years 64.7(44–81) 65.3(44–70) 64.2(46–81) 0.620
Disease stage
IIIb-IIIc 35(47.3%) 15(39.5%) 20(55.6%) 0.244
IV 39(52.7%) 23(60.5%) 16(44.4%)
Smoking status
Never smoker 21(28.4%) 10(26.3%) 11(30.6%) 0.798
Smoker 53(71.6%) 28(73.7%) 25(69.4%)
Comorbidities 0.366
Hypertension 28(37.8%) 9(23.7%) 19(52.8%)
COPD 22(29.7%) 12(31.6%) 10(27.8%)
Cerebralcardio vascular diseases 4(5.4%) 1(2.6%) 3(8.3%)
Coronary artery disease 6(8.1%) 3(7.9%) 3(8.3%)
Histology
Adenocarcinoma 32(43.2%) 13(34.2%) 19(52.8%) 0.175
Squamous cell carcinoma 39(52.7%) 24(63.2%) 15(41.7%)
Poorly-differentiated NSCLC 3(4.1%) 1(2.6%) 2(5.6%)
PD-L1 expression 0.090
≥50% 18(24.3%) 11(28.9%) 7(19.4%)
1%-49% 23(31.1%) 15(39.5%) 8(22.2%)
<1% 23(31.1%) 7(18.4%) 16(44.4%)
Un-detect 10(13.5%) 5(13.2%) 5(13.9%)
Immunotherapy regimens
Monotherapy 3(4.1%) 1(2.6%) 2(5.6%) 0.610
Combination with chemotherapy 71(95.9%) 37(97.4%) 34(94.4%)
Sites of distant metastases at first diagnosis 0.392
Bone 16(21.6%) 10(26.3%) 6(16.7%)
Lung 9(12.2%) 4(10.5%) 5(13.9%)
Liver 2(2.7%) 2(5.3%) 0(0.0%)
Adrenal 4(5.4%) 2(5.3%) 2(5.6%)
CNS 10(13.5%) 8(21.1%) 2(5.6%)
Pleura 17(23.0%) 8(21.1%) 9(25.0%)

CNS: Central nervous system; COPD: Chronic Obstructive Pulmonary Disease.
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Figure 4. CD161+CD127+CD8+ T cells exhibited capacity for producing immune-exhaustion markers in NSCLC with diabetes. (a) Flow cytometry analysis of 
CD161+CD127+CD8+ T cells in 74 PBMC samples at baseline before anti-PD-1 treatment. (b) Patients with diabetes (n = 36) showed a significantly higher 
CD161+CD127+CD8+ T/CD8+ T cell ratio than those without diabetes (n = 38, 6.3% vs. 3.9%, p = 0.0059). (c) Expression of immune-inhibitory receptors in the PBMCs 
of NSCLC patients with diabetes (n = 19) and without diabetes (n = 31) via flow cytometry. Unpaired Student’s t test (p < 0.05). (d) Expression of cytotoxic cytokines in 
NSCLC patients with diabetes (n = 19) and without diabetes (n = 31) PBMC via flow cytometry. Unpaired Student’s t test (p < 0.05). (e) mIHC/IF testing revealed 
CD161+CD127+ co-expression in CD8+ T cells. (F) Patients with diabetes (n = 34) were found to have a significantly higher infiltrate of CD161+CD127+CD8+/CD8+ T cells 
than those without diabetes (n = 30, 21.4% vs. 12.0%, p = 0.0036). PBMC: peripheral blood mononuclear cells; NSCLC: non-small-cell lung cancer; mIHC/IF: multiplex 
immunohistochemistry/immunofluorescence.
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= 0.0067). Notably, this trend was duplicated in peripheral 
blood immune cell samples from the mouse model (Figure 7i, 
j). These results indicate that patients and mice with diabetes in 
lung cancer have enriched CD161+CD127+CD8+ T cells among 
CD8+ T cells, which is a potential prognostic indicator with poor 
anti-PD-1 therapeutic effects.

Discussion

Epidemiological evidence indicates that patients with DM have a 
greater risk of many cancers including breast and pancreatic 
cancers.37,38 DM is an independent risk factor for immunother
apeutic resistance during NSCLC treatment.39,40 Glucose metabo
lism is vital for the reestablishment of immune cells and changes

Figure 5. Transcriptomic analysis revealed differences between CD161+CD127+CD8+ T and CD161+CD127−CD8+ T cells in NSCLC with diabetes. (a) Volcano plot showing 
the 88 downregulated and 114 upregulated DEGs in CD161+CD127+CD8+ T cells compared to CD161+CD127−CD8+ T cells. Red and blue colors represent upregulated 
and downregulated genes, respectively. (b) Clustering analysis of DEGs and samples. The samples were grouped into two distinct clusters: DP cluster (double positive, 
CD161+CD127+CD8+ T cells) and CD161 cluster (CD161+CD127−CD8+ T cells). (c) GO analysis of DEGs. The most enriched 30 GO terms in biological process (BP), cellular 
component (CC), and molecular function (MF). (d) KEGG enrichment analysis of DEGs. The x-axis represents the enrichment score, and the y-axis represents the pathway. 
NSCLC: non-small-cell lung cancer; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; DEGs: differentially expressed genes.
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the tumor microenvironment.22,41 Recently, Cortellini et al. 
reported that type 2 DM is an independent risk factor for poor 
prognosis in patients with advanced cancer receiving immu
notherapy, which may be related to the special immunosuppres
sive state caused by hyperglycemia.42 However, this cannot clarify 
the impact of metformin, which is a first-line drug for the treat
ment of type 2 DM.43 The tumor microenvironment in patients 
with NSCLC is affected by DM. In our study, we found that 
patients with diabetes had worse ORR, PFS, and OS than patients 
without diabetes who accepted anti-PD-1 immunotherapy as a 
first-line treatment. Patients with diabetes had higher proportions 
of CD161+CD127+CD8+ T cells among CD8+ T cells than patients 
without diabetes before and after anti-PD-1 therapy.

DM can affect lung cancer development and survival through a 
variety of factors, such as hyperglycemia, hyperinsulinemia, oxi
dative stress, immune microenvironment, and chronic 

inflammation associated with cancer progression.44 Lv et al. 
found that the serum insulin-like growth factor-1 (IGF-1) level 
in NSCLC patients with diabetes was significantly reduced, and the 
IGF-1 metabolic level was a potential indicator for the assessment 
of cancer risk in patients with DM.45 Furthermore, hyperglycemia 
and metabolic dysregulation may result in the growth of lung 
cancer cells according to epidermal growth factor level, reversal 
of the Warburg effect, and reactivation of oxidative 
phosphorylation.46 Currently, anti-PD-1/PD-L1 immunotherapy 
is a first-line treatment for patients with advanced non-classical 
mutated NSCLC.47,48 In our study, compared with patients with
out diabetes, patients with diabetes had worse PFS (7.0 vs. 11.0  
months, p = 0.0069) and OS (17.0 vs. 26.0 months, p = 0.0122) 
after first-line immunotherapy. We aimed to explore why patients 
with diabetes have a worse prognosis after receiving anti-PD-1 
immunotherapy from the perspective of the tumor 
microenvironment.

Figure 6. CD161+CD127+CD8+ T cells to CD8+T cells ratio is associated with survival outcomes in NSCLC with diabetes. (a) PFS of 74 patients with NSCLC in the 
CD161+CD127+CD8+ T cells to CD8+ T cells ratio ≥ 6.3% and < 6.3% groups (p = 0.7243) based on Kaplan–Meier survival analysis. (b) PFS of 36 NSCLC patients with 
diabetes in the CD161+CD127+CD8+ T cells to CD8+ T cells ratio ≥ 6.3% and < 6.3% groups (p = 0.0212) based on Kaplan–Meier survival analysis. (c) PFS in 38 NSCLC 
patients without diabetes in the CD161+CD127+CD8+ T cells to CD8+ T cells ratio ≥ 6.3% and < 6.3% groups (p = 0.0338) based on Kaplan–Meier survival analysis. (D – F) 
OS for patients in the CD161+CD127+CD8+ T cells to CD8+ T cells ratio ≥ 6.3% and < 6.3% groups with NSCLC (d), NSCLC and diabetes (e), and NSCLC without diabetes (f) 
based on Kaplan–Meier survival analysis. NSCLC: non-small-cell lung cancer; PFS: progression-free survival; OS: overall survival.
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Figure 7. Decreased anti-tumor effect of PD-1 blockade in lung cancer mice with diabetes. (a) Workflow of the animal model. (b) Plasma glucose concentration of mice 
in both groups tested on day 14. (c) Tumors of mice in NDM group were dissected on day 27. (d) Tumor volume of mice in NDM group was determined every 3 days after 
anti-PD-1 treatment, and RTV was calculate. (e) Tumors of mice in DM group were dissected on day 27. (f) Tumor volume of mice in DM group was determined every 3  
days after the onset of anti-PD-1 treatment, and RTV was calculated. (g) Weight of mice in NDM group was determined every 3 days after anti-PD-1 treatment. (h) 
Weight of mice in DM group was determined every 3 days after the onset of anti-PD-1 treatment. (i) Flow cytometry of CD161+CD127+CD8+ T cells in tumor and 
peripheral blood under anti-PD-1 treatment in tumor-bearing model C57BL/6 mice. (j) The proportion of CD161+CD127+CD8+ T cells among CD8+ T cells was higher in 
mice with diabetes compared to that in mice without diabetes (p < 0.05). NDM: Lung cancer mice without diabetes; RTV: relative tumor volume; DM: Lung cancer mice 
with diabetes; mIHC/IF: multipleximmunohistochemistry/immunofluorescence.
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The tumor microenvironment is a complex network com
prising cellular and non-cellular elements that play crucial 
roles in tumor biology, including tumor occurrence, progres
sion, and immune escape.49,50 Hu et al. compared T cells 
markers and T cells pool metrics by tumor infiltrating lym
phocytes in tumor margins, adjacent lungs, and peripheral 
blood, and they found that the spatial heterogeneity of the 
tumor microenvironment in NSCLC significantly affects T 
cell clonality and T cell diversity, resulting in different anti- 
tumor immune responses at different lung cancer areas due to 
differences in the tumor microenvironment.51 Hyperglycemic 
metabolism affects cancer proliferation and progression 
through the remodeling of the tumor microenvironment. 
Hyperglycemia induces the M2 polarization of tumor-asso
ciated macrophages and reduces anti-tumor immunity.25 

Miya et al. found that patients with diabetes had fewer periph
eral CD8+ T cells after glucose loading than patients without 
diabetes.52 Blood biomarkers can be easily obtained and partly 
reflect changes in the tumor microenvironment. Moller et al. 
studied survival-related blood cell parameters in 90 patients 
with NSCLC who had undergone treatment with ICIs com
bined with chemotherapy.53 The authors found that the blood 
neutrophil count, specific types of monocytes, and the number 
of blood dendritic cells may be valuable biomarkers for pre
dicting the survival of patients with cancer. In addition to 
blood markers, the tumor immune microenvironment in 
PBMCs can reflect the effect of immunotherapy in NSCLC 
patients with diabetes to a certain extent. Levine et al. used 
CyTOF to analyze the metabolic phenotypes and cytokine 
expression profiles of individual CD8+ T cells, and they identi
fied the metabolism of immune cell subsets, which is a valuable 
way to study the metabolic regulation of immune responses.54 

Wu et al. used CyTOF technology to detect PBMCs in 20 
patients and found evident differences in the overall immune 
status between responses and non-responses patients with 
intrahepatic cholangiocarcinoma.55 Patients with higher levels 
of CD4+CXCR3+ T cells in PBMCs are more sensitive to 
gemcitabine-based chemotherapy. In addition, the authors 
found a strong correlation between the abundance of 
CD4+CXCR3+ T cells in PBMCs and the abundance in tumor 
tissue. This result indicates that the abundance level of PBMCs 
can indirectly reflect the changes in solid tumor tissue. The 
present study also used CyTOF to detect PBMCs because this 
method minimizes the mechanical damage to patients.

In the present study, we discovered differences in the tumor 
microenvironment between NSCLC patients with or without 
diabetes before and after anti-PD-1 therapy. Patients with dia
betes had lower proportions of CD8+ T cells infiltration and 
more immune-exhaustion markers than those without diabetes. 
Compared to those in patients without diabetes, immune- and 
inflammation-related signaling pathways were suppressed in 
patients with diabetes. The immune desert state of patients 
with diabetes implied higher immune cell escape and poorer 
prognosis. We used CyTOF to further explore the changes in 
immune cells in the tumor microenvironment at the PBMCs 
between patients with or without diabetes before and after 
immunotherapy. Interestingly, the distribution of T cells in 
the PBMCs was distinct between patients with or without dia
betes, especially in clusters 01 (CD161+CD127+CD8+Tcells) 

and 19 (CD57+CD161+GZMB+CD8+ T cells), which were 
both identified as CD8+ T cells. The C01 cluster 
(CD161+CD127+CD8+ T cells) was significantly increased in 
patients with diabetes, and this trend was also observed after 
anti-PD-1 treatment. CD161+CD127+CD8+ T cells among 
CD8+T cells may be associated with immunosuppression in 
patients with diabetes receiving anti-PD-1 treatment. The dia
gram of CD161+CD127+CD8+ T cells in patients with or with
out diabetes is presented in Supplementary Figure S3.

CD161 is expressed in many immune cells, such as NK 
cells, CD4+/CD8+ T cells, and some unconventional T cells 
such as mucosal-associated invariant T cells, γδT cells, and 
NKT cells.56–58 Harms et al. reported that CD161+CD8+ T 
cells enhance differentiation in patients with type 1 DM.59 

CD127 expression may be a key indicator of human inflam
matory illness60 and anti-PD-1-treated NSCLC.48 In the cur
rent study, CD161 and CD127 were enriched in patients with 
diabetes, which is consistent with the results of previous 
studies. There has been limited research verifying the func
tion of CD161 expression level on CD8+ T cells in tumor 
immunity in humans, but two different outcomes have been 
indicated. In a cancer-wide genome analysis of prognostic 
signatures for gene expressions, killer cell lectin-like receptor 
subfamily B member 1 (KLRB1), the gene encoding CD161, 
was most frequently related to favorable outcomes against 
many indications, such as bladder, breast, colon, and prostate 
cancers, melanoma, lung adenocarcinoma, and multiple 
myeloma.61,62 Lao et al. verified a subset of CD161-overex
pressing CD8+ T cells abundant in chemo-resistant cancers. 
The CD161 expression in CD8+ T cells is related to chemore
sistance and decreased patient survival rates.63 However, the 
role of CD127+CD161+CD8+ T cells in NSCLC remains 
unclear. Some effector CD8+ T cells increase the levels of 
the IL-7 receptor (CD127) and can differentiate into memory 
T cells.64 The activated CD127 can induce precursor B cells 
during acute lymphoblastic leukemia.65 Recently, Hui et al. 
reported that compared to neoadjuvant chemotherapy alone, 
the combination of anti-PD-1 and neoadjuvant chemother
apy changed the infiltration of immune cells and interactions 
in patients with NSCLC, reestablishing the tumor immune 
microenvironment. The authors further showed that the 
addition of a PD-1 blocker to neoadjuvant chemotherapy 
facilitated anti-tumor immunity according to the recruitment 
of T and B cells in the tumor microenvironment and resulted 
in tumors infiltrating CD8+ T cells to facilitate CD127+ and 
KLRG 1+ phenotypes.66 In our study, CD161+ and CD127+ 

were both expressed on CD8+ T cells in patients with diabetes, 
and a high level of CD127+CD161+CD8+ T cells among 
CD8+T cells in patients with diabetes was associated with a 
worse survival outcome.

Our study has some limitations. First, the results of this 
study were based only on the analysis of clinical samples, 
such as peripheral blood and tumor tissues, and have not 
been thoroughly studied and verified through functional 
experiments in cells. Second, patients with diabetes received 
antidiabetic agents (for example metformin), but this factor 
was not included in this study. Third, other methods, such as 
spatial transcriptome sequencing of lung cancer tissues, can be 
added to analyze the interactions between immune cell types of
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PBMCs and tumor tissue. Finally, further research with a larger 
cohort should be conducted to explore the potential use of 
these methods for predicting and monitoring immunotherapy 
efficacy in NSCLC patients with diabetes.

Conclusions

Taken together, our results demonstrated that diabetes is a risk 
factor for NSCLC in patients receiving anti-PD-1 immunother
apy. NSCLC patients with diabetes had worse PFS and OS and 
showed inhibited CD8+ T cell function compared to those 
without diabetes. The CD161+CD127+CD8+ T cell subset is 
specifically enriched in NSCLC with diabetes and can produce 
immune-exhaustion markers. Here, for the first time, we elu
cidated that CD161+CD127+CD8+ T cells may serve as a poten
tial biomarker for predicting the survival outcome of NSCLC 
patients with diabetes.
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