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Abstract

To further reduce the noise and artifacts in the reconstructed image of sparse-view CT, we

have modified the traditional total variation (TV) methods, which only calculate the gradient

variations in x and y directions, and have proposed 8- and 26-directional (the multi-direc-

tional) gradient operators for TV calculation to improve the quality of reconstructed images.

Different from traditional TV methods, the proposed 8- and 26-directional gradient operators

additionally consider the diagonal directions in TV calculation. The proposed method pre-

serves more information from original tomographic data in the step of gradient transform to

obtain better reconstruction image qualities. Our algorithms were tested using two-dimen-

sional Shepp–Logan phantom and three-dimensional clinical CT images. Results were eval-

uated using the root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR), and

universal quality index (UQI). All the experiment results show that the sparse-view CT

images reconstructed using the proposed 8- and 26-directional gradient operators are supe-

rior to those reconstructed by traditional TV methods. Qualitative and quantitative analyses

indicate that the more number of directions that the gradient operator has, the better images

can be reconstructed. The 8- and 26-directional gradient operators we proposed have better

capability to reduce noise and artifacts than traditional TV methods, and they are applicable

to be applied to and combined with existing CT reconstruction algorithms derived from CS

theory to produce better image quality in sparse-view reconstruction.

Introduction

Since the mathematical model of image reconstruction was proposed by Radon in 1917 and

the X-ray computed tomography (CT) scanner was invented by Hounsfield in 1972 [1–3], CT

technology has been widely employed in various clinical institutions because it is noninvasive
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and allows observation of the internal structure of the human [4–7]. Studies related to X-ray

CT have flourished in the past three decades [8–15].

Because of the arising in health awareness, an increasing number of people have become

concerned about the radiation dose in using X-ray CT [16–19]. Studies have reported that an

excessive X-ray dose increases the risk of tissue diseases and cancers [20–23]. How to reduce

X-ray dose in CT while maintaining image quality has thus been a highly active research topic

in the past decades [24–27].

Two methods are typically used to reduce X-ray dose in CT. The first is to reduce the X-ray

exposure time and the current or voltage of the X-ray tube at each sampling step; the second is

to reduce the sampling density during the CT scan, i.e., reducing the amount of projection

data. Both methods would eventually introduce higher noise that renders poor image quality.

Since the theory of compressed sensing (CS) was proposed by Candès, Romberg, Tao, and

Donoho in 2006 [28], studies have sought to reconstruct high-quality medical images when

insufficient data are available [29–45]. CS is a theory for reconstructing original signals

(images) when the number of samples (amount of data) is insufficient. Using CS to reconstruct

CT images from insufficient data is an optimization problem. For solving this kind of problem,

minimizing a L1 norm from the sparse representation of the original image is a typical way.

In 2008, Sidky and Pan proposed a reconstruction method which used the total variation

(TV) of an image to represent the sparse representation and minimize the L1-norm of TV to

solve the optimization problem in the iteration process[29]. They added a TV term in the pro-

cess of reconstruction to constraint the image convergence, and the steepest descent method

was used to solve the optimization problem. After a number of iterations, a better quality

image can be reconstructed. The TV term mentioned in this method is to calculate the gradi-

ent in x and y directions by gradient operator. In 2009, Sidky and Pan proved the feasibility of

applying the TV method to CT reconstruction in few-views and limited-angle situation[30].

Based on this, various improved TV have been proposed to increase the quality of recon-

structed image. For example, the PICCS (prior image constrained compressed sensing) pro-

posed by Chen GH and Leng S, not only used TV to constraint the convergence of iteration

but also added the information from prior image in the reconstruction process, so that the

reconstructed images after convergence were closer to the original image[31]. Furthermore,

Yu H and Wang G proposed an algorithm for solving interior tomography by TV method in

2009[32]. This research used minimization of the image TV to reconstruct the region of inter-

est (ROI) without reconstructing the entire image, which greatly reduced the computing

resources and reconstruction time. In above studies, although the TV method can effectively

reduce noise and artifacts caused by the spare-view situation and reconstruct the image with

high quality, the oversmoothing problem at edge parts in the image is inevitable. In order to

solve this problem, Tian Z and Jiang SB proposed an improved TV method which could pre-

serve the edge parts in the image, referred as EPTV (edge-preserving total variation)[33]. In

order to allow the effect of TV smoothing to be applied only on the non-edge parts, EPTV

gave the edge and non-edge parts a different penalty weight during the reconstruction process.

Because a smaller penalty weight was given to the edge parts, the resolution of edge could be

preserved. For mitigating the edge blurring effect caused by the TV method, Liu Y et al. pro-

posed a AwTV (adaptive-weighted TV) to overcome the problem[34]. By considering the

anisotropic edge property among neighboring image voxels, this method added exponential

weights to the traditional TV term, and automatically adjusted the weight ratio according to

the gradient of the image to preserve the edge details in the image.

In the course of developing the TV methods for various low-dose situations and applica-

tions, we found that all of the above-mentioned TV methods only calculate the gradient varia-

tions in the x and y directions. Whether the gradient information of the original tomographic
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data could be better preserved by considering additional gradient variations besides only in x
and y directions was a question worthy of further study. Deng L et al. proposed a diagonal TV

calculation method in 2015 to improve the quality of CT image reconstruction in the case of

sparse-view[35]. Instead of calculating the x and y direction, they calculated only the gradient

variations of four diagonal directions to transform the image into sparse representation and

solved the optimization problem. They claimed that the diagonal TV method actually recon-

structs better images than traditional TV method which only considers the directions in x and

y. Encouraged by this research, we began to think about the correlation between using more

number of directions in TV calculation and improving the quality of image. From the conven-

tional calculation of TV which only x and y directions were considered, to the four directions

in TV calculation which included both positive and negative directions of x and y, and then

further to the 8-directional TV method in which the gradient variations in the additional four

diagonal directions were taken into consideration. As the number of the directions in TV cal-

culation increases, the sparse image (sparse representation) converted by the gradient operator

could preserve more information from the original tomographic data, so that the subsequent

minimization of the sparse representation of its L1 norm to solve the optimization problem

could obtain a better solution. It is the issue that this study wants to explore in depth. If using

more number of directions in TV calculation can effectively improve the quality of recon-

structed images, all of the above algorithms using traditional 2- or 4-directional TV methods

have the opportunity to improve their algorithms by adding another four diagonal directions

in TV calculation (total of 8-directional TV calculation). Furthermore, the proposed 8-direc-

tional TV method is applicable to be applied to all of the above reconstruction algorithms and

have better results.

This paper proposes a gradient operator that considers the calculation of TV in the diagonal

directions for the gradient transform of two-dimensional (2D) images. In contrast to the tradi-

tional gradient operators, which only calculate TV in two or four directions (both the positive

and negative directions of the x- and y-axes), this paper proposes a multi-directional gradient

operator for two-dimensional (2D) images that additionally calculates TV in four diagonal

directions. The 8-directional gradient operator ensures a better gradient transform. It pre-

serves more information than traditional gradient operators, and high-quality images can thus

be subsequently reconstructed using a CS-based image reconstruction algorithm. Moreover,

this paper also develops a gradient operator that involves 26 directions for three-dimensional

(3D) images to increase the quality of 3D sparse-view CT images.

In the remainder of this paper, Section II introduces the calculation principles and methods

for the 8- and 26-directional gradient operators and delineates the procedures of the sparse-

view image reconstruction algorithms based on the calculation of TV in multiple directions.

Section III presents the results of simulated and actual images reconstructed using the pro-

posed multi-directional gradient operators, and the results are compared with those obtained

using the traditional 2- and 4-directional gradient operators as well as 3- and 6- directional

gradient operators. Finally, Sections IV and V present the discussion and conclusions.

Materials and methods

CS-based CT reconstruction theory

Theoretically, CT imaging can be expressed in the following mathematical equation:

P f
!
¼ x! ð1Þ

where f
!

is the original image to be reconstructed; P is the Radon operator of forward
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projection during the CT scan; and x! denotes the projection data obtained after the CT scan.

Traditional CT reconstruction algorithms, such as filtered back projection (FBP), tend to gen-

erate severe noise and artifacts in images and fail to reconstruct high-quality images if low-

density sampling were used. The improvement in image quality that can be obtained using

subsequently developed iterative reconstruction algorithms such as the algebraic reconstruc-

tion technique (ART), the simultaneous iterative reconstruction technique (SIRT), and the

simultaneous ART (SART). Nevertheless, improvements in image quality are limited if low-

density sampling was employed.

The theory of CS enables high-quality CT images to be reconstructed when sampling-den-

sity was sparse [28]. According to CS theory, a signal can be effectively reconstructed when its

sampling frequency is considerably lower than that required by Nyquist–Shannon sampling

theory providing that the signal is a sparse representation in a specific domain. Sparse repre-

sentation is defined as more signal values equal to zero than values not equal to zero. The pro-

cess of transforming a signal into the sparse domain is called the sparse transform, and

gradient transform is a type of sparse transform that is commonly used in CT image

reconstruction.

The theory of CS can be expressed as follows:

min k y!k1 s:t: x!¼ P f
!
¼ PF y! ð2Þ

where F denotes sparse transform, which refers to gradient transform in this study. In addi-

tion, y! is the sparse representation of the original image f
!

in the sparse domain and P is the

Radon operator in the forward projection. The CS-based reconstruction is aimed at finding y!

in sparse domain by solving Eq (2).

Reconstruction algorithm for 2- or 4-directional gradient operator

Inspired by the CS theory, Sidky and Pan proposed a CT reconstruction algorithm based on

TV calculation [29] in which the gradient operator was defined as follows:

mm;n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðfm;n � fm� 1;nÞ
2
þ ðfm;n � fm;n� 1Þ

2

q

ð3Þ

fTV ¼
P

m;nmm;n ð4Þ

where fTV is the TV of image f
!

and also the sparse representation of the image after sparse

transform; fm,n is a pixel in f
!

; and m and n represent the pixel row and column of the image,

respectively.

In this algorithm, gradient transform only calculates the TV in two directions. To improve

the quality of the constructed images, Yu and Wang proposed a CS-based CT reconstruction

algorithm that uses a 4-directional gradient operator for gradient transform [32]. According to

their method, an approximation of the gradient operator in image gradient transform can be

expressed as follows:

mm;n ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðfmþ1;n � fm;nÞ
2
þ ðfm;n � fm� 1;nÞ

2
þ ðfm;nþ1 � fm;nÞ

2
þ ðfm;n � fm;n� 1Þ

2

2D
2

þ ε2

s

ð5Þ

where Δ indicates the sampling interval and ε is the constant added to prevent the denomina-

tor from being zero in the calculation of steepest descent direction. The TV is defined as

Sparse-view CT reconstruction with multi-directional gradient operators
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follows:

fTV ¼
P

m;nmm;n ð6Þ

Therefore, the steepest descent direction can be obtained using

dm;n ¼
@fTV

@fm;n
¼

4fm;n � fmþ1;n � fm� 1;n � fm;nþ1 � fm;n� 1

mm;n
þ

fm;n � fmþ1;n

mmþ1;n
þ

fm;n � fm� 1;n

mm� 1;n
þ

fm;n � fm;nþ1

mm;nþ1

þ
fm;n � fm;n� 1

mm;n� 1

ð7Þ

Steepest descent direction can be regarded as the correction term for each iteration in the

CS-based reconstruction algorithm. The entire pseudo code of the reconstruction algorithm is

presented in Yu and Wang’s study [32].

CS-based reconstruction algorithm for 8- or 26-dimensional gradient

operator

Inspired by the aforementioned two studies, we reason that using more directions for TV cal-

culation can further improve the quality of the CT images. Taking a 2D image as an example,

each pixel has eight pixels surrounding it; therefore, one can use up to eight directional gradi-

ents to calculate the TV (named as an 8-directional gradient operator) to sparse transform the

2D image. Because the proposed method considers the gradients between all surrounding pix-

els and the pixel of interest, the calculated steepest descent direction is more accurate, which is

favorable because it prevents the generation of noise and artifacts in each iteration.

The 8-directional gradient operator is expressed as follows:

mð8Þm;n ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðfmþ1;n � fm;nÞ
2
þ ðfm;n � fm� 1;nÞ

2
þ ðfm;nþ1 � fm;nÞ

2

2D
2

þ

ðfm;n � fm;n� 1Þ
2
þ ðfmþ1;n� 1 � fm;nÞ

2
þ ðfmþ1;nþ1 � fm;nÞ

2

2D
2

þ

ðfm;n � fm� 1;n� 1Þ
2
þ ðfm;n � fm� 1;nþ1Þ

2

2D
2

þ ε2

v
u
u
u
u
u
u
u
u
u
u
u
u
t

ð8Þ

fð8ÞTV ¼
P

m;nmð8Þm;n ð9Þ

where f(8)TV is the TV of the image calculated using the 8-directional gradient operator. The

steepest descent direction can be further obtained using

dð8Þm;n ¼
@fð8ÞTV

@fm;n

¼
8fm;n � fmþ1;n � fm� 1;n � fm;nþ1 � fm;n� 1 � fmþ1;n� 1 � fmþ1;nþ1 � fm� 1;n� 1 � fm� 1;nþ1

mð8Þm;n
þ

fm;n � fmþ1;n

mð8Þmþ1;n
þ

fm;n � fm� 1;n

mð8Þm� 1;n

þ
fm;n � fm;nþ1

mð8Þm;nþ1

þ
fm;n � fm;n� 1

mð8Þm;n� 1

þ
fm;n � fmþ1;n� 1

mð8Þmþ1;n� 1

þ
fm;n � fmþ1;nþ1

mð8Þmþ1;nþ1

þ
fm;n � fm� 1;n� 1

mð8Þm� 1;n� 1

þ
fm;n � fm� 1;nþ1

mð8Þm� 1;nþ1

ð10Þ

The obtained d(8)m,n is used as a correction in the CS-based 2D image reconstruction algorithm, the procedure of

which is displayed in Fig 1.

In Fig 1, parameter Q is the level (or ratio) of steepest descent and Qs is the parameter

representing the ratio of the descent of Q after each internal loop. These two parameters

are given a fixed value before the image reconstruction begins. This algorithm recon-

structs projection data using the traditional FBP at first. However, an image recon-

structed by FBP contains a large amount of noise and artifacts because of the low-

density sampling. Despite its low quality, the reconstructed image does rudimentarily

represent the original image and is thus used as the initial guess required for subsequent

SIRT to reduce the number of iterations. At this step, whether the external loop meets

Sparse-view CT reconstruction with multi-directional gradient operators
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the stopping criteria should be determined. The fixed number of iterations set initially is

used as the stopping criterion. When the preset number of iterations is achieved in the

external loop, f
!k is output as the reconstruction result. If the stopping criterion for the

external loop is not satisfied, SIRT is performed to correct f
!k once. Subsequently, the

algorithm proceeds to the internal loop, in which the steepest descent direction method

is used to minimize L1 norm. In the internal loop, an iteration is performed as follows.

Eqs (8)–(10) are used to calculate the steepest descent direction d(8)m,n, and the normali-

zation factor γ is then calculated according to the ratio of the maximum absolute values

of f
!k and d(8)m,n. The normalized steepest descent direction γ � d(8)m,n is multiplied by

the level of steepest descent Q to produce the correction item which is used to correct

f
!k. This completes one iteration. The stopping criterion for the internal loop is also the

preset number of iterations. At the end of each internal loop, Q is multiplied by Qs to be

reduced by a certain ratio. Images reconstructed with this algorithm are presented in the

next section.

For the reconstruction of 3D images, the number of directions used in the gradient

operator can be increased in a way similar to those in the 2D images, i.e., 26, to improve

reconstructed image quality. This is illustrated in Fig 2, which shows the relative posi-

tions of voxels in a 3D image from the i − 1 level to the i + 1 level in the z direction. The

voxel fi,m,n has 26 neighboring voxels, therefore, the gradient operator involves 26

Fig 1. Procedure of compressed-sensing-based reconstruction algorithm using the 8-directional gradient

operator. FBP: filtered back projection. SIRT: simultaneous iterative reconstruction technique.

https://doi.org/10.1371/journal.pone.0209674.g001
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directions and the steepest descent direction can be calculated as follows:

mð26Þi;m;n ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðfi;m;n � fi� 1;m� 1;n� 1Þ
2
þ ðfi;m;n � fi� 1;m� 1;nÞ

2
þ ðfi;m;n � fi� 1;m� 1;nþ1Þ

2

2D
2

þ

ðfi;m;n � fi� 1;m;n� 1Þ
2
þ ðfi;m;n � fi� 1;m;nÞ

2
þ ðfi;m;n � fi� 1;m;nþ1Þ

2

2D
2

þ

ðfi;m;n � fi� 1;mþ1;n� 1Þ
2
þ ðfi;m;n � fi� 1;mþ1;nÞ

2
þ ðfi;m;n � fi� 1;mþ1;nþ1Þ

2

2D
2

þ

ðfi;mþ1;n � fi;m;nÞ
2
þ ðfi;m;n � fi;m� 1;nÞ

2
þ ðfi;m;nþ1 � fi;m;nÞ

2

2D
2

þ

ðfi;m;n � fi;m;n� 1Þ
2
þ ðfi;mþ1;n� 1 � fi;m;nÞ

2
þ ðfi;mþ1;nþ1 � fi;m;nÞ

2

2D
2

þ

ðfi;m;n � fi;m� 1;n� 1Þ
2
þ ðfi;m;n � fi;m� 1;nþ1Þ

2
þ ðfiþ1;m� 1;n� 1 � fi;m;nÞ

2

2D
2

þ

ðfiþ1;m� 1;n � fi;m;nÞ
2
þ ðfiþ1;m� 1;nþ1 � fi;m;nÞ

2
þ ðfiþ1;m;n� 1 � fi;m;nÞ

2

2D
2

þ

ðfiþ1;m;n � fi;m;nÞ
2
þ ðfiþ1;m;nþ1 � fi;m;nÞ

2
þ ðfiþ1;mþ1;n� 1 � fi;m;nÞ

2

2D
2

þ

ðfiþ1;mþ1;n � fi;m;nÞ
2
þ ðfiþ1;mþ1;nþ1 � fi;m;nÞ

2

2D
2

þ ε2

v
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
t

ð11Þ

dð26Þi;m;n ¼
@fð26ÞTV

@fi;m;n

¼
26fi;m;n � fi� 1;m� 1;n� 1 � fi� 1;m� 1;n � fi� 1;m� 1;nþ1 � fi� 1;m;n� 1 � fi� 1;m;n � fi� 1;m;nþ1

mð26Þi;m;n

�
fi� 1;mþ1;n� 1 � fi� 1;mþ1;n � fi� 1;mþ1;nþ1 � fi;mþ1;n � fi;m� 1;n � fi;m;nþ1 � fi;m;n� 1 � fi;mþ1;n� 1

mð26Þi;m;n

�
fi;mþ1;nþ1 � fi;m� 1;n� 1 � fi;m� 1;nþ1 � fiþ1;m� 1;n� 1 � fiþ1;m� 1;n � fiþ1;m� 1;nþ1 � fiþ1;m;n� 1

mð26Þi;m;n

�
fiþ1;m;n � fiþ1;m;nþ1 � fiþ1;mþ1;n� 1 � fiþ1;mþ1;n � fiþ1;mþ1;nþ1

mð26Þi;m;n
þ

fi;m;n � fi� 1;m� 1;n� 1

mð26Þi� 1;m� 1;n� 1

þ
fi;m;n � fi� 1;m� 1;n

mð26Þi� 1;m� 1;n

þ
fi;m;n � fi� 1;m� 1;nþ1

mð26Þi� 1;m� 1;nþ1

þ
fi;m;n � fi� 1;m;n� 1

mð26Þi� 1;m;n� 1

þ
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The procedure for 3D image reconstruction is similar to that presented in Fig 1; however,

the initial guess is obtained using the Feldkamp-Davis-Kress (FDK) algorithm, which is specif-

ically used for the 3D image reconstruction, and d(8)m,n is replaced with d(26)i,m,n to minimize
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the L1 norm of a 3D image. The results obtained for 3D image reconstruction are presented in

the next section.

Quantitative analysis

This study used the root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR), and

universal quality index (UQI) to evaluate the reconstruction results. These three quantitative

indicators are defined as follows:

RMSE ¼
1

M � N
P

0�i<N

P
0�j<Mðfi;j � fi;j

�
Þ

2

� �1
2

ð13Þ

PSNR ¼ 20 log
10

MAXð f
!
�Þ

RMSEð f
!
; f
!
�Þ

 !

ð14Þ

Fig 2. Relative positions of voxels in a 3D image. m and n represent the voxel row and column of the image. i is the

level in the z direction. The voxel fi,m,n has 26 neighboring voxels around it.

https://doi.org/10.1371/journal.pone.0209674.g002
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UQI ¼
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f
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� f
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Þ
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Þ
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Þ
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where fi,j and fi,j� indicate the pixel values of the original and reconstructed images; M and N
denote the total number of rows and columns in the images, respectively; s2

f
! and s2

f
!
�

are the

variance of f
!

and f
!�

; and s
f
!

f
!
�

is the covariance of f
!

and f
!�

.

Experimental design

This study employed MATLAB2016 (Mathworks, Natick, MAUSA) to implement all the recon-

struction algorithms. A 2D Shepp–Logan phantom and a 3D CT image of the human abdo-

men, which was downloaded from the open source "Cancer Imaging Archive" [46], were used

as the ground truth to test the developed reconstruction method. The CT scan range was set at

360˚ in all reconstruction experiments. To ensure fairness of comparison, all parameters used

were identical for these reconstruction algorithms: Q = 0.005; Qs = 0.998; The parameter set-

tings were based on Yu and Wang [32] and were modified according to our experiments.

There are three kinds of experiments. First, to observe the better performance of the pro-

posed algorithms even when the iteration number is small, we set the iteration number for all

iterative reconstruction algorithms to six, and compared the image quality among all the algo-

rithms. Second, to examine the results approaching convergence in the 2D Shepp–Logan

phantom experiment, we implemented all the algorithms until two thousand iterations, then

compared the qualitative and quantitative results for all algorithms. The third experiment is to

verify the applicability of applying the proposed multi-directional gradient operators to other

Fig 3. Reconstruction results after six iterations obtained for a sampling interval of 5˚. (a) Original Shepp-Logan

phantom. (b)–(f) Results reconstructed using FBP, ART, 2-, 4-, and 8-directional gradient operators, respectively.

Areas marked by dotted ellipses are the differences of the results between 4-, and 8-directional gradient operators. As it

can be seen in (f), when sampling interval is 5˚, 8-directional gradient operator gave the fewest artifacts.

https://doi.org/10.1371/journal.pone.0209674.g003
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CS-based algorithms. We choose the EPTV algorithm proposed by Tian Z et al [33] to com-

bine with the proposed multi-directional gradient operators to reconstruct 2D Shepp-Logan

phantom and 3D abdomen images for comparison.

In the 2D Shepp–Logan phantom reconstruction test, the results obtained using FBP, ART,

and the 2-, 4-, and 8-directional gradient operators were compared for sampling intervals of 5˚

and 10˚.

In the 3D human abdomen reconstruction test, projected images were captured at

intervals of 5˚ and 10˚ to obtain two groups of sparse-view CT images (those images sam-

pled with the same interval were categorized into the same group). Each group of images

was reconstructed using FBP, ART, and the gradient operators with 3, 6, and 26 direc-

tions, and the results were compared. The 3-directional gradient operator calculates the

Fig 4. As in Fig 3, this figure shows the reconstruction results after six iterations obtained for a sampling interval

of 10˚. (a) Original Shepp-Logan phantom. (b)–(f) Results reconstructed using FBP, ART, 2-, 4-, and 8-directional

gradient operators, respectively. Areas marked by dotted ellipses are the differences of the results between 4-, and

8-directional gradient operators. In this scanning circumstance, artifacts and noise in the reconstructed images are

more vivid than Fig 3. However, the image obtained from 8-directional gradient operator still has the best image

quality.

https://doi.org/10.1371/journal.pone.0209674.g004

Table 1. Quantitative analysis of the reconstructed Shepp–Logan phantom by using FBP, ART, 2-, 4-, and 8-direc-

tional gradient operators after six iterations for sampling interval of 5˚. The image obtained from the 8-directional

gradient operator has the best quantitative results.

Method Log(RMSE) PSNR UQI

FBP -0.989 19.79 0.882

ART -0.999 19.99 0.887

2-directional gradient operator -1.014. 20.28 0.893

4-directional gradient operator -1.051 21.02 0.907

8-directional gradient operator -1.058 21.17 0.909

Note: RMSE: root-mean-square error; PSNR: peak signal-to-noise ratio; UQI: universal quality index; FBP: filtered

back projection; ART: algebraic reconstruction technique

https://doi.org/10.1371/journal.pone.0209674.t001
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gradients in the directions of three voxels, fi−1,m,n, fi,m−1,n, and fi,m,n−1 that are adjacent to

fi,m,n. The 6-directional gradient operator calculates the gradients in the directions of six

voxels, fi+1,m,n, fi,m+1,n, and fi,m,n+1, fi−1,m,n, fi,m−1,n, and fi,m,n−1 that are adjacent to fi,m,n.

Results

2D Shepp–Logan phantom reconstruction results

In the first experiment, the reconstruction results after six iterations are presented in Figs 3

and 4, and the quantitative analysis results are displayed in Tables 1 and 2.

According to Figs 3 and 4, the results obtained using the CS-based reconstruction algo-

rithms were all superior to those obtained using the traditional FBP and ART. Results obtained

using 2-, 4-, and 8-directional gradient operators were further compared. The image obtained

Table 2. Quantitative analysis of the reconstructed Shepp–Logan phantom by using FBP, ART, 2-, 4-, and 8-direc-

tional gradient operators after six iterations for sampling interval of 10˚.

Method Log(RMSE) PSNR UQI

FBP -0.749 14.98 0.713

ART -0.806 16.13 0.755

2-directional gradient operator -0.824 16.48 0.767

4-directional gradient operator -0.848 16.97 0.785

8-directional gradient operator -0.856 17.12 0.789

Note: As in Table 1, image obtained from the 8-directional gradient operator has the best quality. RMSE: root-mean-

square error; PSNR: peak signal-to-noise ratio; UQI: universal quality index; FBP: filtered back projection; ART:

algebraic reconstruction technique

https://doi.org/10.1371/journal.pone.0209674.t002

Fig 5. Reconstruction results approaching convergence obtained for a sampling interval of 5˚. Columns from left

to right show the reconstructed image, Log(RMSE), PSNR and UQI after two thousand iterations. Rows from top to

bottom: images reconstructed using ART, 2-, 4-, and 8-directional gradient operators. When the algorithms use more

number of directions in gradient operators, then all three figures of merit are better.

https://doi.org/10.1371/journal.pone.0209674.g005
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using the 2-directional gradient operator has clear artifacts and noise when the iteration num-

ber was six, where as those obtained using the 4-directional gradient operator contain substan-

tially fewer artifacts and less noise. The image reconstructed using the 8-directional gradient

operator has the fewest artifacts and least noise. These findings can be observed in images (d)–

(f) in Figs 3 and 4, especially in the areas marked by dotted ellipses. Quantitative analysis

revealed the same results (Tables 1 and 2). Regardless of whether the sampling interval was 5˚

or 10˚, the 2D Shepp–Logan phantom reconstructed using the 8-directional gradient operator

exhibited the most satisfactory results in all three quantitative parameters compared with those

reconstructed using other algorithms.

The Second experiment is to compare the reconstructed images approaching convergence

(after two thousand iterations). The results are presented in Figs 5 and 6, and the quantitative

analysis results are displayed in Tables 3 and 4.

From the second experiment, the results from all the algorithms approaching convergence can

be found after two thousand iterations. Above results are illustrated in Figs 5 and 6 and Tables 3

Fig 6. Reconstruction results approaching convergence obtained for a sampling interval of 10˚. Columns from left

to right show the reconstructed image, Log(RMSE), PSNR and UQI after two thousand iterations. Rows from top to

bottom: images reconstructed using ART, 2-, 4-, and 8-directional gradient operators. As the same in Fig 5, even if the

sampling interval is 10˚, the gradient operators with more number of directions have better image quality.

https://doi.org/10.1371/journal.pone.0209674.g006

Table 3. Quantitative analysis of the reconstructed Shepp–Logan phantom by using ART, 2-, 4-, and 8-directional

gradient operators after two thousands iterations for sampling interval of 5˚.

Method Log(RMSE) PSNR UQI

ART -1.375 27.51 0.9800

2-directional gradient operator -1.391 27.82 0.9813

4-directional gradient operator -1.396 27.92 0.9817

8-directional gradient operator -1.413 28.27 0.9832

Note: RMSE: root-mean-square error; PSNR: peak signal-to-noise ratio; UQI: universal quality index; FBP: filtered

back projection; ART: algebraic reconstruction technique

https://doi.org/10.1371/journal.pone.0209674.t003
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and 4. The RMSE obtained from 8-directional gradient operator has the lowest value, and the cor-

responding PSNR and UQI have the highest value. Similarly, 4-directional gradient operator has

better results than 2-directional gradient operator. The worst one is the results of ART algorithm.

In order to verify the applicability of applying the proposed multi-directional gradient oper-

ators to other CS-based algorithms, we perform the third experiment which combines the pre-

vious EPTV algorithm [33] with the proposed multi-directional gradient operators to

reconstruct the Shepp-Logan phantom. The results are as follows.

As shown in Fig 7 and Table 5, these results are consistent with our first and second experi-

ments: the more number of directions in gradient operators, the better images will be recon-

structed, even if our proposed algorithm is combined with other CS-based method.

3D CT image reconstruction results

In the experiment to observe the better performance of the proposed algorithms even when

the iteration number is small, the reconstruction results after six iterations are presented in

Figs 8–11, and the quantitative analysis results are displayed in Tables 6 and 7.

Two observations can be obtained from the results of the 3D abdomen image reconstruc-

tion. First, the results obtained using the CS-based reconstruction algorithms were all superior

to those obtained using the FDK and ART algorithms, regardless of the number of directions

used for TV calculation. Second, the more number of directions the gradient operator used for

TV calculation, the better quality the reconstructed images, as exhibited by both qualitative

and quantitative analyses. These two observations are valid regardless of whether the sampling

interval was 5˚ or 10˚ and whether the images were sagittal, transaxial, or coronal sections.

Table 4. Quantitative analysis of the reconstructed Shepp–Logan phantom by using ART, 2-, 4-, and 8-directional

gradient operators after two thousands iterations for sampling interval of 10˚.

Method Log(RMSE) PSNR UQI

ART -1.320 26.41 0.9740

2-directional gradient operator -1.367 27.35 0.9791

4-directional gradient operator -1.373 27.47 0.9798

8-directional gradient operator -1.386 27.72 0.9808

Note: RMSE: root-mean-square error; PSNR: peak signal-to-noise ratio; UQI: universal quality index; FBP: filtered

back projection; ART: algebraic reconstruction technique

https://doi.org/10.1371/journal.pone.0209674.t004

Fig 7. Reconstruction results of Shepp-Logan phantom by using EPTV combining with the multi-directional

gradient operators when the sampling interval is 5˚. (a)–(c) Results reconstructed using EPTV combining with 2-, 4-

, and 8-directional gradient operators, respectively. Areas marked by dotted ellipses are the differences of the results

between 4-, and 8-directional gradient operators. Even if combined with EPTV, the images reconstructed from more

number of directions in gradient operators still have less artifacts.

https://doi.org/10.1371/journal.pone.0209674.g007
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Table 5. Quantitative analysis of the reconstructed Shepp–Logan phantom by using EPTV combined with 2-, 4-,

and 8-directional gradient operators, when the sampling interval is 5˚.

Method Log(RMSE) PSNR UQI

EPTV + 2-directional gradient operator -1.179 23.09 0.9389

EPTV + 4-directional gradient operator -1.195 23.90 0.9491

EPTV + 8-directional gradient operator -1.208 24.36 0.9546

https://doi.org/10.1371/journal.pone.0209674.t005

Fig 8. Reconstruction results of an abdomen image after six iterations obtained for a sampling interval of 5˚. First

row: ground truth; subsequent rows from top to bottom: images reconstructed using FDK, ART, and the 3-, 6-, and

26-directional gradient operators. Images from left to right show the sagittal, transaxial, and coronal sections of the

abdomen. Areas marked by dotted rectangles are enlarged and displayed in Fig 9. Subsequent rows from top to

bottom, the lower images in the figure, the smoother they are, and are closer to the original images.

https://doi.org/10.1371/journal.pone.0209674.g008
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To confirm the applicability of combining the proposed multi-directional gradient opera-

tors with existing CS-based algorithms, we also use the 3D abdomen image to test the algo-

rithm which is combined with EPTV method. The results are presented in Figs 12 and 13.

As shown in Figs 12 and 13 and Table 8, even in the 3D reconstruction circumstance,

EPTV combined with 26-directional gradient operator has the best image quality. The second

one is the results of combining with 6-directional gradient operator, and so on. Therefore, the

proposed multi-directional gradient operators can be applied to and combined with the EPTV

algorithm.

Discussion

Sidky and Pan proved that minimizing the L1-norm of TV in iterative reconstruction process

could effectively remove high frequency parts such as noise and artifacts caused by few-view

Fig 9. The zoom-in views of the images displayed in previous one figure. First row: ground truth; subsequent rows

from top to bottom: images reconstructed using FDK, ART, and the 3-, 6-, and 26-directional gradient operators.

Subsequent rows from top to bottom, the more number of directions in gradient operators, the less streak artifacts the

reconstructed images have.

https://doi.org/10.1371/journal.pone.0209674.g009
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situation in CT imaging. But in their studies, TV method only calculated the total variation

(TV) in x and y directions to obtain a sparse representation in reconstruction process. We rea-

son that if we consider the calculation of TV in both x, y directions and the diagonal directions

for the gradient transform, it will preserve more information from original tomographic data

in the iteration process and make the reconstructed results closer to the original image. To ver-

ify this idea, we have proposed 8-directional gradient operator and 26-directional gradient

operator for 2D and 3D reconstruction, respectively. And then compare the results obtained

Fig 10. Reconstruction results of an abdomen image after six iterations obtained for a sampling interval of 10˚.

First row: ground truth; subsequent rows from top to bottom: images reconstructed using FDK, ART, and the 3-, 6-,

and 26-directional gradient operators. Images from left to right show the sagittal, transaxial, and coronal sections of the

abdomen. Areas marked by dotted rectangles are enlarged and displayed in Fig 11. Artifacts in the reconstructed

images are more obvious than Fig 8. However, as seen in Fig 8, subsequent rows from top to bottom, the lower images

in the figure, the smoother they are.

https://doi.org/10.1371/journal.pone.0209674.g010
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from other algorithms to emphasize the better performance of reducing noise and artifacts by

applying our algorithm.

We have performed three kinds of experiments to confirm our reasoning. First experiment

is to assure the better performance even when the iteration number is small. As shown in Figs

3 and 4 and Figs 8–11, whether the targets are 2D Shepp-Logan phantom or 3D abdomen

image and the sampling interval is 5˚ or 10˚, the results from 8-directional and 26-directional

gradient operator have the least artifacts and are closest to original image when the iteration

number is six. The second best algorithm in this experiment is 4-directional and 6-directional

gradient operator, the reconstructed images from them are visually clearer than 2-directional

and 3-directional gradient operator. Quantitative analysis also reflects the same results in

Tables 1 and 2 and Tables 6–7.

Fig 11. The zoom-in views of the images displayed in Fig 10. As the same in Figs 8–10, the images reconstructed

from the 26-directional gradient operators have the least artifacts and noise.

https://doi.org/10.1371/journal.pone.0209674.g011
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Table 6. Quantitative analysis of the abdomen image reconstructed using FBP, ART, 3-, 6-, and 26-directional

gradient operators after six iterations for sampling interval of 5˚.

Method RMSE PSNR UQI

Sagittal section

FBP 140.46 24.21 0.9589

ART 131.51 24.78 0.9637

3-directional gradient operator 97.89 27.34 0.9795

6-directional gradient operator 78.21 29.29 0.9868

26-directional gradient operator 72.29 29.98 0.9886

Transaxial section

FBP 147.85 24.13 0.9583

ART 135.58 24.88 0.9647

3-directional gradient operator 116.74 26.18 0.9735

6-directional gradient operator 100.56 27.48 0.9802

26-directional gradient operator 95.86 27.89 0.9819

Coronal section

FBP 151.43 23.49 0.9028

ART 140.51 24.14 0.9154

3-directional gradient operator 111.37 26.16 0.9447

6-directional gradient operator 91.85 27.83 0.9615

26-directional gradient operator 86.28 28.38 0.9656

Note: The images obtained from 26-directional gradient operator have the best quantitative results. RMSE: root-

mean-square error; PSNR: peak signal-to-noise ratio; UQI: universal quality index; FBP: filtered back projection;

ART: algebraic reconstruction technique

https://doi.org/10.1371/journal.pone.0209674.t006

Table 7. Quantitative analysis of the abdomen image reconstructed using FBP, ART, 3-, 6-, and 26-directional

gradient operators after six iterations for sampling interval of 10˚.

Method RMSE PSNR UQI

Sagittal section

FBP 204.37 20.95 0.9183

ART 173.91 22.35 0.9390

3-directional gradient operator 160.75 23.03 0.9473

6-directional gradient operator 140.06 24.23 0.9592

26-directional gradient operator 131.01 24.81 0.9640

Transaxial section

FBP 260.42 19.21 0.8790

ART 214.12 20.91 0.9151

3-directional gradient operator 203.28 21.36 0.9225

6-directional gradient operator 187.04 22.09 0.9335

26-directional gradient operator 180.47 22.40 0.9377

Coronal section

FBP 232.08 19.78 0.7930

ART 193.75 21.35 0.8460

3-directional gradient operator 183.42 21.83 0.8581

6-directional gradient operator 162.40 22.88 0.8849

26-directional gradient operator 154.44 23.32 0.8940

Note: As in Table 3, the image quality of the images obtained from 26-directional gradient operator is the best.

RMSE: root-mean-square error; PSNR: peak signal-to-noise ratio; UQI: universal quality index; FBP: filtered back

projection; ART: algebraic reconstruction technique

https://doi.org/10.1371/journal.pone.0209674.t007
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To compare the results approaching convergence, we used the Shepp-Logan phantom as

the target and performed two thousands iterations in all the reconstruction algorithms in the

second experiment. The results can be seen in Figs 5 and 6 and Tables 3 and 4. According to

the curve of RMSE, PSNR and UQI in Figs 5 and 6, the results of all the algorithms approach-

ing convergence can be found when the iteration number reaches two thousand. Tables 3

and 4 show the quantitative results of all algorithms after two thousand iterations. Both of the

qualitative and quantitative analyses show that 8-directional gradient operator has the best

results, followed by 4-directional gradient operator. This conclusion is the same as the first

experiment.

The final goal of our study is to apply the 8-directional and 26-directional gradient opera-

tors to other CS-based algorithms to further improve the quality of reconstructed images. To

fulfill above goal, the third experiment combined the proposed multi-directional gradient

operators with EPTV to verify the applicability. We first compare the reconstructed images in

Figs 3 and 7. At the same image testing conditions, the results from the proposed multi-direc-

tional gradient operators combined with EPTV are visually clearer and have better contrast in

edges than the results only used the traditional EPTV. The quantitative analysis in Tables 1

and 5 also reflect the same results. Next, from Fig 7 and Table 5, we also notice that more num-

ber of directions in gradient operators combined with EPTV have better results. Similarly, the

Fig 12. Reconstruction results of an abdomen image by using EPTV combined with the multi-directional gradient

operators when the sampling interval is 5˚. First row: ground truth; subsequent rows from top to bottom: images

reconstructed using EPTV combined with the 3-, 6-, and 26-directional gradient operators, respectively. Images from

left to right show the sagittal, transaxial, and coronal sections of the abdomen. Areas marked by dotted rectangles are

enlarged and displayed in Fig 13. Subsequent rows from top to bottom, the lower images in the figure, the smoother

they are, and are closer to the original images.

https://doi.org/10.1371/journal.pone.0209674.g012
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Fig 13. The zoom-in views of the images displayed in Fig 12. First row: ground truth; subsequent rows from top to

bottom: images reconstructed using EPTV combined with the 3-, 6-, and 26-directional gradient operators. Even if

combined with EPTV, the more number of directions in gradient operators, the less streak artifacts the reconstructed

images have.

https://doi.org/10.1371/journal.pone.0209674.g013

Table 8. Quantitative analysis of the reconstructed abdomen images by using EPTV combined with 3-, 6-, and

26-directional gradient operators, when the sampling interval is 5˚.

Method RMSE PSNR UQI

Sagittal section

3-directional gradient operator 91.84 27.90 0.9818

6-directional gradient operator 74.12 29.76 0.9881

26-directional gradient operator 69.16 30.36 09895

Transaxial section

3-directional gradient operator 109.27 26.76 0.9767

6-directional gradient operator 94.29 28.04 0.9825

26-directional gradient operator 90.40 28.40 0.9839

Coronal section

3-directional gradient operator 104.64 26.70 0.9506

6-directional gradient operator 86.89 28.32 0.9653

26-directional gradient operator 81.94 28.83 0.9688

https://doi.org/10.1371/journal.pone.0209674.t008

Table 9. The reconstruction time of each iteration in the experiment of 2D Shepp-Logan phantom.

2-directional TV 4-directional TV 8-directional TV

Time 0.11s 0.14s 0.15s

https://doi.org/10.1371/journal.pone.0209674.t009
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image quality of the results from EPTV combined with 8-directional gradient operator is the

best. In 3D abdomen image reconstruction test, the results are the same as 2D Shepp–Logan

phantom test. From the results of the third experiment, we have verified that 8-directional and

26-directional gradient operators can be effectively applied to EPTV algorithm.

These three experiments verify that increasing the number of directions in TV calculation

actually improve the image quality of reconstruction. Additional consideration of the TV calcula-

tion in diagonal direction, like 8-directional and 26-directional gradient operator, effectively pre-

serve more information from original tomographic data in the reconstruction process and make

the reconstructed results better than those of previous TV method. Another advantage of the

proposed method is that it is applicable to be applied to combine with other algorithms derived

from CS theory. In this study, we have successfully applied the 8-directional and 26-directional

gradient operator to the EPTV algorithm. In the future, we will try to apply the proposed method

to other CS-based algorithm, like PICCS (prior image constrained compressed sensing)[31],

AwTV (adaptive-weighted TV)[34], NPICCS (Nonconvex prior image constrained compressed

sensing)[47] etc., to further confirm the applicability of our proposed method.

The effectiveness and applicability of the proposed multi-directional gradient operators in

sparse-view CT reconstruction have been proven. However, the calculation of our proposed

method are much more complex than other reconstruction methods discussed in this study.

Therefore, multi-directional gradient operators are the most time-consuming compared with

all other reconstruction algorithms (the computational costs are compared in Tables 9 and

10). To deal with this problem, we expect to modify the proposed algorithm into graphics pro-

cessing unit (GPU) format to accelerate the reconstruction process in the future.

Conclusions

This paper proposes the use of multi-directional gradient operators to improve the quality of

CT images reconstructed using CS-based algorithms. A 2D Shepp–Logan phantom and 3D

clinical abdomen images were employed to test and verify that the 2D and 3D images recon-

structed using 8- and 26-directional gradient operators, respectively, have higher image quality

than those reconstructed using the traditional 2- or 4- and 3- or 6-directional gradient opera-

tors. The proposed multi-directional gradient operator algorithms have high potential to be

applied to and combined with existing CT reconstruction algorithms derived from CS theory

to produce better image quality in sparse-view reconstruction.

Supporting information

S1 File. 2D Shepp–Logan phantom. Original Shepp–Logan phantom image for our 2D recon-

struction test.

(RAR)

S2 File. 3D clinical abdomen images. Original clinical abdomen images downloaded from

The Cancer Imaging Archive http://www.cancerimagingarchive.net/ for our 3D reconstruc-

tion test.

(RAR)

Table 10. The reconstruction time of each iteration in the experiment of 3D abdomen image.

3-directional TV 6-directional TV 26-directional TV

Time 121.5s 176.0s 2084.2s

https://doi.org/10.1371/journal.pone.0209674.t010
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