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Comprehensive drug response profiling and
pan-omic analysis identified therapeutic
candidates and prognostic biomarkers for
Asian cholangiocarcinoma

Supawan Jamnongsong,1,5 Patipark Kueanjinda,1,2,5 Pongsakorn Buraphat,1 Phuwanat Sakornsakolpat,1

Kulthida Vaeteewoottacharn,3 Seiji Okada,4 Siwanon Jirawatnotai,1 and Somponnat Sampattavanich1,6,*

SUMMARY

Cholangiocarcinoma (CCA) is rare cancer with the highest incidence in Eastern
and Southeast Asian countries. Advanced CCA patients rely on chemotherapeutic
regimens that offer unsatisfied clinical outcomes. We developed a comprehen-
sive drug response profiling to investigate potential new drugs using CCA cell
lines from Thai and Japanese patients against 100 approved anti-cancer drugs.
We identified two major CCA subgroups that displayed unique molecular path-
ways from our integrative pan-omic and ligand-induced pathway activation ana-
lyses. MEK and Src inhibitors specifically killed the CCA1 subgroup without
causing cytotoxicity to the normal cholangiocyte. Next, we developed the
CCA45 signature to classify CCA patients based on their transcriptomic data.
Our CCA45 signature could accurately predict prognosis, especially for Asian
CCA patients. Our study provides a comprehensive public resource for drug
repurposing in CCA and introduces analytical strategies for prioritizing cancer
therapeutic agents for other rare cancer.

INTRODUCTION

Recent progress in precision medicine has made cancer treatment safer and more efficient. Together with

the development of molecularly specific therapeutic regimens, regulatory bodies have begun to approve

anti-cancer drug use based on specific molecular biomarkers instead of the tumor locations. Such advance-

ment encourages an immediate application of approved targeted therapies in different cancer types via

abbreviated drug repurposing trials. Unfortunately, many follow-up clinical studies showed that drug

sensitivity in different cancer types did not strictly follow the simple single-biomarker drug indication.

Rare cancer types suffer even more from the limited resources in conducting clinical studies and the

more time-consuming process of recruiting patients, all contributing to their unsurprisingly limited treat-

ment options.

Cholangiocarcinoma (CCA) is considered one of the rarest cancer types worldwide, although it can be

more commonly found in Southeast and East Asia (Sripa et al., 2007). Over the past few decades, treatment

of advanced CCA has depended solely on Gemcitabine-based chemotherapy, either as monotherapy or as

a combination regimen (i.e., Gemcitabine plus Cisplatin or Gemcitabine plus 5-fluorouracil) (Benson et al.,

2021; Ducreux et al., 1998; Valle et al., 2016). Clinical studies reveal that chemotherapeutic options only

show a small benefit in approximately 24% of liver fluke (Opisthorchis viverrini)-associated CCA patients

(Butthongkomvong et al., 2013). Among the drug responder subgroup, the median survival time was

only 7–12 months (Butthongkomvong et al., 2013;Valle et al., 2010). Specifically for Thai CCA patients

whose diseases are commonly associated with liver fluke infection, the overall median survival was poorer

at only four months (with only 6% receiving curative resection; 15% expired before receiving any treatment)

(Luvira et al., 2016). The poor clinical outcome of CCA patients urges immediate research to identify more

efficient treatment options and more accurate subgroup-classifying biomarkers.

To understand the therapeutic response heterogeneity in CCA, prior research efforts focused on charac-

terizing the molecular differences for the different CCA patient subgroups. Exome sequencing was first
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applied to investigate the mutational landscape of liver fluke-associated CCA (Ong et al., 2012). The study

found that TP53, SMAD4, and MLL3 mutations were common in liver fluke-associated CCA, whereas the

mutations of IDH1, IDH2, and BAP1 were only observed in the non-liver fluke-associated CCA. Mutations

of ARID1A, RNF43, and KRAS can be observed in both subgroups. A comparative follow-up study of CCA

tissue specimens identified novel CCA driver genes enriched in the liver-fluke associated CCA, including

ERBB2 amplification and BRCA1/2mutations. In contrast, Caucasian CCA patients harbored recurrent mu-

tations of IDH1/2 and BAP1 or the fusion of FGFR (Jusakul et al., 2017). The Thailand Initiative in Genomics

and Expression Research for Liver Cancer (TIGER-LC) consortium later performed an in-depth molecular

comparison of the Asian intrahepatic cholangiocarcinoma (iCCA) and hepatocellular carcinoma (Chai-

saingmongkol et al., 2017). In addition to revealing that Asian iCCA and HCC shared common mutations,

including TP53, ARID1A, and ARID2, the study identified PLK1 and ETT2 as important subtype-specific bio-

markers of iCCA patients shown to be predictive of poorer prognosis (Chaisaingmongkol et al., 2017).

These prior studies brought about profound knowledge of CCA etiology. They contributed to the early

clinical trials to assess the potential use of novel targeted therapies such as Selumetinib, MK2206, Lapati-

nib, and Sorafenib in advanced CCA patients (Ahn and Bekaii-Saab, 2017). Although some therapeutic

agents demonstrated anti-tumor activity in a small patient subset, their overall clinical outcomes were

somewhat disappointing, offering the progression-free survival of 1–4 months and an overall response

rate of �10%, a similar overall outcome to chemotherapeutic agents. Such unexpectedly poor clinical out-

comes arose mainly because of the non-selective enrollment of these prior clinical studies. More recent

clinical trials began to adopt biomarker-led designs (Pellino et al., 2018). Still, assessing all subgroup-clas-

sifying biomarkers takes a long time and significant financial investment using the conventional clinical

studies-based exploration.

Although the genomic uniqueness of the CCA subgroup has been demonstrated in different studies, there

has never been a comprehensive effort to identify novel therapeutic options for Thai CCA patients. Toward

this goal, we assembled a panel of 15 CCA cell lines of Asian ethnic groups, consisting of CCA cells derived

from Thai patients (fromO. viverrini endemic areas) and Japanese patients. We used these cell lines for our

comprehensive drug response profiling and pan-omic assays for subgroup analysis and biomarker discov-

ery. In addition to successfully identifying twomajor drug response-based subgroups, we developed short-

lists of potential anti-cancer drugs accompanied by the corresponding subgroup-classifying biomarkers.

We hope this study will promote further investigation towards developing more effective drugs for CCA

patients, making our data publicly available for academic use at https://sisp.shinyapps.io/

AsianCCAbrowser/.

RESULTS

The genetic alterations and transcriptomic profiles of our Asian CCA cell line panel

To identify novel drug candidates for Asian CCA, we assembled 15 CCA cell lines and one cholangiocyte

cell line for a comprehensive drug response profiling and biomarker discovery using mutation analysis and

basal transcriptomics (Figure 1A). Our cell line panel consists of 9 Thai and 6 Japanese cell lines. Specif-

ically, KKU-100, KKU-213A, KKU-213B, and KKU-213C are confirmed to be O. viverrini-associated cell lines

with the proven observation of O. viverrini in their original tissue (Sripa et al., 2005, 2020). These cell lines

were derived from 3 different tissue origins: intrahepatic CCA (iCCA: KKU-055, KKU-213A, KKU-213B, KKU-

213C, HuCCA-1, HuCCT-1, HuH-28, SSP-25, RBE, and YSCCC), perihilar CCA (pCCA: KKU-100) and extra-

hepatic CCA (eCCA: TFK-1) (Figure 1B). Three CCA cell lines (KKK-D068, KKK-D131, and KKK-D138) were

newly established from the patient-derived xenograft of iCCA (Vaeteewoottacharn et al., 2019). KKU-213A,

KKU-213B, and KKU-213C served as important intra-patient heterogeneity controls in our study, derived

from different locations of a Thai iCCA patient (Sripa et al., 2020). An immortalized cholangiocyte cell

line, MMNK-1, was used as our normal cholangiocyte reference.

Using a comprehensive panel sequencing of 548 cancer-related genes, we first compared the genomic var-

iants of our CCA cell lines. Mutated genes are associated with key biological functions, namely chromatin

remodeling: KMT2C or MLL3 (100%), ARID1A (33%), SMARCA4 (27%), BAP1 (13%) and PBRM1 (7%); MAPK

signaling: KRAS (40%), ERBB2 (27%), MAP2K2 (27%); Notch signaling NOTCH2 (87%), NOTCH3(20%),

NCOR1 (20%), genome instability TP53 (80%); WNT signaling PEG3 (60%); TGF-b signaling SMAD4

(27%); DNA repair BLM (27%); Oxidative stress response KEAP1 (20%) and PI3K signaling PTEN (27%) (Fig-

ure 1B). Similar to the previous reports (Dong et al., 2018; Saha et al., 2016), we confirmed that RBE carries

both IDH1 mutation (R132S) and KRAS mutation (G12V) whereas KKU-213A and HuCCT-1 carry only KRAS
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mutation (KKU-213A: G13C, HuCCT-1: G12D). Overall, the observed mutational profiles in our CCA cell

lines were consistent with those from clinical specimens, highlighting the presence of TP53, KMT2C,

ARID1A, and KRAS mutations as common genomic variants in both CCA and HCC (Chaisaingmongkol

et al., 2017; Chan-On et al., 2013; Jusakul et al., 2017; Ong et al., 2012).

A

C

B

Figure 1. Building a library of pan-omic analysis and comprehensive drug response profiles of Asian CCA cell lines

(A) Overview of the pan-omic model in cholangiocarcinoma (CCA) cell lines. 9 Thai CCA cell lines and 6 Japanese CCA cell lines were profiled for

comprehensive drug response against 100 anti-cancer compounds. Genetic alternation analysis and basal transcriptomics were performed using 548-gene

cancer panel sequencing and RNA sequencing. Association of drug response and pan-omic data were then analyzed to develop predictive and subgroup-

classifying biomarkers.

(B) Common genetic alterations and fusion genes in CCA cell lines. The genomic alterations were grouped according to their biological functions, showing

their frequency as the percentage of cell lines with each specific alternation. The top-three fusion genes were also shown in the bottom panel. See also

Table S2 for the complete list of fusion genes. Cell lines were clustered based on the similarity of genomic alternations and annotated by their ethnic origins

(Japanese or Thai), anatomical locations (intrahepatic: iCCA, perihilar: pCCA, and extrahepatic: eCCA), and their similarity to the pancreas (pancreas-like) or

liver (liver-like) transcriptomic profiles.

(C) The t-SNE plot of basal gene expression profiles of 15 CCA cell lines (filled triangles) compared with the transcriptomic profiles of pancreatic and liver

cancer cell lines in the CCLE database (unfilled circles). Cell lines with transcriptome profiles similar to the liver and pancreatic cancers are labeled in green

and purple, respectively.
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We next profiled the basal transcriptomics of our CCA cell lines and compared them against the 934 cell

lines across different cancer types in the Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012).

We found that our CCA cell lines shared transcriptomic characteristics with those from pancreas and liver

origins. Specifically, KKU-213A, KKU-213B, KKU-213C, KKK-D131, HuCCT-1, HuCCA-1, TFK-1, and YSCCC

(purple triangles) showed high similarity to pancreatic cancer cell lines (purple circles) (Figure 1B&C and

Figure S1). In contrast, KKK-D068, KKK-D138, KKU-100, HuH28, KKU-055, RBE, and SSP-25 (green triangles)

were more similar to the liver ones (green circles) (Figures 1B&C and Figure S1). See also Table S1 for the

molecular subtypes of CCA. This finding is consistent with prior reports showing that CCA could exhibit

characteristics of either hepatocellular carcinoma (Chaisaingmongkol et al., 2017; Farshidfar et al., 2017)

or pancreatic cancer (Ong et al., 2012). Of interest, a large cluster of the pancreas-like cell lines (KKU-

213A, KKU-213B, KKU-213C, KKK-D131, and HuCCA-1) were from Thai patients (except HuCCT-1). This

observation agrees with the prior observation that cancer tissues from Thai CCA patients demonstrate

similar pathological and molecular profiles to those of pancreatic ductal carcinoma (Pairojkul, 2014).

We also performed gene fusion analysis of our cell lines using their transcriptomic sequencing results.

Overall, we confirmed the concordance of our gene fusion profiles with the previously reported cancer-

associated transcript fusions (Yoshihara et al., 2015) (gene fusion panel in Figure 1B and Table S2). The

top-three fusion genes in our CCA cell lines include LAMC2-NMNAT2, MICAL2-MICALCL, and HEPLH1-

PANX1. The FGFR fusion genes, commonly observed in Caucasian CCA tissue (Farshidfar et al., 2017),

were not observed in any Asian CCA cell lines. The above results demonstrated that our CCA cell line

collection represents genomic characteristics and disease diversity similar to those surveyed from prior

clinical reports in Asian CCA patients.

Building comprehensive drug response profiles for Asian CCA

To determine potential new therapeutic agents for Asian CCA, we applied a high-throughput drug

screening of recently developed anti-cancer drugs against cell lines in our Asian CCA cell line panel.

Our compound library comprises 17 conventional chemotherapies and 83 targeted therapies, covering re-

ceptor tyrosine kinases, intracellular kinases, epigenetic modulators, and other novel drug targets such as

proteasome inhibitors and PARP inhibitors. Because our CCA cell lines exhibited differential context-

dependent growth rates (Figure S2A), we quantified the drug efficacy and potency using the newly devel-

oped growth rate inhibition matrices, GRmax and GR50 (Hafner et al., 2016). The measurement of GRmax

helped us to compare drug efficacy across cell lines, separating cytostatic (GRmax> 0) from cytotoxic

ones (GRmax< 0). While almost all conventional chemotherapies (blue annotation) exhibited cytotoxic ef-

fects as expected, targeted therapies (black annotation) showed broader drug efficacy (Figure 2A). It is

also important to note the independent relationship between GR50 andGRmax across all CCA cell lines (Fig-

ure 2A; compare the ordering of GRmax in green against GR50 in orange). Our result confirmed the similar

observation in breast cancer cell lines that drug potency and drug efficacy provide non-redundant pharma-

cological responses (Hafner et al., 2019). We then compared the level of drug efficacy against the uniformity

of drug potency across cell lines (as quantified by IQR of drug potency log10(GR50)) using standard-of-care

treatment as our reference (namely Cisplatin, Gemcitabine, and 5-FU). For example, MEK inhibitors GR50

(TAK733, PD0325901, and Selumetinib; purple circles) exhibited a more heterogeneous drug response

across cell lines in comparison with EGFR inhibitors (Gefitinib, Lapatinib, and Afatinib; orange circles)

that showed more uniform drug potency (Figure 2B). We also observe differential drug response charac-

teristics between the different drug options within the same drug class. Afatinib, an irreversible EGFR in-

hibitor, showed a more cytotoxic effect than its reversible counterparts such as Gefitinib, Lapatinib, and

Erlotinib (Figure S2B, left panel). Likewise, different CDK4/6 inhibitors exhibited differing drug potency

and efficacy (Figure S2B, right panel), reflecting their unique polypharmacological profiles (Hafner et al.,

2019). These observations highlight the extent and applicability of our comprehensive drug response data-

base. All previously explained datasets are available for further academic use at https://sisp.shinyapps.io/

AsianCCAbrowser/.

An in-depth investigation of drug response similarity reveals unique CCA subgroups and their

corresponding therapeutic candidates

We next attempted to classify subgroups of CCA cell lines based on the similarity of drug response among

all therapeutic agents. Out of the 100 compounds tested, 77 drugs show measurable drug potency across

the different CCA cell lines (excluding drugs without responses in any CCA cell lines). Using the unsuper-

vised hierarchical clustering (Figure S3A; only drug pairs with |Spearman’s correlation score| > 0.6 are used
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A

B

Figure 2. Comparison of growth rate inhibition metrics across all drug candidates

(A) Comparison of drug response parameters (growth rate-normalized drug potency [log10(GR50)] and efficacy [GRmax]) for the 41 compounds

(chemotherapeutic agents in blue and targeted therapeutic agents in black) whose IQR is greater than 0.35 across all CCA cell lines. The distribution of drug

potency parameters was ranked based on the averaged GRmax. Boxes range from the first to the third quartile, while bold lines mark medians. Upper and

lower points mark the position of outliers.

(B) Anti-cancer drug response classification using growth rate inhibition metrics (GR). In addition to their cytostatic (GRmax> 0) and cytotoxic status (GRmax<

0), candidate drugs were classified based on the IQR of log10(GR50) as exhibiting heterogeneous (e.g., MEKi, purple dots) or uniform (e.g., EGFRi, yellow

dots) drug potency. Themean IQR of standard-of-care chemotherapeutic agents (Cisplatin, Gemcitabine, and 5-FU shown in red dots) was used as the cutoff

reference (black dot). Some drug classes, such as CDK4/6i, exhibited both heterogeneous (Palbociclib) and uniform (Ribociclib, Abemaciclib) drug potency.
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for further analysis), we could divide these cell lines into two major subgroups, namely the CCA drug-

response subgroup 1 (CCA1) and subgroup 2 (CCA2) (Figure 3A). The CCA1 subgroup consisted of 5

Thai CCA (KKU-213A, KKU-213B, KKU-213C, HuCCA-1, KKK-D138) and 1 Japanese CCA (RBE) cell lines

(Figure 3A, cyan annotation), sharing high sensitivity to most pro-growth inhibitors such as MEK inhibitors,

Src-abl inhibitors, EGFR inhibitors, and some CDK inhibitors. The CCA2 subgroup consists of 4 Thai CCA

(KKU-100, KKK-D131, KKU-055, KKK-D068) and 5 Japanese CCA cell lines (TFK-1, YSCCC, SSP-25, HuCCT-

1, HuH-28) (Figure 3A, orange annotation), showing poorer sensitivity to the previously mentioned inhibi-

tors but stronger sensitivity to most chemotherapeutic agents. Standard-of-care chemotherapies (e.g.,

Cisplatin, Gemcitabine, and 5-FU) showed small drug potency differences between the two CCA sub-

groups (less than 3-fold in mean GR50). For Gemcitabine and Cisplatin, the drug potency of the

MMNK-1 cholangiocyte cell line was indistinguishable from those of the two CCA subgroups (Figure 3B,

compare black cross marks to the orange and cyan data points). On the other hand, MEK and Src inhibitors

(e.g., TAK733, PD0329501, Selumetinib, and Saracatinib) showed wide separation between the two CCA

subgroups and limited toxicity to the MMNK-1 cell line (Figure 3B).

We next attempted to understand better the relationship between drug response similarity and their

preferential response towards either CCA subgroups. We systematically illustrated these using a force-

directed network graph based on the Fruchterman-Reingold algorithm (Fruchterman and Reingold,

1991) (Figure 3C). In particular, the network edge represents the pairwise correlation of drug potency

(red and blue edges implicate positive and negative correlation, respectively, whereas the edge thickness

shows the magnitude of the correlation score). In addition to observing expected drug response relation-

ships, such as the positive correlation of Selumetinib and TAK733 (Pearson’s R of 0.85; Figure S3B, left

panel), we also identified novel drug response relationships. The negative correlation of drug response be-

tween Erlotinib andGemcitabine was unexpected because of their unknown sharedmolecular mechanisms

of action (Pearson’s R of �0.75; Figure S3B, right panel). To score subgroup specificity, we compared the

drug potency of each CCA subgroup to that of the populationmean, normalizing this distance by the mean

of the population drug-potency IQR from the three standard-of-care chemotherapies (Figure S3C). The

magnitude of such a score was then used to illustrate the node size in the network diagram. Based on

the previously described approach, we identified 38 drugs that showed specificity toward CCA1 cell lines

(cyan nodes; here onwards referred to as CCA1-specific drugs), whereas the other 30 drugs showed spec-

ificity toward the CCA2 subgroup (orange nodes; or CCA2-specific drugs) (Figure 3C). The CCA1-specific

drugs includeMEK inhibitors (TAK733, PD0325901, Selumetinib, PD318088), Src-Abl inhibitors (Saracatinib,

Dasatinib, Bosutinib), EGFR inhibitors (Gefitinib, Afatinib, and Lapatinib), CDK4/6 inhibitors (Ribociclib,

Palbociclib, and Abemaciclib), and one epigenetic modulator (Azacitidine). The CCA2-specific drugs

include thirteen conventional chemotherapeutic agents with a few targeted therapeutics, namely HSP90

inhibitor (Tanespimycin), CDK1/2 inhibitor (CDK1/2III), and PARP inhibitor (Olaparib).

Because significant drug potency does not necessarily imply satisfactory drug efficacy, we investigated

whether the previously identified subgroup-specific drug candidates exhibit acceptable drug efficacy in

their preferred CCA subgroups. Specifically, we quantified the correlation of GRmax and GR50 for each iden-

tified subgroup-specific drug candidate (Figure 4). To our surprise, we found that the majority of CCA1-

specific drugs showed a strong correlation between drug potency and drug efficacy (Figures 4A and 4B,

upper panels; red and blue bubbles infer positive and negative correlation scores, respectively, and drugs

Figure 3. Subgroup classification of CCA cell lines based on their comprehensive drug response profiles

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/j.isci.2022.105182.

(A) Heatmap showing normalized drug potency (median-centered log10(GR50)) of the 15 CCA cell lines against different anti-cancer drugs. Cell lines and

drug candidates were clustered based on Spearman’s rank-order correlation, showing only 68 drugs with an absolute value of correlation score greater than

0.6 (|R| > 0.6) (see also Figure S3A for complete information). Cell lines that exhibit the normalized drug potency below the group median were illustrated in

increasing red-colored intensities to highlight their relatively more sensitive drug response (increasing black-colored intensities depicts the relatively more

resistant cell lines). The twomajor CCA clusters were annotated in cyan (subgroup 1) and orange (subgroup 2), eachmarked by its ethnic origin (Thai in brown

and Japanese in yellow).

(B) Comparison of normalized drug potency between CCA1 and CCA2 cell lines of example drug candidates (standard-of-care chemo drugs in blue and

targeted therapeutic drugs in black). CCA1 and CC2 cell lines were highlighted in cyan and orange, respectively. Drug potency of the immortalized human

cholangiocyte cell line (MMNK-1) in asterisks was shown for comparison.

(C) Network diagram showing drug response similarity and CCA subgroup specificity among 68 drug candidates. Drugs that offer specificity to either CCA1

or CCA2 subgroups are illustrated in cyan or orange circles, respectively. The node size represents the subgroup specificity score defined by the normalized

subgroup distance away from the population drug potency (see Figure S3C for the complete details). The size of each edge represents Spearman’s rank-

order correlation coefficient (r) between the connected drug pair, with its color representing either negative (blue) or positive (red) correlation pattern.
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Figure 4. Correlation between drug efficacy and drug potency of subgroup-specific drug candidates

(A) Correlation between drug efficacy (GRmax) and drug potency (log10(GR50)) for both CCA1-specific (middle panel) and CCA2-specific (bottom panel) drug

candidates. Drug candidates for each CCA subgroup are ranked based on the absolute values of Pearson’s correlation scores. The top panel shows an

example positive correlation between drug efficacy and drug potency from TAK733.
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are ranked by the subgroup specificity score which is shown by the bubble size). MEK inhibitors (TAK733,

PD0325901, and Selumetinib) as the top-three CCA1-specific drug candidates showed clear separation of

drug potency (log10(GR50)) between subgroups. They also exhibited a higher cytotoxic effect against CCA1

cell lines (mean GRmax % 0 for CCA1 vs. mean GRmax � 0.5 for CCA2) (Figure 4B). The other CCA1-specific

drugs that showed a strong correlation between drug potency and drug efficacy with selective cytotoxic

effects against CCA1 cell lines include Saracatinib, Dasatinib, Ribociclib, and Lapatinib. Of interest,

CCA1-specific drug candidates also exhibited negligible pharmacological effects against the MMNK1

normal cholangiocyte cell line, implying reasonable therapeutic indices. In contrast, CCA2-specific drugs

showed a weaker correlation between drug efficacy and drug potency. Few CCA2-specific drugs showed

robust cytotoxicity against CCA2 cell lines (Figures 4A and 4B; lower panels). The top-5 CCA2-specific

drugs (Tanespimycin, Mitomycin C, Gemcitabine, Bleomycin, and Dactolisib) showed narrow separations

between the two CCA subgroups and significant cytotoxicity against the MMNK1 cholangiocyte cell line

(Figures 4A and 4B lower panels). Tanespimycin showed the highest specificity against CCA2 cell lines

with negligible toxicity against the MMNK1 cell line. However, both CCA subgroups showed indistinguish-

able cytotoxic effects (GRmax below 0 for both CCA subgroups) (Figures 4A and 4B lower panels). These

results indicated that our novel analytical approach enables systematic identification of potentially new

drug candidates for Asian CCA. Our comprehensive analysis of drug response, using both drug potency

and drug efficacy and the newly developed subgroup specificity score, was able to identify selective ther-

apeutic candidates for both CCA subgroups.

Identification of drug response-associated mutations

We were next interested in developing biomarkers that can be used to classify CCA patient subgroups in

the clinical setting. We reasoned that our drug response-based CCA subgroups, if truthful, must also corre-

spond with the molecular machinery that underlies the unique drug response between the two CCA sub-

groups. We first examined whether the observed drug sensitivity, as quantified by drug potency, would be

associated with any mutations found across all CCA cell lines (Figure 5A). All chosen drug response-asso-

ciatedmutations must showmore substantial association scores than the previously knownmutations, such

as the associations of KRAS mutations to MEK inhibitor sensitivity (Figure 5A, pink circles) or Gefitinib

resistance (Figure 5A, blue circles) (Figure 5A) (Iorio et al., 2016). Among all mutations from the 189 genes

that passed our filtering criteria (see more details in the STAR methods session), the mutations of only 15

genes showed a significant association with drug response (|median Z-score of log10(GR50)| > 0.5 with

p-value < 0.05 using Wilcoxon test; Figure 5A). These results were consistent with another parallel

approach where we scored the significance of drug response-associated mutations based on the differ-

ence in drug potency between the wild-type and the mutation-carrying cell lines (Figure S4). Although

not anticipated, many of the detected drug response-associated mutations in CCA cell lines were reported

previously in other cancer types. For example, KRAS mutations were shown to be predictive of Nutlin-3

sensitivity (KRAS G12V) in ovarian carcinoma and Vorinostat sensitivity (KRAS G12D) in lung cancer (Crane

et al., 2015; Ma et al., 2013). Likewise, PTEN mutations were predictive of resistance to EGFR inhibitors in

non-small cell lung cancer (Gkountakos et al., 2019). On the other hand, some drug response-associated

mutations were novel to our study. The tumor suppressor gene LRP1B was found to be associated with

sensitivity to several kinase inhibitors (including TAK733, Selumetinib, Saracatinib) and an epigenetic inhib-

itor (Azacitidine) as well as with resistance to a PI3K/mTOR inhibitor (Dactolisib) and an Hsp90 molecular

chaperone inhibitor (Tanespimycin) (Figure 5B). This result highlights our approach’s uniqueness in iden-

tifying drug response-associated mutations unbiasedly, both known and novel relationships.

We next asked whether any identified drug response-associated mutations were observed uniquely in

either CCA subgroup. In general, we found both subgroup-specific and common drug response-associ-

ated mutations. In particular, LRP1B and FLT3 mutations were detected only in CCA1 cell lines (except

KKK-D138), whereas BLM, SMARCA4, SLC19A1, NCOR1, NOTCH3, and PTEN were observed only in

CCA2 cell lines (Figure 5C). Mutations of KRAS, PEG3, ARID1A, KCNN3, KEAP1, MSH6, and ERBB2 could

be observed in both CCA subgroups. For example, ARID1A mutations were found to be associated with

both drug sensitivity to Caffeic acid phenethyl ester (NF-kB inhibitor), SH-4-54 (STAT3/5 inhibitor), Doxo-

rubicin (topoisomerase II inhibitor), and Vinorelbine tartrate (mitotic spindle inhibitor) as well as with drug

Figure 4. Continued

(B) Comparison of drug potency (left panel) and drug efficacy (right panel) between the two CCA subgroups. The mean values of these parameters from

either CCA1- or CCA2-subgroup cell lines are shown in either cyan or orange dots, respectively. Gray dots represent the equivalent values for the

immortalized human cholangiocyte cell line (MMNK-1).
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resistance to Abemaciclib (CDK4/6 inhibitor). We found that 9 of the 15 drug response-associated muta-

tions were genomic alterations reported in prior clinical cohorts of CCA patients (Jusakul et al., 2017) (Fig-

ure 5C), implying that these mutations may be clinically translatable.

Comparison of ligand-induced pathway activation between the two CCA subgroups

The ligand-induced activation of cancer-associated signaling cascades is another biomarker set that was

shown to be predictive of drug sensitivity (Jones et al., 2017; Niepel et al., 2014). Having hypothesized

that the two CCA subgroups must rely on unique signaling cascades, we compared the ligand-induced

pathway activity between the two CCA subgroups. Specifically, the phosphorylation of ERK1/2, p70/S6K,

AKT, STAT1, and the p65/RelA translocation were quantified using the immunofluorescent staining tech-

nique after the stimulation with common pathway-specific ligands including EGF, IGF1, Anisomycin,

TNFa, and IFNg. The ligand-induced protein activity of each representative node was then quantified

based on the differential area-under-the-curve (AUC) across the different time points compared to the

non-stimulated cells (Figure 6A and S5A). Using the principal component analysis (PCA), we could show

that the overall signal activation between the CCA1 and CCA2 cell lines is quantitatively distinguishable

(Figure 6B). We then divided these ligand-induced pathway activities into five subgroups using hierarchical

clustering (Figure S5B). Of interest, the ligand response of AKT activation in cluster 2 primarily contributed

to PC1, whereas the ligand response of ERK activation in cluster 1 contributed to PC2. To further examine

the preference for ligand-induced pathway activation, we applied the logistic regression analysis to the

signaling node activities. The result showed that PI3K/AKT pathway activation (pAKT) was preferable in

CCA2 subgroup cell lines, with a substantial significance score (odds ratio = 3.07 3 10�5; p-value =

9.71 3 10�3). On the other hand, activation of other signaling proteins was observed more commonly in

CCA1 subgroup cell lines (Figure 6C). Notably, although all ligand types could activate AKT in CCA2

cell lines, only pro-growth ligands (IGF1, Anisomycin, and EGF) could activate ERK in CCA1 cell lines (Fig-

ure 6D). Other observed CCA1 subgroup-specific pathway activations included nuclear translocation of

RelA in response to IFNg treatment and phosphorylation of S6K in response to EGF and IGF1 treatment

(Figure S5C). These results suggest that AKT activity is more preferentially activated in CCA2 cell lines,

regardless of ligand types.

Prior studies have shown that targeting cancer with MAPK-targeting drugs may not be effective in MAPK-

hyperactivated cancer because of feedback activation (Kitai et al., 2016; Merchant et al., 2017). To test this

hypothesis, we measured changes of ERK phosphorylation in both CCA subgroups (KKU-213C and KKK-

D138 cell lines from CCA1 subgroup and KKU-100, and SSP-25 from CCA2 subgroup) after treatment

with MEKi PD-0325901 for 3 h at low (1.25 mM) and high (5 mM) doses or vehicle control in medium contain-

ing 10% FBS. The results showed that MEK inhibitor treatment significantly reduced ERK phosphorylation in

both the KKU-213C (with KRAS mutation, with p-value = 0.0066) and KKK-D138 cells (with wild-type KRAS,

p-value = 0.0022) (Figure S5D). For the CCA2 subgroup, MEK inhibitor successfully suppressed ERK phos-

phorylation in the KKU-100 cell line more efficiently (with KRAS mutation, p value = 0.0019) than in the

SSP25 cell line (with wild-type KRAS, p value = 0.059) (Figure S5D). These results imply that CCA1 cell lines

may be more sensitive to MEK inhibitors perhaps because of their addiction to the MAPK pathway. On the

other hand, MAPK pathway in the CCA2 cell lines, even though are partly active, are not the main growth

driver.

Previous studies have shown that the ligand-specific pathway activation can strongly depend on the muta-

tional status of cancer cells (Li et al., 2017; Niepel et al., 2014; Sampattavanich et al., 2018). To extend this

Figure 5. Association of commonly observed mutations and drug response in CCA cell lines

(A) Volcano plot of all identified drug response-mutation association pairs. The significant association pairs represent those with the median Z-score of

log10(GR50) > 0.5 and p-value < 0.05 using the Wilcoxon test, with red and green bubbles showing drug sensitivity- and drug resistance-associated

mutations. The bubble size represents the number of cell lines that carry such mutations. Previously identified KRAS-associated drug response relationships

(drug sensitivity in purple and drug resistance in blue) are shown here as references. See also Figure S4 alternative significance scoring approach.

(B) Comparison of drug potency (GR50) between the wild-type (blue) and the mutation-carrying (yellow) cell lines. Example drug sensitivity-associated

mutations include LRP1B for TAK733, Selumetinib, Saracatinib, Azacitidine, and KRAS for Vorinostat and Nutlin-3. Example drug resistance-associated

mutations include LRP1B for Dactolisib and Tanespimycin, BLM for Azacitidine, and PTEN for Afatinib. Boxes range from the first to the third quartile, while

bold lines mark medians. Upper and lower points mark the position of outliers.

(C) Unique drug response-associated mutations of different CCA subgroups. The circle size represents the number of cell lines, showing those from CCA

subgroup 1 in cyan and CCA subgroup 2 in orange. The Mutations previously reported in the Asian CCA cohort (Jusakul et al., 2017) were also labeled with

their prevalence (from total patients of 416).
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investigation in our work, we analyzed the relationship betweenmutations and pathway activity in eachCCA

subgroup (Figure 6E). CCA cell lines from both subgroups with the KRASmutation exhibited less ERK activ-

ity than the wild-type cell lines, even after EGF stimulation (Figure 6Fa), indicating that KRAS mutation de-

sensitized the ligand-induced ERK activity. Of interest, only the CCA1 cell lines with KRAS mutation had

elevated ERK activity in the presence of IGF1 or Anisomycin. On the contrary, the CCA2 cell lines with

KRAS mutation showed elevated ERK activity with TNFa or IFNg stimulation. These results suggest a

possible unique cross-talk relationship between the inflammatory cytokine-related pathway and the ERK

signaling pathway in either CCA subgroups. Apart from KRAS, other mutations such as ERBB2 and FLT3

also affected ERK activity, especially in CCA1 subgroup (Figures 6FB and 6C). In the presence of IGF1

and Anisomycin, CCA1 cell lines with either ERBB2 or FLT3mutations showed elevated ERK activity. Similar

mutation-induced pathway activity changes were also seen in CCA2 cell lines. Specifically, mutations of

TP53, PIK3C2B, KEAP1 and PTEN elevated AKT activity across all ligands in CCA2 cell lines, most pro-

nouncedly with EGF and TNFa. At the same time, only minor changes were observed in CCA1 cell lines

(Figures 6FD and 6F and S5E).

We constructed network diagrams to gain further insight into the association of mutation and ligand-

induced pathway activity between the two CCA subgroups. Three node layers represent different mutated

genes, stimulating ligands, and pathway proteins (Figure 6G). The network edges represent the relative ac-

tivity of the assigned signaling proteins between cell lines that harbor the mutations and the wild-type

genes (red edges showed mutated > wild-type whereas blue edges showed mutated < wild-type). FLT3

mutation showed the highest significance score for CCA1 subgroup, inducing elevated ERK activation

with Anisomycin treatment. On the other hand, PI3KC2B mutation showed the highest significance score

for CCA2 subgroup, elevating AKT activation with EGF treatment. Collectively, our pathway activation

analysis showed that the two CCA subgroups exhibit unique ligand-induced pathway activation with a

distinct association to the stimulating ligands and the underlying mutations. These results substantiate a

context-dependent nature of signaling cascade activity, making it less robust as subgroup-classifying

biomarkers.

Development of CCA45 signature for the classification of CCA drug response-based

subgroups

We next attempted to investigate the association of basal gene expression levels with our drug response-

based CCA subgroups. Gene expression-based biomarkers have been developed by scoring the correla-

tion between drug sensitivity and the expression of individual genes (Rees et al., 2016). However, such

approach may suffer from identifying the context-dependent non-causal biomarkers that do not underlie

the observed drug response phenotypes. Recently, a novel approach has been proposed to identify truly

Figure 6. Comparison of the ligand-mediated pathway activation between the two CCA subgroups

(A) Experimental workflow for determining the ligand-mediated pathway activation. Cell lines were exposed to 100 ng/mL of EGF, IGF1, Anisomycin, TNFa,

and IFNg for 10, 30, and 60 min. Phosphorylation of ERK, AKT, S6K, and STAT1 and the nuclear translocation of the RelA (the p65 subunit of NF-kB) were

measured. Temporal responses were then converted to AUC for quantifying the activity of each pathway.

(B) Principal component analysis of the ligand-mediated activity of pERK, pS6K, pSTAT1, pAKT, and RelA. Loadings of ligand responses (left) and the PC1

and PC2 scores were compared between the CCA1 (cyan) and CCA2 cell lines (orange) (right).

(C) Analysis of the association between CCA subgroups and signal activation. The odds ratio (probability of being CCA1 over the probability of being CCA2)

was calculated using the log of the coefficient derived from the generalized linear model used to assess the relationship between CCA subtypes (CCA1 or

CCA2) and ligand-mediated activation of key proteins (pERK, pS6K, pSTAT1, pAKT, or RelA). A p-value < 0.05 indicates that significant ligand-activated

signaling pathway. Error bars represent the interquartile range of the odds ratio.

(D) Comparison of ligand-specific pathway activity between the two CCA subgroups. Data between two subgroups were compared using the Wilcoxon rank

sum test. Boxes range from the first to the third quartile, while lines inside the box mark medians. Upper and lower points mark the position of outliers.

(E) Association of themutation status and the ligand-mediated pathway activity bias. The average difference of protein activity between the mutated and the

wild-type cell lines (x-axis) was plotted against the significant score (y-axis: –log10(p-value) from the Wilcoxon rank sum test; showing only those with p-

value < 0.05). The bubble size represents the number of mutated cell lines. Significant mutations observed in both CCA subgroups are displayed in pink,

while the CCA1-specific or CCA2-specific mutations are shown in cyan and orange, respectively.

(F) Example mutation-associated pathway activity bias for common (KRAS and TP53), CCA1-specific (ERBB2 and FLT3), and CCA2-specific (PIK3C2B and

PTEN) mutations. The mutation-associated activity bias for ERK and AKT pathways was shown across all ligands and compared between the two CCA

subgroups. See also Figure S5E for similar results of other signaling proteins.

(G) Summary network diagrams of the mutation-associated pathway activity bias of CCA1 and CCA2 subgroups. Nodes represent mutated genes (top

panel), ligands (middle panel), and signaling proteins (bottom panel). Each edge represents the identified mutation-ligand-protein association group. The

edge color highlights the direction of the activity bias (red: mutant> wild-type vs. blue: mutant< wild-type), and the edge size shows the significance score of

the association.
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causal biomarkers by utilizing pre-established hallmark gene sets (Targonski et al., 2019) and gene set

enrichment analysis (GSEA) (Subramanian et al., 2005). Using this approach and the 50 cancer hallmark

gene sets from the Molecular Signatures Database (MSigDB) as our reference gene sets (Liberzon et al.,

2015; Subramanian et al., 2005), we attempted to identify gene sets capable of classifying our drug

response-based CCA subgroups. As a result, we identified nine significantly enriched hallmark gene sets

(p-value < 0.05) that represented the underlying mechanisms of drug response in CCA1 subgroup (Fig-

ure S6A). The hallmarks consisted of eight positively enriched gene sets (NES >0; TNFa signaling via

NF-kB, P53 pathway, inflammatory response, estrogen response late, KRAS signaling up, MYC targets,

early estrogen response gene sets) and one negatively enriched gene set (NES <0; epithelial-mesenchymal

transition (EMT) gene set).

Next, we attempted to identify gene biomarkers that could classify our CCA subgroups from the pool of

leading-edge genes from the nine significantly enriched hallmark gene sets (Figure S6B). A carefully chosen

criterion of significance level (ROC AUC >0.8, Mann-Whitney’s p value < 0.05) was applied to narrow down

the list of candidate biomarkers previously selected by the classification model. As a result, we managed to

identify 45 genes from the leading-edge gene list of the enriched hallmarks that could classify CCA cell

lines into the drug response subgroups with high accuracy. Specifically, forty-two biomarkers were

A B

C

Figure 7. CCA45 signature and its accuracy in predicting drug response

(A) The different gene expression levels of the CCA45 signature across all CCA cell lines. Each of the CCA45 signature genes is

annotatedwith its associated cancer hallmarks, the ratio of themean expression level betweenCCA1 andCCA2 subgroups, and

the Mann-Whitney U-test significant level. See also Figure S6 for the detailed development of the CCA45 signature.

(B) Network diagram showing the overlapped gene sets between the CCA45 signature (gray node) and the other drug

response-predictive biomarkers, both for the CCA1-specific drugs (Saracatinib, TAK733, Dasatinib; cyan nodes), as well

as the CCA2-specific drugs (5-FU, Cisplatin, Gemcitabine; orange nodes). The node size represents the number of

biomarkers (shown in parentheses), and the edge thickness depicts the number of overlapped genes.

(C) Receiver operating characteristic (ROC) curve for predicting the CCA45 signature using sensitivity to Saracatinib,

TAK733, Gemcitabine, and Cisplatin. The area-under-the-curve (AUC) is shown in parenthesis.
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upregulated in CCA1 cell lines, and three (solely from the EMT gene set) were upregulated in CCA2 cell

lines. Hereafter, we referred to these 45 biomarker gene sets as the CCA45 signature (Figure 7A). In partic-

ular, PHLDA3, NOTCH1, PUS1, FDXR, and RRAD were the highest enriched genes in CCA1 cell lines

(Mann-Whitney’s p value < 0.05), and most of them (4/5) were associated with the TP53 signaling pathway.

On the other hand, COL12A1, VEGFC, and FBLN1 were associated solely with the EMT hallmark and are

significantly up-regulated in the CCA2 cell lines. Of interest, our finding is consistent with previous reports

showing enrichment of TP53-related pathway in most liver fluke-associated CCA patients (Chaisaingmong-

kol et al., 2017; Jusakul et al., 2017; Ong et al., 2012).

To examine the CCA45 signature specificity in classifying the CCA drug response-based subgroups, we

compared its ability to predict drug response subgroup (CCA1 versus CCA2) and organ similarity (liver

vs. pancreas) to the performance of using whole transcriptomic data as a predictor. Using the estimated

goodness of prediction (q2) from the partial least squares regression (PLSR) model, we showed that the

CCA45 signature predicted CCA1 drug response-based subgroup with high accuracy (q2 = 0.896,

p value < 0.05), whereas the whole transcriptomic data could not (Figure S6C). In addition, the CCA45

signature was restricted to classifying CCA drug response-based subgroups but failed to predict for organ

similarity. These results, therefore, confirm the specificity of the CCA45 signature for the classification of the

CCA subgroups based on drug response.

In addition to the classification of CCA subgroups, we asked whether the CCA45 signature also holds

predictive values for the sensitivity of any subgroup-specific drug candidates. First, we needed to sub-cate-

gorize CCA cell lines into drug-sensitive and drug-resistant subgroups for all individual drug candidates

(Figure S6D). Specifically, a cut-off drug potency was determined using kernel density estimation for

each therapeutic agent to separate cell lines into the two drug response subgroups (see more details in

the STAR Methods section and Table S3 for complete results). Next, we applied a similar GSEA-based

approach to determine the leading-edge genes for the drug sensitivity prediction of all therapeutic candi-

dates (Table S4). Of interest, we found that the predictive biomarkers for CCA1-specific drugs shared many

overlapped biomarkers with the CCA45 signature. Specifically, the predictive biomarkers for MEK inhibi-

tors (Saracatinib and TAK733; blue circles) shared the most overlapped biomarkers with the CCA45 signa-

ture, whereas the predictive biomarkers for standard-chemotherapies (Gemcitabine, Cisplatin, and 5-FU;

orange circles) showed only a few overlapped genes (Figure 7B). When we attempted to apply the

CCA45 signature to predicting drug sensitivity of these key therapeutic candidates, prediction accuracy

of the CCA45 signature performed well for Saracatinib and TAK733 (AUC >0.95) but poorly for stand-of-

care chemotherapies (AUC <0.8) (Figure 7C). Taken together, our analyses showed that the newly devel-

oped CCA45 signature can accurately classify CCA drug response-based subgroups and predict drug

sensitivity, especially for the CCA1-specific drug candidates.

CCA45 signature implicates poorer prognosis in Asian CCA patients

The classification of CCA by their molecular etiologies has been explored in prior research work. A critical

study by Jusakul and colleagues (Jusakul et al., 2017) utilized a pan-omics approach to study CCA patients’

molecular uniqueness from Asian and Caucasian populations. By characterizing mutations, copy number

variation, gene expression, and epigenetic modifications, the team identified four unique molecular clus-

ters, highlighting ERBB2 amplification and TP53mutations as common characteristics in liver fluke-positive

CCAs. Despite a comprehensive analysis of CCA molecular landscapes, the potential therapeutic options

for such four molecular clusters were not characterized. Motivated by such limitation, we attempted to

examine whether our findings of subgroup-specific drug candidates and the developed subgrouping

biomarker could potentially be translated for clinical practice. First, we evaluated the similarity between

our CCA45 signature and the four previously reported CCA molecular clusters. Using the unsupervised

subclass mapping technique (SubMap) (Hoshida et al., 2007), we observed a high concordance between

our CCA1 subgroup and the CCA molecular cluster type I (Bonferroni-adjusted p-value = 7.9 3 10�3, Fig-

ure S7A). We then attempted to classify CCA patients from clinical cohort (Jusakul et al., 2017) into our drug

response-based subgroups using the CCA45 signature. Specifically, we combined the normalized gene

expression data from CCA patients and our CCA cell line panel and performed the unsupervised hierarchi-

cal clustering. The result revealed that CCA patients could be grouped with CCA1 and CCA2 cell lines.

Based on this clustering, we could assign individual CCA patients to our drug response-based subgroups

(Figure 8A). Of interest, the patients with the characteristics of CCA1 and CCA2 subgroups were composed

mainly of the CCA molecular clusters type I and type IV, respectively. We then used the ridge regression to
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estimate the weight coefficients of each biomarker (Figure 8A right panel; Table S5) and developed a

weighted sum model (WSM) score for the classification of CCA patients (WSM score >0 for the CCA1 sub-

group andWSM score <= 0 for the CCA2 subgroup). The clustering landscape of CCA patient and cell lines

was best visualized when the data was dimensionally reduced using PCA and the two patient subgroups

were separated using support vector machine (SVM) (Figure S7B). Indeed, the SVM-based prediction

model could predict drug response subgroups of CCA patients with high accuracy compared to the hier-

archical clustering approach (AUC = 0.89) (Figure S7C).

A

B

C

Figure 8. Prognostic value of the CCA45 signature for survival prediction in the Jusakul cohort

(A) Classification of CCA patients in the Jusakul cohort (n = 100) using the CCA45 signature. All samples are clustered

using Euclidean distance and Ward2 algorithm. Genes are arranged according to their coefficient values from the ridge

regression model. The CCA cell lines are annotated based on their drug response-based subgroups from Figure 3A. CCA

patients are annotated as CCA1 and CCA2 subgroups based on the hierarchical clustering, with their corresponding

molecular clusters and O. viverrini infection status from Jusakul et al. study (Jusakul et al., 2017).

(B) Survival analysis of Asian CCA patients (n = 67, left panel) and non-Asian CCA patients (n = 33, right panel) between

CCA1 (cyan) and CCA2 (orange) subgroups. Kaplan-Meier plot is shown, and log-rank statistics are used to determine the

significance level of median survival times when comparing CCA1 and CCA2 subgroups.

(C) Fractions of the molecular clusters within CCA1 and CCA2 subgroups among the Asian (left panel) and non-Asian

(right panel) CCA patients.
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Having confirmed that our drug response-based subgrouping can be applied in the clinical setting, we next

examined whether the developed CCA45 signature also holds any prognostic values. To assess this, we uti-

lized the reported survival data from the same clinical cohort to compare the survival time of different pa-

tient subgroups. First, CCA1 patients showed a median survival time of 1.58 years, whereas CCA2 patients

had indeterminable survival time of at least four years (log-rank p-value = 0.004, Figure S7D). In addition,

CCA1 and CC2 patients showed 1-year survival rates of 67.94% and 84.52%, and 3-year survival rates of

35.38% and 67.88%, respectively. When we performed subgroup analysis on different patient ethnicity,

we found that the prognosis prediction using the CCA45 signature was more accurate in the Asian CCA

subgroup (p-value = 0.0065) than that of the non-Asian subgroup (p-value = 0.2368) (Figure 8B). Of interest,

when we limited our analysis to only Thai CCA patients, CCA1 patients still showed a poorer 1-year survival

rate than CCA2 ones (50% and 83.33%, respectively). However, their overall survival times were not signif-

icantly different (Figure S7E, log-rank p-value = 0.0884).

Having found that the CCA1 and CCA2 patients were composed mainly of the molecular cluster type I and

IV, we inspected the distribution of molecular clusters in each drug response-based subgroup. Across all

patients, we found that patients with molecular cluster types I and II were most frequently observed

in the CCA1 patient subgroups (Figure S7F). When we limited the analysis only to the Asian CCA patients,

the proportion of molecular cluster type I patients was substantially higher than other cluster types in the

CCA1 subgroup (53%) (Figure 8C, left panel). For the CCA2 subgroup, the molecular cluster type IV pa-

tients were found to be the majority contributor (>50%) regardless of their ethnicity (Figures 8C and

S7F). Although the median survival time between the two CCA drug response-based subgroups within

the Thai CCA subpopulation was not significantly different, most CCA1 patients were composed of themo-

lecular cluster types I and II (Figure S7G). Collectively, we demonstrated that the CCA45 signature also

holds prognostic values, especially for Asian CCA patients. Nonetheless, further clinical studies are needed

to confirm the efficacy of our proposed subgroup-specific drug candidates and the developed biomarker

panel in more diverse patient subgroups.

DISCUSSION

Advanced CCA patients suffer from limited drug options like other rare cancer types, mainly relying on

standard chemotherapeutic agents with poor clinical outcomes. To determine if a newly developed anti-

cancer drug could be applicable for CCA patients, past efforts relied on non-selective trials with unsatis-

factory clinical outcomes (probability of success (POS) for clinical studies without and with biomarkers of

1.6% vs. 10.7%) (Wong et al., 2019). Our study reported an unbiased high-throughput approach to repur-

posing anti-cancer drug candidates for the commonly underrepresented Asian CCA. We took advantage

of the unique CCA cell lines from Thai CCA patients (fromO. viverrini infection endemic areas) and the Jap-

anese CCA cell lines from the Japanese cell banks to establish a comprehensive library of drug responses

against 100 approved anti-cancer drugs. By carefully investigating the pairwise correlation of drug potency

across all cell lines, we were able to subgroup Asian CCA cell lines based on their drug response similarity

and assign to each CCA subgroup suitable drug candidates. For the first time, we identified a subset of

Asian CCA patients that demonstrated our newly developed gene expression signature called CCA45

and showed that this patient subgroup could benefit from targeted therapy such as MEK and Src inhibitors.

Our approach to identifying drug candidates based on 1) subgroup specificity score, 2) the comparison of

drug potency and efficacy between subgroups, and 3) the estimation of the therapeutic index by profiling

toxicity against the normal cell line can serve as an accelerated strategy for identifying specific drug choices

for neglected subgroups of rare cancer beyond CCA. To encourage further exploration and clinical trans-

lation of our work, we made all data publicly available for academic use at https://sisp.shinyapps.io/

AsianCCAbrowser/.

Our study further elucidated the molecular uniqueness of Asian CCA subgroups. We identified 15 muta-

tions associated with either drug sensitivity or drug resistance using the accompanying mutational

profiling. Some mutations were uniquely identified in either CCA subgroups. For example, the genetic al-

terations of LRP1B and FLT3 genes were only observed in CCA1 cell lines. LRP1B mutations were associ-

ated with platinum drug resistance in Asian metastatic CCA patients (Xu et al., 2020). FLT3 mutations

were also reported to be associated with Azacitidine sensitivity in acute myeloid leukemia (AML) (Zhao

et al., 2019). We hypothesize that some identified drug response-associated mutations may act as onco-

genic drivers and render CCA cells sensitive to novel drug candidates. This phenomenon, also known as
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‘‘acquired vulnerability,’’ has opened new therapeutic opportunities in other cancer types (Nijhawan et al.,

2012; Wang et al., 2018).

Considering the heterogeneous nature of CCA pathological specimens (Bragazzi et al., 2018), our newly

developed CCA45 gene expression signature can make the classification of CCA patients more robust

than using the mutation-centric approach in conventional studies. Although the CCA45 signature was

generated from the comprehensive drug response profiling in cell lines, we showed that CCA1 subgroup

exhibits a similar transcriptomic profile to the CCAmolecular cluster type I, commonly observed among the

liver fluke-positive CCA patients (Jusakul et al., 2017). The CCA45 signature successfully classified individ-

ual CCA patients into our drug response-based subgroups. We also showed that the CCA45 signature

holds prognostic values, especially for the Asian CCA subpopulation. This effort is consistent with the

recent adoption of transcriptomics-based subgroup-classifying biomarkers in the clinical diagnosis of

breast cancer (Smid et al., 2016) and colorectal cancer (Guinney et al., 2015), substantiating the use of

gene expression as a more robust approach for cancer classification. We encourage a further collaborative

effort to develop the gene expression-based consensus molecular subgroups in CCA. This effort can be

made possible by enabling data sharing from large CCA cohorts with diverse patient ethnicity; a common

problem shared across all rare cancer types. The accuracy of subgroup classification could also be further

improved with more CCA subgroup-representing cell lines. Specifically for Thai CCA cell lines, we are ex-

panding our cell line collection using the successful establishment protocol via a patient-derived xenograft

mousemodel (Vaeteewoottacharn et al., 2019). Following the success of tumoroid development from iCCA

patients (Broutier et al., 2017; Saito, 2019), we are also establishing ex vivo avatar models from Thai CCA

patients and will make these models available for further in-depth preclinical studies among the interna-

tional research community.

MEK and Src inhibitors were the best drug candidates for CCA1 subgroup, showing selective cytotoxicity

against CCA1 cell lines with minimal toxicity against the MMNK1 cholangiocyte cell line. Some of these

drugs have already been investigated in biomarker-guided clinical trials but showed poor outcomes

and heterogeneous responses. In a phase II study of Selumetinib in patients with metastatic biliary

cancers, the absence of ERK phosphorylation was associated with a lack of response. However, the

median overall survival was only 9.8 months (Bekaii-Saab et al., 2011). A similar drug screening study

in the Caucasian iCCA cell lines identified the association of the IDH1 mutations with Dasatinib

sensitivity (Saha et al., 2016). This finding led to a follow-up phase-II clinical study in CCA patients

with IDH mutant (NCT02428855). More recently, a cohort study of the ROAR basket trial reported an

improved efficacy in patients with biliary cancer with BRAF V600E mutation treated with Dabrafenib

and Trametinib combination (median overall survival of 11.3 months) (Subbiah et al., 2020). Understand-

ing how different subgroups of CCA patients could respond to regimens that target proteins within the

same signaling cascade, regardless of their mutational profiles, will help us translate these insights into

more patients.

Our study was also the first to report the ligand-mediated pathway activation in CCA. Cognate ligands of

different signaling cascades exhibit distinct activation patterns of their respective pathways for the

different CCA subgroups. We discovered that IGF1 enhanced ERK signaling pathway in the CCA1 sub-

group, consistent with a prior finding (Andersen et al., 2012). Similarly, Anisomycin and the cognate

ligand EGF also activated the ERK signaling pathway to a lesser extent. In CCA2 subgroup, however,

the same set of ligands was observed to activate the AKT signaling pathway. Our findings support the

existence of ERK-AKT signaling pathway cross-talk in CCA, in which activation of one or both pathways

promotes cell proliferation and anti-cancer drug resistance (Ewald et al., 2014; Yoon et al., 2011). Our

study found that CCA1 subgroup was more sensitive to MEK inhibitors than CCA2 subgroup that showed

higher AKT activity. This finding is consistent with previous research indicating that tyrosine kinase inhib-

itor-sensitive CCA had low AKT activation. AKT phosphorylation in iCCA with abundant surface EGFR has

also been reported, which is controversial (Schmitz et al., 2007). Despite the rarity of EGFR mutations,

subgroups of CCA with an identical amount of EGFR but distinct AKT or ERK signaling activity can be

distinguished.

Some of the disparities in drug responses between our two CCA subgroups may be attributable to genetic

background differences. Our MEK inhibitor-sensitive CCA1 subgroup associated with KRAS mutation and

IGF1-induced ERK activity highlighted previous findings that KRAS was required and may bridge the ERK
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and AKT signaling pathways (Molina-Arcas et al., 2013; Simpson et al., 2017). In addition, we reported that

the FLT3mutation was uniquely associated with the CCA1 subgroup and that ERK activity varied based on

the ligand type. Of interest, FLT3 mutation-harboring cancer cells have been reported to exhibit dynamic

ERK signaling pathway activation (Bruner et al., 2017; McCubrey et al., 2008). Additional research utilizing a

live-cell kinase translocation reporter may be necessary to determine whether the ERK activity observed in

the CCA1 subgroup is also dynamic (Regot et al., 2014).

In contrast, our CCA2 subgroup showed a consistent AKT response to pro-growth (IGF1, EGF) and pro-in-

flammatory (TNFa and IFNg) ligands. The TP53, PIK3C2B, KEAP1, and PTEN mutations in the CCA2 sub-

group may act as constitutive activators of the AKT pathway, consistent with the findings in other cancer

types. For instance, TP53mutation led to a significantly activated AKT pathway (Yue et al., 2020). PTENmu-

tation was shown to induce basal AKT phosphorylation (Niepel et al., 2014). PIK3KC2Bmutation could also

activate the AKT pathway in non-small cell lung cancer (Kind et al., 2017). Finally, the inactivation of the

FoxO3-KEAP1 in CCA accounts for the constitutive activation of NRF2 that can result in the activation of

the AKT pathway (Guan et al., 2016).

In conclusion, we demonstrated that a comprehensive drug response profiling of representative cell lines

and the accompanying omics data could accelerate the identification of drug candidates for a rare under-

studied cancer like CCA. The biomarker developed based on our comprehensive drug response profiling

proves to be more directly applicable to personalized drug choice selection and the prediction of patient

prognosis. Finally, we confirm that transcriptomics-based biomarkers improve the robustness of subgroup

stratification in CCA patients.

Limitations of the study

Our study is undoubtedly limited by the small number of CCA cell lines. Although we successfully

showed using clinical data from different ethnic backgrounds that both the CCA1 and CCA2 signatures

exist in clinical settings, broadening our analysis using larger number of cell line collections and cancer

models other than 2D cell culture can further validate our prioritized drug lists. Our group is currently

working to produce more supportive evidence using 3D spheroid culture models. We are also expanding

our collection of patient-derived xenograft models from CCA patients, which can later be used to vali-

date the choice of repurposable drugs such as MEK and Src inhibitors for patients with the CCA1 signa-

ture. The prognostic value of CCA45 signature can also be further validated with access to a broader

clinico-genomic database of CCA patients. In particular, we are interested in validating the use of

CCA45 signature as the molecular inclusion criteria from clinical trials that utilized MEK and Src inhibitors

in CCA patients.

Significance

Our library of drug response profiling and pan-omic data offers novel treatment options for Asian liver

fluke-associated CCA with subgroup-classifying biomarkers.
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Curigliano, G., Javle, M., de Braud, F., Prager,
G.W., Greil, R., Stein, A., et al. (2020). Dabrafenib
plus trametinib in patients with BRAF(V600E)-
mutated biliary tract cancer (ROAR): a phase 2,
open-label, single-arm, multicentre basket trial.
Lancet Oncol. 21, 1234–1243. https://doi.org/10.
1016/S1470-2045(20)30321-1.

Subramanian, A., Tamayo, P., Mootha, V.K.,
Mukherjee, S., Ebert, B.L., Gillette, M.A.,
Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander,
E.S., and Mesirov, J.P. (2005). Gene set
enrichment analysis: a knowledge-based
approach for interpreting genome-wide
expression profiles. Proc. Natl. Acad. Sci. USA
102, 15545–15550. https://doi.org/10.1073/pnas.
0506580102.

Tarasov, A., Vilella, A.J., Cuppen, E., Nijman, I.J.,
and Prins, P. (2015). Sambamba: fast processing
of NGS alignment formats. Bioinformatics 31,
2032–2034. https://doi.org/10.1093/
bioinformatics/btv098.

Targonski, C.A., Shearer, C.A., Shealy, B.T.,
Smith, M.C., and Feltus, F.A. (2019). Uncovering
biomarker genes with enriched classification
potential from Hallmark gene sets. Sci. Rep. 9,
9747. https://doi.org/10.1038/s41598-019-
46059-1.

Therneau, T.M. (2022). A package for survival
analysis in R. https://cran.r-project.org/web/
packages/survival/.

Therneau, T.M., and Grambsch, P.M. (2000).
Modeling Survival Data: Extending the Cox
Model (Springer). https://doi.org/10.1007/978-1-
4757-3294-8.

Thompson, J.A., Tan, J., and Greene, C.S. (2016).
Cross-platform normalization of microarray and
RNA-seq data for machine learning applications.
PeerJ 4, e1621. https://doi.org/10.7717/peerj.
1621.

Vaeteewoottacharn, K., Pairojkul, C., Kariya, R.,
Muisuk, K., Imtawil, K., Chamgramol, Y.,
Bhudhisawasdi, V., Khuntikeo, N., Pugkhem, A.,
Saeseow, O.T., et al. (2019). Establishment of
highly transplantable cholangiocarcinoma cell
lines from a patient-derived xenograft mouse
model. Cells 8, 496. https://doi.org/10.3390/
cells8050496.

Valle, J., Wasan, H., Palmer, D.H., Cunningham,
D., Anthoney, A., Maraveyas, A., Madhusudan, S.,
Iveson, T., Hughes, S., Pereira, S.P., et al. (2010).
Cisplatin plus gemcitabine versus gemcitabine
for biliary tract cancer. N. Engl. J. Med. 362, 1273–
1281. https://doi.org/10.1056/NEJMoa0908721.

Valle, J.W., Borbath, I., Khan, S.A., Huguet, F.,
Gruenberger, T., ESMO Guidelines Committee,
et al.. (2016). Biliary cancer: ESMO Clinical
Practice Guidelines for diagnosis, treatment and
follow-up. Ann. Oncol. 27, v28–v37. https://doi.
org/10.1093/annonc/mdw324.

Wang, K., Li, M., and Hakonarson, H. (2010).
ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data.
Nucleic Acids Res. 38, e164. https://doi.org/10.
1093/nar/gkq603.

Wang, L., Leite de Oliveira, R., Huijberts, S.,
Bosdriesz, E., Pencheva, N., Brunen, D., Bosma,
A., Song, J.Y., Zevenhoven, J., Los-de Vries, G.T.,

ll
OPEN ACCESS

22 iScience 25, 105182, October 21, 2022

iScience
Article

https://doi.org/10.1371/journal.pbio.2005970
https://doi.org/10.1371/journal.pone.0185862
https://doi.org/10.1371/journal.pone.0185862
https://doi.org/10.1158/2159-8290.CD-12-0446
https://doi.org/10.1186/1741-7007-12-20
https://doi.org/10.1186/1741-7007-12-20
https://doi.org/10.1016/j.cell.2012.07.023
https://doi.org/10.1016/j.cell.2012.07.023
https://doi.org/10.1038/ng.2273
https://doi.org/10.1038/ng.2273
http://refhub.elsevier.com/S2589-0042(22)01454-7/sref50
http://refhub.elsevier.com/S2589-0042(22)01454-7/sref50
http://refhub.elsevier.com/S2589-0042(22)01454-7/sref50
https://doi.org/10.21037/tgh.2018.07.02
https://doi.org/10.21037/tgh.2018.07.02
https://www.r-project.org/
https://doi.org/10.1038/nchembio.1986
https://doi.org/10.1038/nchembio.1986
https://doi.org/10.1016/j.cell.2014.04.039
https://doi.org/10.1016/j.cell.2014.04.039
https://doi.org/10.1038/ng0506-500
https://doi.org/10.1038/ng0506-500
https://doi.org/10.1158/2159-8290.CD-15-1442
https://doi.org/10.1158/2159-8290.CD-15-1442
https://doi.org/10.1111/jgh.14773
https://doi.org/10.1016/j.cels.2018.05.004
https://doi.org/10.1016/j.cels.2018.05.004
https://doi.org/10.3748/wjg.v13.i48.6470
https://doi.org/10.3748/wjg.v13.i48.6470
https://doi.org/10.1371/journal.pone.0091041
https://doi.org/10.1007/s11523-017-0514-5
https://doi.org/10.1007/s11523-017-0514-5
https://doi.org/10.1038/ncomms12910
https://doi.org/10.1038/ncomms12910
https://doi.org/10.1371/journal.pmed.0040201
https://doi.org/10.1371/journal.pmed.0040201
https://doi.org/10.3748/wjg.v11.i22.3392
https://doi.org/10.3748/wjg.v11.i22.3392
https://doi.org/10.1007/s13577-020-00334-w
https://doi.org/10.1007/s13577-020-00334-w
https://doi.org/10.1016/S1470-2045(20)30321-1
https://doi.org/10.1016/S1470-2045(20)30321-1
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1093/bioinformatics/btv098
https://doi.org/10.1093/bioinformatics/btv098
https://doi.org/10.1038/s41598-019-46059-<?show $132#?>1
https://doi.org/10.1038/s41598-019-46059-<?show $132#?>1
https://cran.r-project.org/web/packages/survival/
https://cran.r-project.org/web/packages/survival/
https://doi.org/10.1007/978-1-4757-3294-8
https://doi.org/10.1007/978-1-4757-3294-8
https://doi.org/10.7717/peerj.1621
https://doi.org/10.7717/peerj.1621
https://doi.org/10.3390/cells8050496
https://doi.org/10.3390/cells8050496
https://doi.org/10.1056/NEJMoa0908721
https://doi.org/10.1093/annonc/mdw324
https://doi.org/10.1093/annonc/mdw324
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.1093/nar/gkq603


et al. (2018). An acquired vulnerability of drug-
resistant melanoma with therapeutic potential.
Cell 173, 1413–1425.e14. https://doi.org/10.
1016/j.cell.2018.04.012.

Wickham, H., Averick, M., Bryan, J., Chang, W.,
McGowan, L., François, R., Grolemund, G., Hayes,
A., Henry, L., Hester, J., et al. (2019). Welcome to
the tidyverse. J. Open Source Softw. 4, 1686.
https://doi.org/10.21105/joss.01686.

Williams, C.R., Baccarella, A., Parrish, J.Z., and
Kim, C.C. (2016). Trimming of sequence reads
alters RNA-Seq gene expression estimates. BMC
Bioinf. 17, 103. https://doi.org/10.1186/s12859-
016-0956-2.

Wong, C.H., Siah, K.W., and Lo, A.W. (2019).
Estimation of clinical trial success rates
and related parameters. Biostatistics 20,
273–286. https://doi.org/10.1093/
biostatistics/kxx069.

Xu, S.-F., Guo, Y., Zhang, X., Zhu, X.-D., Fan, N.,
Zhang, Z.-L., Ren, G.-B., Rao, W., and Zang, Y.-J.

(2020). Somatic mutation profiling of intrahepatic
cholangiocarcinoma: comparison between
primary and metastasis tumor tissues. J. Oncol.
2020, 5675020. https://doi.org/10.1155/2020/
5675020.

Yang, W., Soares, J., Greninger, P., Edelman, E.J.,
Lightfoot, H., Forbes, S., Bindal, N., Beare, D.,
Smith, J.A., Thompson, I.R., et al. (2013).
Genomics of Drug Sensitivity in Cancer (GDSC): a
resource for therapeutic biomarker discovery in
cancer cells. Nucleic Acids Res. 41, D955–D961.
https://doi.org/10.1093/nar/gks1111.

Yoon, H., Min, J.K., Lee, J.W., Kim, D.G., and
Hong, H.J. (2011). Acquisition of
chemoresistance in intrahepatic
cholangiocarcinoma cells by activation of AKT
and extracellular signal-regulated kinase (ERK)
1/2. Biochem. Biophys. Res. Commun. 405,
333–337. https://doi.org/10.1016/j.bbrc.2010.11.
130.

Yoshihara, K., Wang, Q., Torres-Garcia, W.,
Zheng, S., Vegesna, R., Kim, H., and Verhaak,

R.G.W. (2015). The landscape and therapeutic
relevance of cancer-associated transcript fusions.
Oncogene 34, 4845–4854. https://doi.org/10.
1038/onc.2014.406.

Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012).
clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS
16, 284–287. https://doi.org/10.1089/omi.2011.
0118.

Yue, X., Wu, F., Li, Y., Liu, J., Boateng, M.,
Mandava, K., Zhang, C., Feng, Z., Gao, J., and Hu,
W. (2020). Gain of function mutant p53 protein
activates AKT through the Rac1 signaling to
promote tumorigenesis. Cell Cycle 19, 1338–
1351. https://doi.org/10.1080/15384101.2020.
1749790.

Zhao, J., Song, Y., and Liu, D. (2019). Gilteritinib: a
novel FLT3 inhibitor for acute myeloid leukemia.
Biomark. Res. 7, 19. https://doi.org/10.1186/
s40364-019-0170-2.

ll
OPEN ACCESS

iScience 25, 105182, October 21, 2022 23

iScience
Article

https://doi.org/10.1016/j.cell.2018.04.012
https://doi.org/10.1016/j.cell.2018.04.012
https://doi.org/10.21105/joss.01686
https://doi.org/10.1186/s12859-016-0956-2
https://doi.org/10.1186/s12859-016-0956-2
https://doi.org/10.1093/biostatistics/kxx069
https://doi.org/10.1093/biostatistics/kxx069
https://doi.org/10.1155/2020/5675020
https://doi.org/10.1155/2020/5675020
https://doi.org/10.1093/nar/gks1111
https://doi.org/10.1016/j.bbrc.2010.11.130
https://doi.org/10.1016/j.bbrc.2010.11.130
https://doi.org/10.1038/onc.2014.406
https://doi.org/10.1038/onc.2014.406
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1080/15384101.2020.1749790
https://doi.org/10.1080/15384101.2020.1749790
https://doi.org/10.1186/s40364-019-0170-2
https://doi.org/10.1186/s40364-019-0170-2


STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

phospho-p44/42 MAPK (Erk1/2) (Thr202/

Tyr204) rabbit mAb

Cell Signaling Technology Cat #9101; RRID:AB_331646

phospho-Akt (Ser473) (D9E) XP rabbit mAb Cell Signaling Technology Cat #4060; RRID:AB_2315049

phospho-p70 S6 kinase (Thr389)(108D2) rabbit

mAb

Cell Signaling Technology Cat #9234; RRID:AB_2269803

phospho-Stat1 (Tyr701) (58D6) rabbit mAb Cell Signaling Technology Cat #9167; RRID:AB_561284

NF-kB p65 (D14E12) XP rabbit mAb Cell Signaling Technology Cat #8242; RRID:AB_10859369

Anti-rabbit IgG (H + L), F(ab’)2 fragment (Alexa

Fluor 647 conjugate)

Cell Signaling Technology Cat #4414; RRID:AB_10693544

Chemicals, peptides, and recombinant proteins

DMEM GIBCO Cat #11995040

RPMI GIBCO Cat #11875085

F12 GIBCO Cat #11765047

Trypsin GIBCO Cat #25200056

DMSO Sigma-Aldrich Cat #D8418

DMF Sigma-Aldrich Cat #227056

DAPI Invitrogen Cat #D1306

GENEzol Geneaid Cat #GZR100

A443654 MedChemExpress Cat #HY-10425

Capmatinib Novartis Cat #HY-13404

Alpelisib (BYL719) Novartis Cat #S1105

LCL161 Novartis Cat #HY-15518

LEE011 Novartis Cat #HY-15777

Infigratinib Novartis Cat #HY-13311

(+)-JQ1 Selleck Chemicals Cat #S7110

17-AAG (Tenespimycin) Selleck Chemicals Cat #S1141

5-Fluorouracil Selleck Chemicals Cat #S1209

Abemaciclib Selleck Chemicals Cat #S7158

Afatinib Selleck Chemicals Cat #S1011

AGI-6780 Selleck Chemicals Cat #S7241

Anisomycin Selleck Chemicals Cat #S7409

Azacitidine Selleck Chemicals Cat #S1782

AZD0530 (Saracatinib) Selleck Chemicals Cat #S1006

AZD4547 Selleck Chemicals Cat #S2801

AZD6244 (Selumetinib) Selleck Chemicals Cat #S1008

AZD8055 Selleck Chemicals Cat #S1555

BAY11-7082 Selleck Chemicals Cat #S2913

Dactolisib Selleck Chemicals Cat #S1009

BGJ398 Selleck Chemicals Cat #S2183

Birinapant Selleck Chemicals Cat #S7015
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Bleomycin Selleck Chemicals Cat #S1214

Bortezomib (PS-341) Selleck Chemicals Cat #S1013

Bosutinib Selleck Chemicals Cat #S1014

Buparlisib (BKM120) Selleck Chemicals Cat #S2247

Busulfan Selleck Chemicals Cat #S1692

Caffeic Acid Phenethyl Ester Selleck Chemicals Cat #S7414

Camptothecin Selleck Chemicals Cat #S1288

CDK1/2 inhibitor III Santa Cruz Cat #CAS443798

Celastrol Selleck Chemicals Cat #S1290

Cisplatin Selleck Chemicals Cat #S1166

Cyclopamine Selleck Chemicals Cat #S1146

Dasatinib Selleck Chemicals Cat #S1021

Decitabine Selleck Chemicals Cat #S1200

Doxorubicin Selleck Chemicals Cat #S1208

Epirubicin Selleck Chemicals Cat #S1223

Erlotinib Selleck Chemicals Cat #S7786

Etoposide Selleck Chemicals Cat #S1225

Everolimus(RAD001) Selleck Chemicals Cat #S1120

Fedratinib Selleck Chemicals Cat #S2736

Fludarabine Selleck Chemicals Cat #S1491

Gefitinib Selleck Chemicals Cat #S1025

Gemcitabine Selleck Chemicals Cat #S1714

I-BET151 (GSK1210151A) Selleck Chemicals Cat #S2780

Ifosfamide Selleck Chemicals Cat #S1302

Imatinib (STI571) Selleck Chemicals Cat #S2475

Irinotecan Selleck Chemicals Cat #S2217

IWP-L6 Selleck Chemicals Cat #S7301

JSH-23 Selleck Chemicals Cat #S7351

L-685458 Selleck Chemicals Cat #S7673

K03861 Selleck Chemicals Cat #S8100

Lapatinib Selleck Chemicals Cat #S2111

LY294002 Selleck Chemicals Cat #S1105

Masitinib Selleck Chemicals Cat #S1064

Methotrexate Selleck Chemicals Cat #S1210

MHY1485 Selleck Chemicals Cat #S7811

Mitomycin C Selleck Chemicals Cat #S8146

MK2206 Selleck Chemicals Cat #S1078

Momelotinib (CYT387) Selleck Chemicals Cat #S2219

Mycophenolate Mofetil Selleck Chemicals Cat #S1501

Nilotinib (AMN-107) Selleck Chemicals Cat #S1033

Nutlin-3 Selleck Chemicals Cat #S1061

NVP-AEW541 Selleck Chemicals Cat #S1034

Olaparib Selleck Chemicals Cat #S1060

Omipalisib (GSK2126458) Selleck Chemicals Cat #S2658

Oxaliplatin Selleck Chemicals Cat #S1224
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Paclitaxel Selleck Chemicals Cat #S1150

Pacritinib (SB1518) Selleck Chemicals Cat #S8057

Panobinostat (LBH589) Selleck Chemicals Cat #S1030

PD0325901 Selleck Chemicals Cat #S1036

PD0332991 (Palbociclib) Selleck Chemicals Cat #S1579

PD318088 Selleck Chemicals Cat #S1568

PD98059 Selleck Chemicals Cat #S1177

PF234066 (Crizotinib) Selleck Chemicals Cat #S1068

PHA-665752 Selleck Chemicals Cat #S1070

PLX4720 Selleck Chemicals Cat #S1152

QNZ (EVP4593) Selleck Chemicals Cat #S490

RAF265 (CHIR-265) Selleck Chemicals Cat #S2161

Rapamycin(Sirolimus) Selleck Chemicals Cat #S1039

RG108 Selleck Chemicals Cat #S2821

RO3306 Selleck Chemicals Cat #S7149

Ruxolitinib(INCB018424) Selleck Chemicals Cat #S1378

SB202190 (FHPI) Selleck Chemicals Cat #S1077

SB203580 Selleck Chemicals Cat #S1076

SH-4-54 Selleck Chemicals Cat #S7337

Sorafenib Selleck Chemicals Cat #S7397

SP600125 Selleck Chemicals Cat #S1460

Staurosporine Selleck Chemicals Cat #S1421

Sunitinib Selleck Chemicals Cat #S7781

TAE684 Selleck Chemicals Cat #S1108

TAK733 Selleck Chemicals Cat #S2617

TKI258, Dovitinib Selleck Chemicals Cat #S1018

Tofacitinib Selleck Chemicals Cat #S2789

Topotecan HCL Selleck Chemicals Cat #S1231

Trichostatin Selleck Chemicals Cat #S1045

Vincristine Selleck Chemicals Cat #S1241

Vinorelbine Tartrate Selleck Chemicals Cat #S4269

Vismodegib Selleck Chemicals Cat #S1082

Vorinostat Selleck Chemicals Cat #S1047

Vandetanib Selleck Chemicals Cat #S1046

Whole Cell Stain Green Thermo Scientific Cat #8403301

DAPI (40,6-diamidino-2-phenylindole,

dihydrochloride)

Invitrogen Cat #D1306

Critical commercial assays

Odyssey Blocking Buffer (PBS) LI-COR Cat #927–40000

QIAamp DNA Mini Kit QIAGEN Cat #51304

PureLink� RNA Mini Kit Invitrogen Cat # 12183025

Qubit� dsDNA BR Assay Kit Invitrogen Cat # Q32850

Qubit� RNA BR Assay Kit Invitrogen Cat # Q10211

NEBNext� Ultra� Directional RNA Library

Prep Kit

New England BioLabs Cat # E7760

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RNA-seq data batch1

- 15 CCA cell lines

- MMNK-1, MCF-7, T-47D and ZR-75-1

This paper

This paper

GEO: GSE124623

GEO: GSE125034

RNA-seq data batch2

- 15 CCA cell lines

This paper GEO: GSE125035

Selected 550 cancer driver gene mutationdata

- 15 CCA cell lines

This paper SRA: PRJNA543619

Jusakul cohort Jusakul et al. (2017) GEO: GSE89749

source code Github https://github.com/sisyspharm/ccaexplorer

Experimental models: Cell lines

Human: HuCCA-1 JRCB cell bank JCRB1657; RRID CVCL_M255

Human: HuCCT-1 JRCB cell bank JCRB0425; RRID CVCL_0324

Human: HuH-28 JRCB cell bank JCRB0426; RRID CVCL_2955

Human: KKK-D068 JRCB cell bank JCRB1775; RRID CVCL_XD18

Human: KKK-D131 JRCB cell bank JCRB1777; RRID CVCL_XD19

Human: KKK-D138 JRCB cell bank JCRB1779; RRID CVCL_XD20

Human: KKU-055 JRCB cell bank JCRB1551; RRID CVCL_M258

Human: KKU-100 JRCB cell bank JCRB1568; RRID CVCL_3996

Human: KKU-213C JRCB cell bank JCRB1561; RRID CVCL_M260

Human: KKU-213A JRCB cell bank JCRB1557; RRID CVCL_M261

Human: KKU-213B JRCB cell bank JCRB1556; RRID CVCL_M264

Human: MCF-7 ATCC ATCC� HTB-22�; RRID CVCL_0031

Human: MMNK-1 JRCB cell bank JCRB1554; RRID CVCL_M266

Human: RBE RIKEN cell bank RCB1292; RRID CVCL_4896

Human: SSP-25 RIKEN cell bank RCB1293; RRID CVCL_4902

Human: T-47D ATCC ATCC� HTB-133�; RRID CVCL_0553

Human: TFK-1 RIKEN cell bank RCB2537; RRID CVCL_2214

Human: YSCCC RIKEN cell bank RCB1549; RRID CVCL_3629

Human: ZR-75-1 ATCC ATCC� CRL-1500; RRID CVCL_0588

Software and algorithms

Analysis of NGS data Basepair software https://www.basepairtech.com

annovar April 2018 Wang et al. (2010) http://annovar.openbioinformatics.org/en/

latest/

Bioconductor package GRmetrics (v 1.16.0) (Clark et al., 2017) http://bioconductor.org/packages/release/

bioc/html/GRmetrics.html

Bioconductor package sva (v3.8) (Leek et al., 2012) https://bioconductor.org/packages/release/

bioc/html/sva.html

CellProfiler (v3.1.8) (McQuin et al., 2018) https://doi.org/10.1371/journal.pbio.2005970

defuse (v0.8.1) (McPherson et al., 2011) https://github.com/amcpherson/defuse

fastp (v0.19.4) (Chen et al., 2018) https://github.com/OpenGene/fastp

GenePattern 2.0 (Reich et al., 2006) https://doi.org/10.1038/ng0506-500

R (v4.0.4) R Foundation for Statistical Computing http://www.r-project.org

R package caret (v6.0–82) (Kuhn, 2008) http://www.cran.r-project.org

R package clusterProfiler (v3.18.1) (Yu et al., 2012) http://www.cran.r-project.org

R package igraph (v1.2.6) (Csardi and Nepusz, 2006) http://www.cran.r-project.org

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to the lead contact, Somponnat Sampattavanich

(somponnat.sam@mahidol.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d RNA-seq data have been deposited at Gene Expression Omnibus (GEO) and selected 548 cancer driver

gene mutation raw data have been deposited at GeneBank and are publicly available as of the date of

publication. Accession numbers are listed in the key resources table.

d All original code has been deposited at Github and is publicly available as of the date of publication,

which is listed in the key resources table.

d The app portal can be accessed at https://sisp.shinyapps.io/AsianCCAbrowser/.

d Any additional information required to reanalyze the data reported in this article is available from the

lead contact on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and reagents

The different cell lines were obtained from the following sources: HuCCA-1 (JCRB1657), HuCCT-1

(JCRB0425), HuH-28 (JCRB0426), KKU-055 (JCRB1551), KKU-100 (JCRB1568), KKU-213A (JCRB1557),

KKU-213B (JCRB1556), KKU-213C (JCRB1561), KKK-D068 (JCRB1775), KKK-D131 (JCRB1777), KKK-D138

(JCRB1779), RBE (RCB1292), SSP-25 (RCB1293), TFK-1 (RCB2537), YSCCC (RCB1549), MCF-7(ATCC�
HTB-22�), MMNK-1 (JCRB1554), T-47D(ATCC� HTB-133�), ZR-75-1(ATCC� CRL-1500). All cell lines

used in this study were tested mycoplasma-free by the PCR method. The sex of cell lines are as follows;

Male: HuCCA-1, HuCCT-1, KKU-055, KKU-213A, KKU-213B, KKU-213C, KKK-D068, KKK-D068, TFK-1, and

Female: HuH-28, KKU-100, KKK-D138, RBE, SSP-25, YSCCC, MCF-7, T-47D, and ZR-75-1. We cultured

KKU-055, KKU-213A, KKU-213B, KKU-213C, KKK-D068, KKK-D131, KKK-D138 HuCCT-1, HuH-28, and

MCF-7 in DMEM (Gibco) supplemented with 10% FBS and 1% penicillin/streptomycin (Gibco). Six cell lines

(RBE, SSP-25, T47-D, TFK-1, YSCCC, and ZR75-1) were cultured in RPMI (Gibco) supplemented with 10%

FBS and 1% penicillin/streptomycin (Gibco). KKU-100 HuCCA-1 and MMNK-1 were grown in Ham-F12

(Gibco) supplemented with 10%FBS and 1% penicillin streptomycin (Gibco).

METHOD DETAILS

DNA preparation and cancer gene panel sequencing

The genomic DNA was extracted using the QIamp DNA extraction kit (Qiagen). Using Qubit dsDNA HS

assay kit and agarose gel electrophoresis, extracted DNA was quantified for extraction yield and quality.

Target sequencing of DNA samples was performed using the NovoPMTM cancer panels (NovogeneAIT

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

R package survminer (v0.4.8) (Kassambara et al., 2020) http://www.cran.r-project.org

R package survival (v3.3.1) (Therneau, 2000, 2022) http://www.cran.r-project.org

R package stats (R Development Core Team, 2021) http://www.cran.r-project.org

R package TDM (v1.3.2) (Thompson et al., 2016) http://www.cran.r-project.org

R package tidyverse (v1.3.0) (Wickham et al., 2019) http://www.cran.r-project.org

sambamba (v0.6.6) (Tarasov et al., 2015) http://lomereiter.github.io/sambamba/

samtools (v1.6) (Li et al., 2009) http://samtools.sourceforge.net/

STAR (v2.5.3a) (Dobin et al., 2013) https://github.com/alexdobin/STAR

subread (v1.6.2) (Liao et al., 2013) http://subread.sourceforge.net/
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Singapore Genomics Pte Ltd) comprising the coding region of 548 cancer-related genes and 21 non-cod-

ing regions (paired-end 150bp with depth >1000X). GATK best practice was used for calling single nucle-

otide polymorphisms (SNPs) and small insertions and deletions (small InDels), and ANNOVAR was used for

variant annotation (Wang et al., 2010). Variant filtering was performed to exclude low-quality data (variant

depth >50, excluding non-synonymous variants, frequency in ExAC, 1000GenomesR0.1, ESP <0.1, and an

allelic fraction >0.25).

RNA preparation, sequencing, and transcriptome profiling

RNA sequencing was performed for all cell lines, including 15 CCA cell lines, MMNK-1, and breast cancer

cell lines (MCF-7, T-47D, and ZR-75-1). The CCA cell lines andMMNK-1 were sequenced twice, whereas the

breast cancer cell lines were sequenced once. RNA was extracted using Trizol, purified by PureLink�RNA

isolation kit (Invitrogen), and treated with PureLink DNase set (Invitrogen) to remove DNase. The amount of

RNA for each sample was measured using the Qubit RNA HS assay kit (Invitrogen). The RNA integrity was

analyzed using Agilent 2100 Bioanalyzer (Agilent Technologies). All the samples had high RNA integrity

(RNA integrity number (RIN) > 8). RNA sequencing libraries were prepared with Illumina-compatible

NEBNext� Ultra� Directional RNA Library Prep Kit (New England BioLabs) and sequenced at Genotypic

Technology Pvt. Ltd. In brief, 1 mg RNA was subjected to fragmentation and priming. The first-strand

synthesis was performed in the presence of Actinomycin D (Gibco, Life Technologies), followed by the

second-strand synthesis. After cDNA purification and adapter ligation, the purified sequencing libraries

were quality-checked using Qubit Fluorometer (Thermo Fisher Scientific) Agilent 2200 Tapestation. Tran-

scriptome sequencing was performed using Illumina Hiseq2000 (Illumina) with 150 3 2 paired-end chem-

istry reads and sequenced at 20–25 million reads per sample.

Sequencing results were aligned to the human reference (hg19) using the STAR method version v2.5.3a

(Dobin et al., 2013) at the Basepair website (https://www.basepairtech.com/). Other pipelines used for

the analysis of the transcripts included ‘sambamba’ (v0.6.6) (Tarasov et al., 2015), ‘samtools’ (v1.6) (Li

et al., 2009), ‘fastp’ (v0.19.4) (Chen et al., 2018), and ‘subread’ (v1.6.2) (Liao et al., 2013). Low-quality base

pairs with a Phred quality score of less than 10 were removed (McPherson et al., 2011). The ‘deFuse’

algorithm (v0.8.1) (Williams et al., 2016) was used to identify fusion transcripts with the hg19 reference

genome. The concordance of fusion genes was calculated from those found in both technical replicates.

Transcription per million (TPM) for each sample was used for gene expression analysis. Genes with a rela-

tively low expression (median of TPM = 0) across all cells were removed and transformed to log scale [log2

(TPM+1)]. Batch effect removal was performed on two different sequencing batches of CCA cell line using

the ‘sva’ package (Leek et al., 2012). The corrected dataset was then assessed using principal component

analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton, 2008) (Fig-

ure S8A). Spearman’s correlations of each technical replicate after batch effect removal were shown in Fig-

ure S8B (median 0.88, IQR = [0.84–0.88], minimum = 0.81, maximum = 0.89), which were comparable with a

previous study of RNA sequencing (Shin et al., 2014)

To compare the basal gene expressions of our CCA cell lines against other cells from the Cancer Cell Line

Encyclopedia (CCLE) (Barretina et al., 2012), we transformed expression levels to normalized z-score. As a

result, there were 12,058 genes in common from both data sets. We then applied t-SNE (Maaten and Hin-

ton, 2008) to visualize the cell lines. K-nearest neighbor clustering was used to examine the hepatic/pancre-

atic similarity between our CCA cell lines and the CCLE cells. In addition, we selected the top 1,000 genes

by variance and performed hierarchical clustering using Spearman’s correlation (Figure S1).

Drug response profiling and comparison and network analysis

The responses of 15 CCA cell lines to 100 compounds were collected using an automated high-content im-

aging system. Briefly, cell lines were plated in two biological replicates in 96-well plates (Corning cat#3904)

using the complete medium described previously. After 24 h, all cells were at 70% confluency and sub-

jected to treatment with a specific compound for another 72 h. Each drug was prepared using a two-

fold serial dilution method to generate 11 concentrations ranging from 10 nM to 10 mM, and 0.5% (v/v)

of solvent was used as a control. After 72 h of treatment, cells were fixed in 4% paraformaldehyde and

washed with PBS containing 0.1% of Tween 20. Nuclei were stained in DAPI (1:1000 dilution, Invitrogen)

for 1 h and washed with PBS twice. Next, images of nuclei were collected using a 103 objective lens on
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Operetta HCS (Perkin Elmer), followed by nucleus segmentation and counting using Columbus software

(Perkin Elmer).

To minimize the effect of heterogeneous cell division rate across cell lines, we adopted the growth rate in-

hibition (GR) parameters, such as GR50 (the concentration that inhibits growth by 50%) andGRmax (the effect

at the highest tested dose). These parameters were calculated using the ‘Grmetrics’ package from Bio-

conductor for R (Hafner et al., 2016). When the underlying fitted parameters were beyond our dose range,

we set the highest and lowest concentrations to 10 mM and 10 nM, respectively. We transformed GR50 to

median-centered log10(GR50) across all 15 CCA cell lines to find drug response similarities between cell

lines. We then compared each drug pairwise using Spearman’s correlation function ‘cor’ from the ‘stats’

R package.

We determined a therapeutic index network to showcase a drug relationship and determined the potential

drug candidates for each CCA subgroup using the ‘iGraph’ (v1.2.6) (Csardi and Nepusz, 2006) package

from R. Based on the correlation matrix of drug response similarity, the size of drug nodes in the network

was calculated by subtracting mean GR50 of the drug in each CCA subgroups with its population mean of

GR50, followed by normalization by the mean IQR of the three conventional standard-of-care drugs (gem-

citabine, Cisplatin, and 5FU; see Figure S3C). The drug nodes were colored as follows: cyan for CCA1 and

orange for CCA2 subgroups. The edge thickness represented the similarity level (Spearman’s rank-order

correlation value greater than 0.6) of the drug response pattern between each drug node pair. Red and

blue edge colors represented positive and negative correlations, respectively. The landscape of the

network was generated using a force-directed Fruchterman-Reingold algorithm.

Drug sensitivity determination, pathway analysis, and drug response biomarkers prediction

We used hierarchical clustering for grouping CCA subgroups based on drug potency (GR50). To identify the

drug sensitivity group of cells for each drug, we used median-centered GR50 and applied kernel density to

estimate the intersection between two Gaussian kernels using the ‘density’ function from the ‘stats’

package for R. As a result, we could assign to the cells drug-sensitive or resistant label. Any drugs whose

variance was less than the 20th percentile of the median-centered GR50 across all cell lines were excluded

from further analysis, resulting in 80 remaining drugs.

After determining drug response subgroups, we began selecting candidate biomarkers from the leading-

edge gene list of each significantly enriched cancer hallmark gene set in each drug response subgroup. To

overcome the small sample size bias, we generated 100 sets of discovery-validation pairs. The discovery

sets consisted of six cell lines; three were randomly selected from the drug-sensitive group and the other

three from the drug-resistant group. The remaining cell lines from each group were combined and used as

the validation set. Next, ten randomly selected discovery sets were tested in different models (random for-

est, generalized linear model, and stochastic boosting) and evaluated for prediction performance in the

drug response subgroup of the models. We found that the random forest model (AUC = 0.875; Figure S6)

outperformed other models (data not shown) and subsequently was selected as our primary classification

tool. For the biomarker selection process, we first built a control model using the ‘trainControl’ function

from the ‘caret’ package (v 6.0–82) (Kuhn, 2008) for R using the leave-one-out cross-validation technique.

The training model was then constructed from a discovery set and evaluated against its validation set

for prediction performance. The classification performance of the biomarkers was reported as an area-un-

der-curve of receiver operation characteristic (AUC ROC). For candidate biomarkers, any genes with AUC

ROC above our selection criteria (ROC AUC >0.8 and VIP >80) were chosen. In addition, we observed var-

iable Importance in Projection (VIP) scores of the biomarkers and found that they ranged from 80 to 100

(data not shown), suggesting their contribution to drug sensitivity prediction. Finally, the biomarkers

were further shortlisted based on their expression level and whether they were differentially expressed

in the two subgroups (Mann-Whitney p values < 0.05).

To identify enriched hallmark gene sets in each CCA cell line, we converted the expression levels (in TPM) of

genes from a particular cell line to the fold-change of gene expression levels against the population-me-

dian expression levels of the same genes. These genes were pre-ranked in descending order and analyzed

for the gene set enrichment analysis (GSEA) (Subramanian et al., 2005) against 50 cancer hallmark gene sets

downloaded from Broad Institute’s Molecular Signatures Database (MSigDB gene set collection version

6.2) (Liberzon et al., 2015), and comprehensively profiled using the ‘clusterProfiler’ R package (v 3.18.1)
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(Yu et al., 2012). Significantly enriched hallmark gene sets were determined using the following criteria:

Benjamini-Hochberg (BH)-adjusted p value < 0.05 and FDR q-value < 0.25. If the BH-adjusted p value cutoff

<0.05 did not hold any gene sets, we adjusted the BH-adjusted p value to 0.1. We first converted the me-

dian expression levels to fold-change levels of drug-sensitive over the drug-resistant subgroup (gene-wise)

to identify the enriched hallmark gene sets for the CCA45 signature. A similar approach was also used to

identify enriched hallmark gene sets for the predictive biomarkers of the individual drugs.

Association between drug sensitivity and genomic alteration

To explore how genomic altered genes affected drug sensitivity in Asian CCA, we analyzed the association

of 189 genomic-altered genes and drug responses of CCA cell lines to 100 anti-cancer drugs. Any drug with

a standard deviation lower than zero and two CCA cell lines, KKU-213B and KKU-213C, were excluded from

this analysis. For each drug, we log-transformed GR50 values to z-score and separated the cells into two

groups with or without mutation of the particular gene. In the mutant group, we calculated the median

of the z-score. The mutation is annotated as a drug resistance-associated mutation if the median value

is positive. In contrast, if the median value is negative, the mutation is drug sensitive-associated mutation.

Known mutation and drug response association from the Genomics of Drug Sensitivity in Cancer (GDSC)

database was used as a reference (Yang et al., 2013). Each mutation-drug pair was compared against the

25th and 75th percentile of the population’s drug potency. TheWilcoxon rank sum test was used to evaluate

the significance of the association to either drug sensitivity or drug resistance. The drug-mutation associ-

ation pairs with p-value < 0.05 and the median z-score of drug potency in mutation-containing cell lines

>0.5 (for drug resistance-associated mutations) or < �0.5 (for drug sensitivity-associated mutations)

were considered significant.

Ligand response profiling and analysis

Eleven CCA cell lines were seeded at 10,000 cells/well in 96-well plates (Corning cat#3904) using the com-

plete medium described previously. After 24 h, when all cells were at least 70% confluency, they were

treated with 100 ng/mL of EGF, IGF1, Anisomycin, TNFa, or IFNg for 10, 30, and 60 min, whereas untreated

cells were used as a baseline. After the treatment was finished, the medium was completely removed from

the cells, and they were fixed with 100 mL of 4% paraformaldehyde for 30 min, followed by washing twice

with PBS. The cell membrane was permeabilized using 100 mL of absolute methanol for 1 h at �20�C,
followed by washing twice with PBS. Cells were incubated with 100 mL of blocking buffer (Li-COR Odyssey

Blocking Buffer PBS, cat#927–40000) for 1 h at room temperature, then washed twice with PBS. Diluted an-

tibodies in blocking buffer (1:1000 dilution) were added to the cells and incubated in the dark for 1 h at

room temperature, followed by washing twice with PBS containing 0.05% of Tween 20. Cells were further

stained using theWhole Cell Stain Green (1:1000 dilution; Thermo Scientific, cat#8403201), and nuclei were

stained using DAPI (1:1000 dilution, Invitrogen) for 1 h, following washing twice with PBS. The fluorescence

images of proteins of interest, whole cells, and nuclei were collected using a 103 objective lens on Oper-

etta HCS (Perkin Elmer). The images were analyzed for cell segmentation and intensity measurement using

a customized analysis pipeline in CellProfiler software (v 3.1.8) (McQuin et al., 2018).

For ligand response analysis, the raw intensity of proteins of interest at the single-cell level was converted

to a log10 value and projected as a heat-density plot. The median intensity level at each time point and the

baseline were then calculated and further used to calculate area-under-the-curve (AUC), where positive

AUC indicates response above baseline and negative AUC shows response below the baseline. Logistic

regression was implemented using the ‘glm’ function from the ‘stats’ R package to determine the associ-

ation between the ligand-induced pathway activation and CCA subgroups. Similarly, the principal compo-

nent analysis was performed by implementing the ‘prcomp’ function from the ‘stats’ R package.

We performed analysis of the association between CCA subgroups and signal activation using odds ratio

(probability of being CCA1 over probability of being CCA2) that is calculated using the log of the coeffi-

cient derived from the generalized linear model used to assess the relationship between CCA subtypes

(CCA1 or CCA2) and ligand-mediated activation of key proteins (pERK, pS6K, pSTAT1, pAKT, or RelA).

A p value < 0.05 indicates a significant ligand-activated signaling pathway. Error bars represent the inter-

quartile range of the odds ratio.

We performed a systematic analysis by combining 189 genomic-altered genes of CCA cell lines with ligand

responsiveness to gain insights into explaining the different signaling cascades between two CCA
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subtypes. AUC of ligand response levels was normalized within each ligand and each signaling protein

across all CCA cell lines using the scale function in ‘stat’ R package. We then combined and averaged

the scaled AUC of KKU-213A, KKU-213B, and KKU-213C to avoid bias in the calculation. The differences

between CCA cell lines with unique mutations were scored using the Wilcoxon rank sum test. We deter-

mined the mean difference by calculating the difference score, which is the mean difference between

the means of testing groups. All figures were drawn using tidyverse (v1.3.0) (Wickham et al., 2019) package

run in R (v 4.0.4) and RStudio (v 1.4.1103) software.

To examine suppression efficiency of MEK inhibitor (PD-0325901) on ERK phosphorylation in CCA cells, we

selected KKU-213C (with mutant KRAS) and KKK-D138 (with wild-type KRAS) cell lines as representatives of

CCA1 subgroup and KKU-100 (with mutant KRAS) and SSP-25 (with wild-type KRAS) as representatives of

CCA2 subgroup. Cells were plated at 3,000 cells per well in 384-well plates (Perkin Elmer cat#6057308) in

complete medium (with 10% FBS) as previously mentioned. After 24 h, the cells were treated with high dose

(5 mM) and low dose (1.25 mM) of MEK inhibitor (PD-0325901) and 0.5% (v/v) DMSO as vehicle control for 3 h.

Then, the cells were removed of culture medium, fixed, and stained with phospho-p44/42 (pERK1/2)

antibodies to detect ERK activity and DAPI to detect nuclei. Immunofluorescent images of the cells were

acquired by high-content imager using 103 objective lens on Operetta HCS (Perkin Elmer). The images

were segmented and nuclear intensity of pERK in cells was quantified using the pipeline in CellProfiler soft-

ware (v 3.1.8) as described previously. The nuclear intensity levels of pERK were averaged per well and

normalized to the intensity from the controls and reported as relative intensity of nuclear pERK1/2. The

one-way ANOVA test was performed to determine the statistical significance of the difference in relative

pERK intensity between MEKi treated cell lines and DMSO control.

Clinical data selection and normalization

Clinical data containing patient survival time, molecular clusters, and tumor gene expression profiles were

collected from the Gene Expression Omnibus database (GSE89749) (Jusakul et al., 2017). Only patients

with assigned molecular clusters were included in further analysis. To enable a cross-platform comparison

of RNA sequencing data from our CCA cell lines and clinical samples, we normalized the gene expression

levels using the training distribution matching (TDM) R package (v 1.3.2) (Thompson et al., 2016).

Subclass mapping

To find the association between subclasses observed in our CCA drug response subtypes from CCA cell

lines and themolecular clusters fromCCA patients, we used the unsupervised subclass similarity evaluation

tool, SubMap, from Broad Institute’s GenePattern (Hoshida et al., 2007; Subramanian et al., 2005). Briefly,

we prepared two data inputs: a) gene expression and b) subtype data. In the gene expression data, any

genes with low expression levels (TPM = 0 or less than 10th percentile) across 50% of the samples in

each data set were omitted, leaving 9,369 and 12,790 genes remaining in both patient and cell line data

sets, respectively. In subtypes data, we labeled molecular clusters I to IV to samples in the patient dataset

and CCA drug response subtypes 1 and 2 in our CCA cell line dataset, generating 4 3 2 subclass pairs. For

subclass mapping analysis, we followed the procedure described previously (Hoshida et al., 2007). The

nominal p-value was calculated to compare the significance of biomarker enrichment in the up-regulated

end of the ranking list using GSEA. This process was repeated for every possible pairwise combination of

subclasses. The significance of the association between subclasses was then estimated using the Fisher

inverse chi-square statistic (F). As a result, a subclass association matrix (SA) was reported with Bonfer-

roni-adjusted p-values. Any pairs with a p-value less than 0.05 were considered significantly similar.

Prediction of drug response subtype in CCA cell lines and patients

We assembled the gene expression data of the 45 genes from the CCA45 signature from the cell lines and

the patient cohort to assign the drug response-based subgroups in CCA patients. Unsupervised hierarchi-

cal clustering of both datasets was then performed using the Euclidean distance and theWard.D2 method.

The coefficient values of the CCA45 signatures were determined using ridge regression. We calculated the

weighted sum model score (WSM score) to help assign the drug-response based CCA subgroups for the

individual patients, using the following equation:

Pi
WSM�score =

Xn

j = 0

wjpij
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where Pi is theWSM score of patient i, wj is the coefficient for j gene, and pij is the expression level of gene j

of patient i. Applying these coefficient values to the generalized linear model, we could predict drug

response subtypes of 15 CCA cell lines with ROC AUC = 1.0 and CCA patients with ROC AUC = 0.89.

The landscape of CCA drug response subtypes (including data from cell lines and patients) was projected

based on the dimensional reduction of their gene expression levels using PCA. We identified the boundary

line dividing CCA1 and CCA2 zones using a supervised, non-linear support vector machine (SVM).

Prognostic evaluation of the biomarkers

To evaluate the prognostic property of CCA drug response biomarkers, we performed a survival analysis

using clinical data of CCA patients. Patients with missing survival time, vital status, and/or molecular clus-

ters were removed from this analysis, leaving 100 patients. Significant differences between survival times of

CCA1 and CCA2 subgroups of patients were calculated using the log-rank test. The p-value<0.05 indicated

a significant difference. The analysis was performed using ‘survival’ (v3.3.1) (Therneau, 2000, 2022) and

‘survminer’ (v0.4.9) (Kassambara et al., 2020) R packages to estimate survival time, 1-year and 3-year survival

rates of patient groups.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed using R (http://www.R-project.org/, version 4.0.4) (R Development Core Team, 2021).

Statistical tests for each analysis can be found listed in each figure legend. We use spearman correlation to

compare the drug response similarity (Figure 3C). Differences between groups were examined by a non-

parametric Wilcoxon rank-sum test or Mann-Whitney U-test where appropriate, (Figure 5A–5C, 6D and

6E, and 7A). The association between CCA subgroups and ligand-induced signal activation using odds

ratio (Figure 6C). The one-way ANOVA test was performed to determine the statistical significance of

the difference in relative pERK intensity between MEKi treated cell lines and DMSO control (Figure S5D).

The significance of the association between subclasses observed in our CCA drug response subtypes from

CCA cell lines and the molecular clusters from CCA patients was calculated using the Fisher inverse chi-

square statistic (F). A subclass associationmatrix (SA) was examined with Bonferroni-adjusted p values (Fig-

ure S7A). Any pairs with a p value less than 0.05 were considered significantly similar. Significant differences

between survival times of CCA1 and CCA2 subgroups of patients were calculated using the log-rank test

(Figure 8B and S7D and S7E). In all analyses, p < 0.05 were considered to be significant.
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