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ABSTRACT
Introduction
Immuno-oncology therapies, including immune checkpoint 
inhibitors (ICIs), have transformed cancer care and have 
brought into question whether classic oncology efficacy 
assessments adequately describe the distinctive responses 
observed with these agents. With more ICI-based therapies 
being approved across multiple tumor types, it is essential 
to define unique clinical hallmarks of these agents and their 
associated assessments to better reflect the therapeutic 
impact for both patients and physicians. Long-term survival 
and objective responses, such as depth and durability 
of responses, treatment-free survival, efficacy in brain 
metastases, improved health-related quality of life, and 
unique safety profiles, are among the hallmarks that have 
emerged for ICI therapies. An established clinical hallmark 
is a sustained long-term survival, as evidenced by a 
delayed separation of Kaplan-Meier survival curves, and 
a plateau at ~3 years. Combination ICI therapies provide 
the opportunity to raise this plateau, thereby affording 
durable survival benefits to more patients. Deepening of 
responses over time is a unique clinical ICI hallmark, with 
patients responding long term and with more durable 
complete responses. Depth of response has demonstrated 
prognostic value for long-term survival in some cancers, 
and several ICI studies have shown sustained responses 
even after discontinuing ICI therapy, offering the potential 
for treatment-free intervals. Although clinical evidence 
supporting efficacy in brain metastases is limited, favorable 
ICI intracranial responses have been seen that are largely 
concordant with extracranial responses. While patient 
outcomes can be significantly improved with ICIs, they are 
associated with unique immune-mediated adverse reactions 
(IMARs), including delayed ICI toxicities, and may require 
multidisciplinary management for optimal care. Interestingly, 
patients discontinuing ICIs for IMARs may maintain 
responses similar to patients who did not discontinue for an 
IMAR, whether they restarted ICI therapy or not.
Conclusion
Herein, we comprehensively review and refine the clinical 
hallmarks uniquely associated with ICI therapies, which 
not only will rejuvenate our assessment of ICI therapeutic 
outcomes but also will lead to a greater appreciation of the 
effectiveness of ICI therapies.

INTRODUCTION
Immuno-oncology (I-O) therapy has revo-
lutionized cancer treatment and has led 

to clinical responses unique to this class of 
agents. Contemporary I-O treatments include 
a range of therapies, such as immune check-
point inhibitors (ICIs) and chimeric antigen 
receptor T-cell immunotherapies.1 With the 
discovery of checkpoint receptors involved 
in immune response regulation,2 ICIs have 
changed the landscape of immune activa-
tion and cancer treatment. Single-agent ICIs, 
including inhibitors of cytotoxic T-lymphocyte 
antigen 4 (CTLA-4), programmed death-1 
(PD-1), and programmed death ligand 1 (PD-
L1), have demonstrated significant antitumor 
activity and are being combined with other 
agents to increase clinical benefit.3 4

With the first ICI clinical trials of the 
CTLA-4 inhibitor ipilimumab in melanoma,5 
clinical hallmarks have emerged that are 
unique to ICI therapies (online supplemental 
graphical abstract, figure 1). Understanding 
clinical benefits associated with ICI now goes 
beyond traditional outcomes of survival and 
objective responses, though overall survival 
(OS) remains the gold standard endpoint.6 
Other long-term measures, such as depth of 
response (DepOR),7 treatment-free survival 
(TFS),8 9 efficacy in brain metastases,10–15 
improved health-related quality of life 
(HRQOL),16 and durable responses, have 
evolved as additional hallmarks associated 
with ICI-based therapies, with the possibility 
for a cure in some patients.5

ICI combinations bring the prospect of 
improved outcomes to specific tumor types 
and disease settings. Rationales for multi-
modal approaches can be conceptualized 
based on the cancer immunity cycle that 
highlights both the stepwise series of events 
that contribute to anticancer effects and 
opportunities to optimize clinical responses 
(figure 2).17 18 However, responses to therapy 
across solid tumors are not uniform,18 and 
using a combination approach targeting 
multiple steps in the cycle may circumvent 
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suboptimal responses. This emphasizes the rationale 
for combination therapies to address resistance mecha-
nisms, the potential to target less immunogenic tumors 
(changing tumors from ‘cold’ (T-cell absence) to ‘hot’ 
(T-cell infiltration)), and to achieve greater clinical 
benefit than ICI monotherapy.19

In 2019, 76% of active PD-(L)1 trials were testing combi-
nation regimens, including combination with other ICI 
therapies, targeted therapies, chemotherapies, and radio-
therapy.20–24 Several ICIs are approved in combination 
with chemotherapies, including nivolumab plus ipilim-
umab for metastatic non-small cell lung cancer (NSCLC) 
in the USA and the European Union (EU), nivolumab 
for gastric and gastroesophageal junction cancers and 
esophageal adenocarcinoma in the USA, atezolizumab 
for metastatic non-squamous NSCLC, triple-negative 
breast cancer (TNBC), and small cell lung cancer in the 
USA and EU, and pembrolizumab for NSCLC, head and 
neck squamous cell carcinoma (HNSCC), esophageal 
and gastroesophageal junction cancer, and TNBC in the 
USA as well as NSCLC and HNSCC in the EU.21–23 25–27 
ICI combinations with targeted agents—for example, 
tyrosine kinase inhibitors (TKIs) or vascular endothelial 
growth factor (VEGF) inhibitors—have demonstrated 

impressive outcomes, resulting in Food and Drug 
Administration (FDA) approvals for advanced renal cell 
carcinoma (RCC) and HCC.21 23 24 28 The rationale for 
combining anti-PD-1 and anti-CTLA-4 therapies is strong, 
as both antibodies employ distinct but complementary 
mechanisms to activate T-cell function and induce an 
antitumor effect.22 29 30 The combination of nivolumab 
and ipilimumab is now FDA-approved for the treatment 
of melanoma, RCC, HCC, NSCLC, mesothelioma, and 
microsatellite instability-high/mismatch repair-deficient 
colorectal cancer (CRC).22 To improve clinical benefits 
for more patients, rational combination therapies will 
need to be designed based on an understanding of the 
mechanisms of action for each agent and its impact on 
the cancer immunity cycle.31

To comprehensively assess the effectiveness and 
outcomes of ICI therapies, we sought to refine the clin-
ical hallmarks attributed to the ICI component of combi-
nation strategies (figure 1). There, indeed, is a need for 
increased awareness and broader inclusion of these hall-
marks in clinical trial design. Investigation of measures 
inclusive of and beyond long-term survival, such as 
DepOR, TFS, efficacy in brain metastases, improved 
HRQOL, and a unique safety profile, have evolved as 

Figure 1  Clinical hallmarks of ICI-based therapies and representative studies.9 10 12 36 41 42 44 50 51 57 58 66 67 77 81 82 87 88 92 93 137–154 
CR, complete response; CRC, colorectal cancer; HCC, hepatocellular carcinoma; HRQOL, health-related quality of life; ICI, 
immune checkpoint inhibitor; IMAR, immune-mediated adverse reaction; NSCLC, non-small cell lung cancer; RCC, renal cell 
carcinoma.
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additional hallmarks of ICI-based therapies to take into 
consideration.

CLINICAL HALLMARKS OF ICI THERAPIES
Long-term survival benefits
Compared with standard cytotoxic chemotherapy, ICIs 
restore active T-cell infiltration, increase T-cell repertoire 
diversification, and stimulate cancer-specific immune 
responses.32 33 New benchmarks have been established 
with improved long-term survival and durable responses 
in significant proportions of patients,34–37 with the poten-
tial for TFS.

Survival benefits can be challenging to quantify, 
especially in trials with initial reporting based on short 
follow-up. However, with longer follow-up, an emerging 
clinical hallmark of ICI-based therapies is a delayed sepa-
ration of Kaplan-Meier survival curves with an observed 
plateau beginning at ~3 years, demonstrating long-term 
survival benefits.5 This contrasts with chemotherapy, 
where early clinical responses are often seen but are 
short-lived.38 The first long-term ICI outcomes were 
reported for ipilimumab in advanced melanoma; despite 
low objective response rates (ORR), responses were 

durable, as shown by a plateau in the OS curve at ~20% 
around 3 years, and the plateau was sustained at a 10-year 
follow-up.5 This brings the promise of a potential ‘func-
tional cure’ in some patients with ongoing, long-term 
responses, even after treatment discontinuation.39 Several 
early ICI trials are now reporting data for up to 5 years or 
more, with similar plateaus seen at year 3.36 40–44 Combi-
nation ICI therapies provide the opportunity to raise the 
plateau, thereby affording more patients durable OS 
benefits (figure 3).

Nivolumab plus ipilimumab has demonstrated improved 
survival and/or durable responses across multiple 
advanced tumors, including melanoma,36 HCC,45 DNA 
microsatellite instability-high/mismatch repair-deficient 
CRC,46 RCC,42 43 and NSCLC.41 47 For example, landmark 
survival rates at 5 years showed that 52% of patients with 
advanced melanoma treated with nivolumab plus ipilim-
umab were alive, vs 44% and 26% receiving nivolumab or 
ipilimumab monotherapy, respectively.36 With a median 
follow-up of 55 months, superior OS, progression-free 
survival (PFS), and ORR benefits were maintained with 
nivolumab plus ipilimumab versus sunitinib for advanced 
RCC.43 The probability of response lasting ≥4 years was 

Figure 2  Cancer immunity cycle and therapy targets.1 17 Adapted from Chen and Mellman,17 with permission from Elsevier. 
A2AR, adenosine A2A receptor; CAR-T, chimeric antigen receptor T cell therapy; CD, cluster of differentiation; CTLA-4, 
cytotoxic T-lymphocyte antigen 4; DC, dendritic cell; ICI, immune checkpoint inhibitor; IFN-α, interferon alpha; IL, interleukin; 
LAG-3, lymphocyte-activation gene three protein; PD-1, programmed death-1; PD-L1, programmed death ligand 1; STING, 
stimulator of interferon genes; TIM-3, T-cell immunoglobulin domain and mucin domain-3; TLR, toll-like receptor; TME, tumor 
microenvironment.
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higher with nivolumab plus ipilimumab versus sunitinib 
(59% vs 30%, respectively).43 Median OS with nivolumab 
plus ipilimumab was not reached (NR) vs 38.4 months 
with sunitinib, and 4-year probabilities were 53.4% vs 
43.3%, respectively.43 Nivolumab plus ipilimumab also 
demonstrated delayed PFS benefit, with curve separation 
favoring nivolumab plus ipilimumab in the tails of the 
curves; a plateau emerged at ~30 months with nivolumab 
plus ipilimumab, with the tails showing ≥10% separation 
between treatments.42 43 Pembrolizumab plus ipilimumab 
demonstrated favorable survival in patients with mela-
noma at a 3-year follow-up, where 36-month PFS and OS 
were 59% and 73%, respectively.48 Similarly, the combi-
nation of pembrolizumab plus axitinib in patients with 
RCC demonstrated significant OS (median NR vs 35.7 
months, respectively; p=0.0003) and PFS (median 15.4 
vs 11.1 months, respectively; p<0.0001) advantages over 
sunitinib.49 The OS curves for combination therapy sepa-
rated early, and the risk of death was  ~32% lower with 
pembrolizumab plus axitinib versus sunitinib at a median 
follow-up of 30.6 months.49

After a minimum follow-up of 4 years in patients with 
NSCLC and PD-L1  ≥1%, the median OS was longer 
with nivolumab plus ipilimumab (17.1 months) versus 
nivolumab (15.7 months) or chemotherapy (14.9 
months).47 Similar results were seen in patients with a 
PD-L1 <1%: median OS was 17.2 months with nivolumab 
plus ipilimumab vs 12.2 months with chemotherapy.41 
After a minimum follow-up of 32.4 months, the median 
OS in patients with NSCLC was longer with atezolizumab 

plus bevacizumab plus chemotherapy versus bevaci-
zumab plus chemotherapy: 19.8 vs 15 months, respec-
tively.50 Pembrolizumab showed survival improvements 
with chemotherapy for advanced NSCLC.51 52 Pembroli-
zumab plus chemotherapy demonstrated favorable OS 
after a median follow-up of ~4 years: median OS was 22 
months vs 10.6 months with chemotherapy.52 While cross-
trial comparisons should not be made, many ICI combi-
nation therapies show improved efficacy outcomes versus 
monotherapies. Multimodal approaches that combine 
ICIs with agents such as chemotherapy, radiotherapy, 
TKIs, and ICIs have provided significant improvements 
in patient outcomes in some cases. Increasing baseline 
tumor burden was associated with significantly shorter OS 
and PFS.53 This supports the combined use of ICI thera-
pies with debulking strategies, such as chemotherapy and 
radiotherapy. Combining two ICI therapies with differing 
modes of action may also allow for improved responses. 
For example, the roles of PD-1 and CTLA-4 in inhibiting 
immune responses, including antitumor responses, are 
largely distinct. CTLA-4 likely regulates T-cell prolifer-
ation early in an immune response, primarily in lymph 
nodes, whereas PD-1 suppresses T cells later in an immune 
response, primarily in peripheral tissues.54

Increased DepOR over time
DepOR is defined as the maximum percent tumor reduc-
tion from baseline and may prove useful as a measure of 
benefit that could provide an earlier read-out than time-
to-event endpoints, providing an additional method of 

Figure 3  Long-term OS in clinical trials with immune checkpoint inhibitor and targeted therapies in patients with advanced 
melanoma.39 Data presented represent first-line treatment options, with the exception of those for IL-2 and pooled ipilimumab, 
for patients with melanoma; results will vary by tumor type. Permissions to use figures: licensed under the Creative Commons 
Attribution V.4.0 License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by/4.0/). IL, interleukin; OS, overall survival.

https://creativecommons.org/licenses/by/4.0/
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comparing treatment responses.55 Unlike conventional 
anticancer treatments, a hallmark of ICI-based therapies 
is a deepening of response over time, with more durable 
complete responses (CRs) and patients continuing to 
respond long-term.

DepOR has shown prognostic value for long-term 
survival in some cancers. In an FDA analysis of DepOR 
and survival in patients with advanced melanoma, a larger 
DepOR with ICI therapy correlated with a longer and 
higher rate of OS.7 Another analysis of DepOR in patients 
with advanced NSCLC treated with a PD-1 inhibitor 
found that patients with higher percentages of maximal 
tumor shrinkage achieved higher OS benefits.55 Similarly, 
a combination of nivolumab plus ipilimumab in patients 
with advanced RCC also demonstrated a correlation 
between DepOR and OS.56

In patients treated with ICI combinations versus mono-
therapies, the CR rates are greater in general. With 
longer follow-up, higher CR rates are noted (figure  4), 
as seen with nivolumab plus ipilimumab in patients with 
melanoma,36 40 57 58 RCC,43 59 and CRC.46 60 In patients 
with advanced melanoma, after a minimum follow-up of 
9 months, the CR rate was higher with nivolumab plus 
ipilimumab versus either monotherapy, as was the ORR.57 
After a follow-up of 5 years, ORR with nivolumab plus 
ipilimumab had not changed, but the percentage of CRs 
was greater, indicating an evolution of response as more 
patients with a partial response (PR) had converted to a 
CR over time.36 57 In a pooled post hoc analysis of 5-year 
data for nivolumab plus ipilimumab versus nivolumab 
monotherapy for advanced melanoma, patients with a CR 
in either arm at 12 months had an 85%–86% chance of 
being alive at 5 years, even without subsequent systemic 

therapy.61 An increasing proportion of patients with CRs 
was also observed with pembrolizumab in combination 
with ipilimumab in patients with advanced melanoma.48 62 
While the ORR was preserved from a median follow-up 
of 17 months to 36.8 months, the CR rate almost 
doubled.48 62 This conversion of PRs to CRs appears more 
pronounced in patients on dual ICIs, where this hallmark 
is possibly driven by activation of a broad repertoire of 
T-cell receptors able to recognize unique tumor anti-
gens63 and increased CD4+/CD8+  effector memory T 
cells,64 reflecting a larger activated/memory T-cell diver-
sity after ICI therapy.

Treatment-free survival
Several ICI studies demonstrate durable responses even 
after discontinuing combination therapy, resulting in 
prolonged treatment-free intervals, which may lessen 
potential for new or further toxicities and may have a cost-
saving impact.42–44 65–67 TFS is a novel endpoint that has 
been defined as the time from treatment discontinuation 
to subsequent systemic therapy (treatment-free interval) 
or death (TFS, figure 5A).8 9 Patients who discontinue ICI 
therapy may experience durable disease control without 
need for subsequent systemic therapy.68 However, thus far, 
for combination ICI therapy, this has only been published 
with nivolumab plus ipilimumab data, but not for ICIs 
plus TKIs or ICIs plus chemotherapy.

A study of nivolumab plus ipilimumab versus either 
monotherapy in advanced melanoma defined TFS as 
the area between Kaplan-Meier curves.8 9 To use these 
endpoints, the curves were divided into three phases: 
time on protocol therapy, TFS, and survival after subse-
quent therapy initiation (figure 5A). Curves were further 

Figure 4  Patients with melanoma in CR over time. CR rates among patients undergoing immune checkpoint inhibitor therapy 
steadily increased, indicating that the best response can improve over time.36 40 57 58 CR, complete response; IPI, ipilimumab; 
NIVO, nivolumab.
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subdivided to summarize the survival experience, free 
of anticancer therapy, with integration of toxicity data 
to characterize the patient’s well-being.8 9 As illustrated 
in figure  5, a greater proportion of patients who had 
received nivolumab plus ipilimumab versus nivolumab 
or ipilimumab were alive and in TFS for up to 5 years 
(33%, 17%, and 20%, respectively).9 Furthermore, the 
restricted mean TFS was longer for nivolumab plus 

ipilimumab versus either monotherapy (19.7, 9.9, and 
11.9 months, respectively).8 9 Mean TFS with grade  ≥3 
treatment-related adverse events (AEs) represented only 
a small proportion of the 60-month period.9

In a 5-year analysis of patients with advanced mela-
noma, the treatment-free interval was 18.1 months with 
nivolumab plus ipilimumab but was only 1.8 months with 
nivolumab and 1.9 months with ipilimumab.36 Of patients 

Figure 5  (A) Illustration of TFS assessment and OS curve partitioning. TFS estimates for (B) NIVO plus IPI, (C) nivolumab, and 
(D) ipilimumab in patients with melanoma in CheckMate 067 and 069. Data labels represent the mean number of months and 
the percentage of time in a treatment state during the 60-month period.8 9 Areas are restricted mean times. aTime after cessation 
of protocol therapy without toxicity before initiation of subsequent systemic anticancer therapy or death. bTime after cessation 
of protocol therapy with toxicity while treatment-free. Permissions to use figures: licensed under the Creative Commons 
Attribution V.4.0 License (CC BY 4.0) (https://creativecommonsorg/licenses/by/40/). IPI, ipilimumab; NIVO, nivolumab; OS, 
overall survival; TFS, treatment-free survival.

https://creativecommonsorg/licenses/by/40/
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alive at 5 years, 74% who received combination therapy 
were not receiving study drug or subsequent systemic 
therapy vs 58% with nivolumab and 45% with ipilimumab 
monotherapies.36 Among responders who discontinued 
study treatment for advanced RCC, a greater proportion 
who received nivolumab plus ipilimumab versus sunitinib 
did not require next-line therapy, including more with 
ongoing TFS.43 67 These results demonstrate the long-
term TFS benefits of ICI therapy. Experience is currently 
limited to nivolumab plus ipilimumab and may be worthy 
of study with other combinations. Treatment-free inter-
vals may factor in the shared decision making between 
patients and oncologists, as well as payers. Notably, the 
American Society of Clinical Oncology (ASCO) included 
treatment-free interval in the ASCO value framework, 
highlighting its importance as a key measure when 
assessing the value of cancer treatments.69

Efficacy in brain metastases
Brain metastases are a common complication of advanced 
malignancies that are difficult to treat and associated with 
poor outcomes.14 The role of ICIs in brain metastases 
is largely unknown, as these patients have traditionally 
been excluded from ICI clinical trials. The inflamma-
tory tumor microenvironment (TME) of brain metas-
tases is highly complex and immunosuppressive, and is 
comprised of interactions between diverse immune and 
cancer cells that may contribute to metastatic progression 
and impair therapeutic responses.70–74 Myeloid-derived 
suppressor cells (MDSCs), regulatory T cells (Tregs), 
and tumor-associated macrophages are recruited to the 
brain and play a negative role in antitumor immune 
responses.70 71 There can be PD-L1 expressed on cancer 
cells, T-cell activity downregulated due to tumor-induced 
T-cell exhaustion, and fewer tumor-infiltrating lympho-
cytes in brain metastases leading to the immunosuppres-
sive environment.71–74 Historically, few chemotherapies 
and targeted therapies have shown efficacy in brain 
metastases.75 PD-(L)1 therapies have been shown to 
reduce T-cell exhaustion in the brain.14 As intracranial 
tumor blood vessels are less permeable than extracranial 
vessels,76 ICI drugs likely cannot cross the blood–brain 
barrier; instead, tumor antigen-specific T cells are stimu-
lated in the periphery and enter the brain subsequently.77

Clinical evidence supporting ICI efficacy in brain 
metastases is limited but has demonstrated favorable 
intracranial responses and survival, showing ICIs can 
have activity in brain metastases resulting from various 
solid tumors.10–15 Efficacy in brain metastases is being 
explored with pembrolizumab, nivolumab, atezolizumab, 
and durvalumab as monotherapies, which show prom-
ising activity.12 13 15 78 79 The first study of PD-1 inhibitors 
in untreated brain metastases was with pembrolizumab. 
Intracranial response rates were 22% and 33% for mela-
noma and NSCLC, respectively.15 Central nervous system 
responses were durable and were strongly concordant 
with systemic responses.15 Across initial single-agent ICI 
studies in patients with melanoma, NSCLC, or RCC, 

the median time from treatment onset to intracranial 
response was  ~2 months.11 For patients with untreated 
brain metastases from RCC, intracranial response rates 
were 12% with nivolumab monotherapy; however, no 
objective response was reported in patients with brain 
lesions that were multiple or larger than 1 cm.80

Combination therapies demonstrate increased intra-
cranial efficacy versus ICI monotherapies. Intracranial 
ORR and CR seen with nivolumab plus ipilimumab in 
patients with melanoma were around double that with 
nivolumab monotherapy.10 Intracranial responses with 
nivolumab plus ipilimumab for asymptomatic, untreated 
melanoma brain metastases were largely concordant with 
extracranial responses and developed rapidly (median 2.3 
months).11 81 The intracranial ORR was 57% (with 26% 
being CRs), and the overall ORR was 53%.81 PFSs of 6 and 
9 months were 64.2% and 59.5%, respectively, for intra-
cranial responses, and 75.9% and 70.4%, respectively, for 
extracranial responses.81 OS was also maintained with ICI 
therapies in patients with brain metastases. For example, 
in patients with advanced NSCLC, survival and responses 
with nivolumab plus ipilimumab were comparable to 
patients without brain metastases.82

Ongoing trials are investigating ICI therapy with radio-
therapies for brain metastases, and evidence points to 
better outcomes with concurrent therapies. An analysis 
of patients undergoing stereotactic radiation therapy 
or stereotactic radiosurgery plus concurrent ICIs found 
a significant OS improvement with concurrent therapy 
versus non-concurrent therapy or radiotherapy alone, 
which may be associated with a decreased incidence of 
AEs and/or development of subsequent brain metas-
tases.83 An analysis of patients with brain metastases 
receiving stereotactic radiation therapy or stereotactic 
radiosurgery plus concurrent CTLA-4 or PD-(L)1 inhibi-
tion reported significantly improved 1-year local control 
versus radiotherapy alone without increased risk of radi-
ation necrosis.84 Time to new metastases was also signifi-
cantly longer with concurrent PD-1 and/or CTLA-4 
therapy and Gamma Knife radiosurgery.85 While radio-
therapy plus ICIs may improve local brain metastasis 
control, more studies are needed to determine optimal 
timing and sequencing of radiotherapy and ICIs.

Improved HRQOL
ICI therapy favorably impacts HRQOL, which is important 
to evaluate the full cancer impact. In a systematic review 
of PD-(L)1 therapies associated with consistent prolonga-
tion of time to symptomatic deterioration across thera-
pies and solid tumors compared with cytotoxic therapy, 
PD-(L)1 was associated with better symptomatic control 
at various follow-up points.16 With combination therapies 
showing greater toxicity, there is concern that HRQOL 
may be diminished. However, nivolumab plus ipilimumab 
maintained HRQOL in a manner similar to nivolumab 
monotherapy in patients with advanced melanoma at a 
5-year analysis, despite having marked differences in rates 
of immune-mediated adverse reactions (IMARs).36 86 
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There were no meaningful sustained HRQOL deteriora-
tions during or after treatment with nivolumab plus ipili-
mumab or nivolumab monotherapy.36 86 Patients with 
advanced RCC receiving nivolumab plus cabozantinib 
reported better HRQOL than patients receiving suni-
tinib.87 HRQOL was improved with atezolizumab plus 
bevacizumab versus sorafenib for unresectable HCC, 
leading to a delay in time to deterioration of HRQOL, 
physical functioning, and role functioning.88 Median 
time to deterioration of disease-related symptoms also 
took longer with combination treatment, and a lower 
proportion of patients experienced clinically meaningful 
symptom deterioration.88 However, improved HRQOL 
was not seen with all ICI combinations; for example, 
pembrolizumab plus axitinib and sunitinib monotherapy 
demonstrated similar HRQOL benefits for advanced 
RCC.89 Though data are limited, ICI therapy offers 
patients the potential of a better HRQOL over conven-
tional therapies, related to the long-term benefits as well 
as the favorable safety profiles of ICI therapies. Notably, 
the European Society for Medical Oncology (ESMO) and 
ASCO included improvement in HRQOL in the ESMO-
Magnitude of Clinical Benefit Scale and ASCO value 
framework, respectively, highlighting its importance as 
a key measure when assessing the value of cancer treat-
ments.69 90

Unique safety profile
While patient outcomes can be significantly improved with 
ICI therapies, they are also associated with the emergence 
of unique autoimmune-like toxicities known as IMARs.91 
Mechanisms of IMARs differ from AEs of non-ICI agents 
and are a consequence of increased immune activity and 
possibly a breach of self-tolerance.92 93 The precise mecha-
nisms of IMARs are not fully understood,92 93 but they are 
likely similar to those promoting antitumor responses.93 
Studies have shown that ICIs can induce T-cell diversifi-
cation, expansion, and infiltration, affect B-cell responses 
and induction of autoantibodies, and promote cytokine 
responses, all of which may be involved in the pathophys-
iology of IMARs, though to what extent is unknown and 
this may differ between toxicities.92–97

ICI monotherapy is associated with significantly lower 
risk of overall and chemotherapy-related AEs (eg, fatigue, 
nausea, diarrhea, and hematological toxicities) and is 
overall better tolerated versus chemotherapy, with a 
significantly lower risk of any all-grade and grade 3–4 
AEs; however, it is also associated with an increase in 
IMARs, including rash, pruritus, colitis, hypothyroidism, 
hyperthyroidism, and pneumonitis.98 While the pres-
ence of specific IMARs varies based on malignancy and 
inhibitor used,91 the most commonly affected organs 
are skin, gastrointestinal, and endocrine99; however, any 
organ may be affected, multiple IMARs may develop, 
and severe or life-threatening IMARs can occur.65 91 100 
Most IMARs manifest within the first 6 months of ICI 
therapy initiation65 100; however, late-onset IMARs may 
occur, even months after ICI discontinuation, and can 

render emerging diagnostics more complex.101 The term 
‘delayed immune-related events’ was coined to charac-
terize these late-onset events, defined as IMARs devel-
oping ≥90 days after ICI discontinuation.101

While the safety profile of ICI monotherapies is well 
established, additional complexities arise with combi-
nation therapies where toxicities are increased, and it 
becomes challenging to identify which therapy underlies 
the toxicity. Combination CTLA-4/PD-(L)1 results in 
a significantly higher frequency of IMARs with typically 
earlier onset versus monotherapies.65 102 103 Each combi-
nation has a characteristic safety profile and usually 
results from a combination of the AE profiles of each 
monotherapy (figure 6). It is important to properly assess 
the underlying cause of the toxicity, especially when 
therapies from different classes are used. For example, 
concomitant use of anti-PD-(L)1 with a TKI requires an 
understanding of potential overlapping toxicities; while 
the management of TKI-related toxicity could be a dose 
interruption or reduction, IMARs are typically managed 
with corticosteroids. Anytime ICIs are given as backbones 
for combination treatments, IMARs can occur and should 
be treated as immune-mediated reactions. There is a need 
to identify biomarkers for patients who may or may not 
respond to ICI combinations to avoid the higher toxici-
ties associated with combination therapies. Recently, real-
world data have highlighted the importance of late-onset 
and long-lasting IMARs for patients receiving ICIs.104

IMAR management guidelines
IMAR management guidelines include those provided 
by the National Comprehensive Cancer Network,105 the 
Society for Immunotherapy of Cancer,106 and ESMO,107 
which provide treatment algorithms for common IMARs. 
Based on these guidelines, IMAR management requires 
close follow-up, patient engagement/self-management 
programs, and a multidisciplinary approach. Evidence-
based IMAR management is limited and is an evolving 
area of research, with newer algorithms being proposed 
for severe and/or refractory cases.108 Using available 
management algorithms, we found that IMARs resolve in 
most patients, with the exception of endocrine IMARs.65 
Common endocrine IMARs include thyroid dysfunc-
tion, hypophysitis, type 1 diabetes mellitus, and primary 
adrenal insufficiency, which, unlike non-endocrine 
IMARs, are often permanent and require lifelong 
hormone replacement.91

Notably, the presence of IMARs (skin and gastrointes-
tinal toxicities in particular) has been associated with 
significantly improved survival and response outcomes 
with ICIs.94 103 109 110 However, results are conflicting,111 112 
which may be related to a general lack of landmark anal-
yses that can minimize the immortal time bias potentially 
associated with time-dependent factors, such as the devel-
opment of IMARs.113 114

Studies have shown that patients who discontinue ICIs 
for IMARs maintain survival and response outcomes 
similar to patients who did not discontinue for an IMAR, 
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whether they restarted ICI therapy or not.115 116 Whether 
or not to re-treat patients following an IMAR is a frequent 
clinical scenario. Data are limited, but an analysis of 
patients with NSCLC who were re-treated with ICIs found 
that survival was significantly improved, and while ~50% 
of patients developed a new or recurrent IMAR, they 
were mostly mild and manageable.116 The decision to 
re-treat patients is based on IMAR severity and sequelae, 
as supported by current guidelines,105–107 and should be 
made in consultation with patients and specialists.

DISCUSSION
ICI hallmarks, including long-term survival, deepening 
of responses over time, promising treatment-free inter-
vals, brain metastases activity, and improved HRQOL, are 
emerging and enriching the metrics of benefits in many 
advanced cancers. With ICI therapies, more patients 
are responding and living longer, with the potential for 
more CRs, treatment-free intervals, and better HRQOL, 
hence the need for hallmarks of ICI combinations to be 
used more often in study designs and at the patient and 
upstream healthcare system levels. With more patients 
surviving long term, there is need for robust survivor-
ship care plans. The long-term survival hallmark of ICI-
based therapies is an observed plateau of Kaplan-Meier 
survival curves beginning at  ~3 years, demonstrating 
long-term benefits.5 Until long-term survival data are 
available, additional hallmarks are important inputs 
into shared clinical decision making. DepOR has shown 

prognostic value for long-term survival, and a hallmark of 
ICI-based therapies is a deepening of response over time, 
with more CRs and patients continuing to respond long 
term.36 48 57 62 Patients with advanced melanoma, CRC, or 
RCC receiving nivolumab plus ipilimumab demonstrated 
durable responses with longer treatment-free intervals, 
and a higher proportion of patients free of subsequent 
therapies were observed than patients receiving mono-
therapy.40 42 43 65–67 Along with these beneficial hall-
marks, immune system activation leads to a safety profile 
unique to ICIs.91 Notably, IMARs may be a biomarker for 
patient outcomes, as they are associated with survival and 
responses.94 103 109 110 IMARs also bring a need for multi-
disciplinary team awareness and recognition of ICI AE 
profiles and management for these patients.

Combination ICI therapies promise further survival 
advantages and aim to raise the plateau of the curve so 
that more patients experience sustained OS benefits. The 
combination treatment arena is advancing, including 
numerous new ICI therapies with multiple targets, 
including but not limited to VEGF/tyrosine kinase,66 117 
the enzyme poly (ADP-ribose) polymerase,118 other check-
points such as lymphocyte-activation gene 3 (LAG-3),119 
T-cell immunoglobulin and mucin domain-3 (TIM-
3),120 T-cell immunoreceptor with immunoglobulin and 
immunoreceptor tyrosine-based inhibitory motif (ITIM) 
domain (TIGIT),121 and other immune-modulating path-
ways (eg, IL-2 pathway agonist and toll-like receptors). 
More approvals are expected with ICI combinations 

Figure 6  Safety profiles of ICI therapies in patients with non-small cell lung cancer.a41 44155–161 aThese are not meant to be 
cross-trial comparisons; dosing and ways of assessing TRAEs differed across studies. bRepresents total adverse events, 
not just TRAEs. ATEZO, atezolizumab; CEMIP, cemiplimab; chemo, chemotherapy; ICI, immune checkpoint inhibitor; IPI, 
ipilimumab; NIVO, nivolumab; PEMBRO, pembrolizumab; QxW, every x weeks; TRAE, treatment-related adverse event.
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across tumor types, and the clinical hallmarks will need 
to adapt to the changing field. This includes the potential 
for new or updated endpoints, including DepOR, TFS, 
and HRQOL, and in earlier disease, pathological CRs 
in the neoadjuvant setting and disease-free survival in 
the adjuvant setting. There is a need to understand the 
determinants driving response, resistance, and AEs, and 
to identify potential predictive biomarkers to optimize 
treatment.

ICI therapies display different response patterns and 
tumor response kinetics compared with cytotoxic and 
molecularly targeted agents, necessitating the use of 
alternative endpoints. In light of this, the FDA recog-
nizes the use of traditional and surrogate endpoints to 
support accelerated approval of cancer therapies.122 In 
these settings, the FDA may grant approval based on a 
surrogate endpoint that is ‘reasonably likely to predict 
clinical benefit’.122 In their 2018 guidance for industry, 
the FDA provides a robust discussion of oncology clin-
ical trial endpoints and their limitations, including OS, 
PFS, ORR, CR, and those involving symptom assessment 
(HRQOL).122 The use of specific endpoints is guided by 
factors such as specific cancer, disease setting and loca-
tion, size of effect and duration, DepOR, and available 
therapeutic options.122

As discussed by the FDA and other publications, there 
remain limitations with the clinical trial endpoints associ-
ated with the hallmarks of ICI therapy. For example, OS 
requires long follow-up periods in large trials and may be 
affected by crossover and subsequent therapies.122 With 
OS, there may also be a delay in benefit with ICI agents 
that may lead to a loss in statistical power, and conven-
tional proportional hazards models may not appropri-
ately capture ICI survival kinetics.6 Limitations associated 
with PFS include varying definitions among studies and 
being subject to assessment bias, measurement error, 
and missing data.6 122 PFS also requires frequent assess-
ments and balanced timing of assessments among treat-
ment arms and may not always correlate with survival.122 
Similarly, definitions for ORR vary among studies, and 
ORR requires frequent assessments and balanced timing 
of assessments among treatment arms.122 ORR does not 
differentiate outcomes based on DepOR (CR vs PR), does 
not capture patients with durable stable disease, and may 
not always correlate with survival.6 122 A limitation asso-
ciated with DepOR is that its predictive value remains 
uncertain.123Non-measurable lesions are not considered 
in the calculation of DepOR, which is based on measure-
ment of tumor diameter. Additionally, reductions in 
target lesions do not always result in a diameter reduction, 
and tumor shrinkage may not always be symmetrical.123 
For HRQOL, instruments currently used were designed 
for earlier chemotherapies and may not be sufficiently 
sensitive to capture important symptomatology unique 
to ICIs.122 124 Challenges with generalizing HRQOL data 
from prospective studies include limited data, heteroge-
neity in definitions and measurement tools, time point 
and duration of measurements, poor compliance, and 

missed data points between intervention and control 
arms.6 122 124 Despite these limitations, the endpoints 
discussed for ICI trials are valuable for assessing the bene-
fits of these therapies.

While there are encouraging responses in a subset 
of patients, many patients experience either primary 
refractory or acquired resistance after a response, in 
part because immune escape mechanisms can arise from 
defects in any or multiple steps of the cancer immu-
nity cycle.18 125 126 Resistance mechanisms are complex, 
involving tumor cell-intrinsic and cell-extrinsic factors. 
Intrinsic factors include expression of tumor genes and 
pathways related to immune recognition, cell signaling, 
and expression of factors, preventing immune cell infil-
tration and/or function within the TME.127–129 Extrinsic 
mechanisms involve non-tumor components, including 
Tregs, MDSCs, macrophages, and inhibitory check-
points.130–132 One goal of developing combination ICI 
therapies is to circumvent these resistance mechanisms 
and to achieve better outcomes for patients.

A major breakthrough with ICIs is the potential to achieve 
durable responses in some patients that can be maintained 
even years after ending treatment. A challenge with ICI 
response durability as an endpoint is that a unique defini-
tion is not available, and the optimal treatment duration 
in case of a durable response is unknown. Another chal-
lenge is whether ICI therapy should be given until disease 
progression or AEs, or whether treatment could be inter-
rupted following a certain duration and/or achieving a 
radiological response. In metastatic melanoma, stopping 
ICI therapy before 2 years can be considered after  ≥6 
months of treatment in patients with confirmed radiolog-
ical control (stable disease or PR) in case of a complete 
pathological and/or metabolic response, according to 
the ESMO Guidelines Committee.133 Case reports of 
patients with advanced NSCLC who had an early response 
and received ICI therapy for <2 years reported ongoing 
benefits following discontinuation.134 A further challenge 
is that clinical trials using time-to-event endpoints are 
commonly designed with the assumption that the HRs 
between groups remain constant. The non-proportional 
hazards and delayed survival curve separation associated 
with ICI therapy reduces the ability for conventional 
statistical models to differentiate between them.135 There-
fore, alternative methods are needed to shorten the study 
duration and/or patient numbers needed to mitigate the 
effects.135 For survival curves with a plateau, cure models 
may be used to investigate heterogeneity between long-
term survivors and patients not surviving long term.136

Notably, ASCO and ESMO included HRQOL in the 
ASCO value framework, and ESMO-Magnitude of Clin-
ical Benefit Scale and ASCO also included TFS, empha-
sizing their importance as key measures when assessing 
the value of cancer treatments.69 90 Evaluating the distinct 
hallmarks of ICI therapies and characterizing how they 
influence patients will inform future treatments. With 
ICI therapies being used in more patients and patients 
living longer, it is critical for regulatory bodies and 
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treating physicians to recognize associated hallmarks to 
ensure appropriate outcomes and implement system-
wide changes to address immune-mediated toxicities 
that require multidisciplinary management, including 
delayed ICI toxicities.

In conclusion, ICI-based therapies provide unique hall-
marks that are associated with significantly improved clin-
ical outcomes and a unique safety profile. Future research 
should focus on better exploiting these hallmarks with 
optimized dosing sequencing as we move into a treatment 
arena with new dual and triple combinations.
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