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Introduction

The pandemic due to SARS coronavirus‑2, coronavirus disease‑19 
or COVID‑19 is a cause of  global concern and is impacting lives 
and economy globally. As of  5th July, 2021, over 183 million 
cases are reported globally with about 30.5 million from India. 
It has also resulted in 3.97 million deaths worldwide.[1] Currently, 
many countries have reported a second wave of  infection with 
India reporting more than 4 lakhs COVID‑19 cases daily, in 
May, 2021. Infection due to SARS‑CoV‑2 leads to varied clinical 
manifestations, which can vary from asymptomatic to severe 
acute respiratory syndrome and death. The degree of  severity has 

been reported to be different in different geographical locations 
with a mortality rate of  0.7 deaths per 100,000 in South Korea 
to 86.8 per 100,000 in Belgium.[2]

Various host factors that have been attributed to COVID‑19 
disease severity are male gender, old age, patients with 
diabetes mellitus, hypertension, and cardiovascular diseases.[3] 
Worldwide higher risk of  severe disease and mortality are 
reported among males, including in India.[4,5] Globally, males 
have been shown to have significantly higher mortality 
compared to females with about 1.17 million deaths reported 
among males as compared to 900,000 deaths among females.[6] 
Similarly in India, 68% of  mortality due to COVID‑19 was 
among men while women constituted 32% of  the total deaths 
reported.[7] The comparative mortality depending on gender 
is depicted in  Figure 1.
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A higher percentage of  severe disease among males has 
also been reported in other coronaviruses like severe acute 
respiratory syndrome coronavirus (SARS‑CoV)[8] and Middle 
East respiratory syndrome coronavirus.[9] Several studies have 
attributed different host factors for severity.

The importance of  primary care physicians was highlighted 
during the second wave of  COVID‑19 in India. Nonavailability 
of  hospital beds and scarcity of  equipment such as ventilators 
to the patients in need were commonly seen during the 
second wave.[10] Family physicians or primary care physicians 
play a key role in COVID‑19 management. They help in 
the early diagnosis of  the disease, in assessing the clinical 
severity of  COVID‑19 among the patients, and are also 
responsible for triaging patients and providing emergency 
care, thus, decreasing the burden on hospitals.[11] A better 
understanding of  various gender and genetic factors among 
these physicians will be of  immense help in devising effective 
patient management and triage strategies. The present review 
describes the various gender and genetic factors impacting 
COVID‑19 disease.

Methodology

A literature search was performed using Google Scholar 
and PubMed. Keywords “COVID‑19 + sex differences,” 
“COVID‑19 + androgens,” “COVID‑19 + ACE2 receptor,” 
and “COVID‑19 + smoking alcoholism pregnancy” were used. 
The articles which highlight the association of  host factors to 
COVID‑19 were selected and included in our study.

Discussion

Host  receptors
SARS‑CoV‑2, the etiological agent of  COVID‑19 is a 
positive‑sense RNA virus of  29,903 bases, belonging to 
the genus Betacoronavirus. The virus genome encodes for 
spike (S), envelope (E), membrane (M), and nucleocapsid (N) 
proteins. Spike proteins are projected from the envelope and 
are mainly responsible for the entry of  virus into the host 
cells.[12]

The entry of  virus to host cell is mediated by the binding of  
the receptor‑binding domain (RBD) of  the spike protein of  
virus to the peptidase domain of  the angiotensin‑converting 
enzyme‑2 (ACE‑2) receptor on the host cell.

The spike protein (S‑protein) is a clove‑shaped homo trimer 
composed of  a monomer made up of  two segments S1 and 
S2. The S1 forms the ectodomain, while S2 forms the stalk, 
transmembrane, and intracellular domain. The RBD lies in the 
S1 part of  the S‑protein. RBD is composed of  core domain 
and receptor binding motif, which is an extension of  the 
RBD. S‑protein is primed by transmembrane protease, serine 
2 (TMPRSS2). It clips S2 and exposes viral fusion peptide and 
results in viral fusion to the plasma membrane. The S1 subunit 
of  the virus attaches to the ACE‑2 receptor to gain entry into 
the cells. Single nucleotide polymorphisms (SNPs) are the 
mutations, which result in the production of  different proteins, 
different susceptibilities to infections, and can also affect the 
disease severity. SNPs of  TMPRSS2 gene, namely, rs2070788 
and rs383510, have been reported to increase the susceptibility 
of  the host to influenza virus by increasing the expression of  
TMPRSS2 Figure 2 depicts the factors influencing TMPRSS2 
expression.[13] Chiappelli has hypothesized that the same can 
also be extrapolated to the COVID‑19, wherein the same 
SNPs can be associated with increased severity of  infection,[14] 
whereas a study by Hussain et al.[15] has shown that SNPs in 
ACE-2 region, rs73635825 (S19P) and rs143936283 (E329G), 
result in decreased susceptibility to SARS‑CoV‑2. This is 
because of  decreased binding affinity of  these residues with 
SARS‑CoV‑2. It is hypothesized that S‑protein also binds to 
basigin, which is also called extracellular matrix metalloproteinase 
inducer (EMMPRIN), i.e. CD147 present on the host cell surface, 
and leads to invasion of  virus into the cell.[16] Overexpression of  
EMMPRIN in the cells can promote SARS‑CoV‑2 viral infection 
by facilitating the entry of  SARS‑CoV‑2 in cells.[17]

Gender and sex hormones
Increased susceptibility of  males to SARS‑CoV‑2 is attributed 
to androgens such as testosterone and dihydrotestosterone. 
Androgens bind to androgen receptors (ARs) which in turn act as 
an enhancer to the promoter‑bound RNA polymerase machinery. 
This activates the expression of  TMPRSS2 [Figure 3].[18] More 

Figure 1: Gender disparity in COVID-19 mortality (Based on the data 
available from [6] & [7]) Figure 2: Factors influencing TMPRSS2 expression
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S1/S2 regions are primed by the TMPRSS2 and more viruses 
gain entry into the host cells through ACE‑2 receptors. The 
effect of  androgen on susceptibility to COVID‑19 infection is 
substantiated by the studies wherein patients with androgenic 
alopecia are found to have a severe infection.[19] Patients on 
androgen deprivation therapies (ADT) for prostate cancer are 
reported to have lower severity of  infection.[20] A significant 
reduction in ICU admissions due to COVID‑19 was observed 
among males taking antiandrogens such as dutasteride or 
finasteride by Goren et al.[21] This is due to the downregulation 
of  TMPRSS2 by the use of  AR antagonists, which in turn leads 
to lower disease severity by the decreased entry of  SARS‑CoV‑2 
into the cells.

AR is hypothesized to play a major role in disease severity in 
the case of  COVID‑19 infection. The gene for AR is present 
on X‑chromosome Xq 11‑12 and is comprised of  three 
domains: ligand‑binding domain, DNA‑binding domain, and 
transactivation domain. The N‑terminal of  the later domain 
contains the DNA segment known as cytosine, adenine, 
guanine trinucleotide repeats or CAG repeats in a polymorphic 
polyglutamine (polyQ) tract.[22] The polymorphism of  CAG 
repeats has been shown to be responsible for different rates 
of  COVID‑19 mortality among various racial populations. 
Normally, this CAG segment is repeated 11–31 times within 
the gene. The longer length of  CAG repeats results in the 
decreased transactivational activity of  ARs.[23] The short length 
of  CAG repeats is associated with androgenic alopecia and 
is also proposed to lead to increased disease severity.[24] This 
is due to the fact that the short CAG repeats display higher 
expression of  AR genes, generating an increase number of  
functional AR leading to higher sensitivity for androgen and 
thereby an increase in the viral entry in the host cells. A more 
severe disease leading to mortality is also predominantly noted 
among African‑Americans having AR gene polymorphism with 
shorter CAG repeats.[25]

In contrast, recent study by Baldassarri et al.[22] shows that the 
presence of  shorter polyQ tract among the European males 
led to better protection from COVID‑19 among them. This 
was postulated to be because of  proinflammatory action of  
long polyQ repeats, leading to more severe inflammatory 

response. Thus, more studies are required to better understand 
its relationship with COVID‑19.

Gender and immune response
Immune response in both sexes differs because of  the expression 
of  different toll‑like receptors (TLR). A higher expression of  
TLR‑2 and TLR‑4 is seen among males, while females show a 
higher expression of  TLR-3, 7, and 9.[26] TLR-4 has a high affinity 
for S‑protein of  SARS‑CoV‑2.[27] Stimulation of  TLR‑4 has been 
shown to result in a strong cytokine response,[28] which can be one 
of  the possible reasons for more severe infections among men. 
However, in females even though TLR-7 expression is higher, 
the production of  proinflammatory cytokine IL-6 is lesser.[29] 
This might explain milder infections in females.

Additionally, in males, androgens lead to increased neutrophils 
which translates to increased interleukin and tumor growth 
factor‑β production[30] leading to cytokine storm.[31] In females, 
estrogen is associated with T‑cell proliferation and X‑linked 
genes are said to increase the immune response.[26] This might 
be a reason for milder disease among females.

Estrogens decrease the production of  proinflammatory 
cytokines (mediated by Th1) and increase the production of  
antiinflammatory cytokines.[32] Estrogen receptors (α and β) are 
present on B cells. Estrogen combines with these receptors and 
upregulates the expression of  B‑cell lymphoma‑2 (Bcl‑2), SHP‑2, 
and CD22. Increased expression of  these proteins is associated with 
decreased apoptosis.[33] This can increase the survival of  B‑cells and 
provide a protective antibody response to the viral infections.[34]

High level of  estrogen among African women has also been 
proposed to be protective against severe COVID‑19. Estrogen 
decreases endoplasmic reticulum (ER) stress by activating 
unfolded protein response pathway and restores ER integrity. 
This in turn decreases SARS‑CoV‑2 multiplication in the cells 
leading to lesser severity of  infection.[35]

X‑chromosome
Genes present on X-chromosome have an influence on the 
immune response.[36] X‑chromosome has been studied for its 
effects in disease outcomes of  HIV and various other viral 
infections.[37] The presence of  pattern recognition receptor (PRR) 
genes (TLR-7 and 8), AR gene, ACE-2 gene, and genes for 
various interleukins (IL‑RAP1, IL2‑RG) on X‑chromosome 
are responsible for its relationship with innate and adaptive 
immunity.[38] TLR-7 activity has been shown to have an influence 
on the disease severity of  COVID‑19. Viral infections such 
as influenza promote TLR-7 expression. On binding with a 
ligand, TLR-7 activates the myeloid differentiation response 
gene 88 (MyD88) pathway and activates IFN regulatory. This 
results in the production of  proinflammatory cytokines. TLR-7 
also stimulates B‑cells to increase antibody production.[39] In a 
recently published study, loss-of-function variants of  TLR-7 
on X‑chromosome have been detected in patients with severe 

Figure 3: Androgen-androgen receptor complex acting as enhancer 
to promote TMPRSS2 expression
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COVID‑19.[40] Impaired Interferon‑I and Interferon‑II responses 
were also reported among these individuals, signifying a decreased 
immune response.

MicroRNAs (miRNAs) are double‑stranded, non‑coding small 
RNAs, which control gene expression, regulate protein synthesis, 
and are supposed to play a role in immunity.[41] There are about 
112 miRNAs, which are encoded by X‑chromosome but only 
about 2 miRNAs are present on Y‑chromosome. Thus, variations 
in regions of  X‑chromosome, which encode for these miRNAs, 
can have an influence on COVID-19 disease progression.[42]

Age
Children are found to be less affected with COVID‑19 
with majority of  them presenting with milder symptoms.[43] 
Macias‑Parra et al.[44] and Jat et al.[45] in their studies have found 
that majority of  children presented with mild symptoms and 
had a better prognosis. It has been postulated that the presence 
of  lesser ACE‑2 receptors (leading to decreased viral entry 
into host cells) and a higher activity of  the innate immune 
system because of  more proportion of  natural killer cell and 
lymphocytes (resulting in more viral lysis)[46] can be the reason 
behind less severe infection in children.[47]

Neutrophils in children show weak bactericidal effects and 
decreased chemotaxis.[48] Macrophages and monocytes are also 
immature and have decreased TLR‑4 expression, resulting in 
lower cytokine responses.[49] The majority of  severe clinical 
manifestations of  COVID‑19 are because of  the cytokine storm. 
A lower cytokine response can also be considered as one of  the 
causes for less severe infection among pediatric population.

Other factors such as a high level of  melatonin, immunomodulatory 
effects of  other vaccines, and difference in microbiota are also 
proposed to have a protective effect on children. Melatonin is known 
to block CD147, which facilitates entry of  SARS-CoV-2 into cells 
and also decreases expression of  ACE‑2 on cell surface by inhibiting 
calmodulin. This in turn can result in decreased virus entry into the 
cells. Since children are known to have higher levels of  melatonin, 
they are postulated to have less severe infections. Vaccination among 
children for various infections is known to produce cross‑reacting 
antibodies, which also has a protective action from SARS‑CoV‑2. 
Certain studies have also shown that children are colonized with a 
heavy load of  viruses and bacteria and hence competition among 
these and SARS‑CoV‑2 might lead to a lesser entry of  it in the human 
cells and thus resulting in milder infections.[50]

A thorough understanding of  the factors influencing disease 
progression in children is of  vital importance. It will help in 
devising better treatment strategies for pediatric COVID‑19.

Host genetic factors
HSD3B1 gene
The genetic makeup of  the host also plays a vital role in 
determining the severity of  the illness. HSD3B1 gene encodes 

for 3β‑hydroxysteroid dehydrogenase‑1, which transforms 
dehydroepiandrosterone into more active androgens. There 
are two forms of  HSD3B1 gene, i.e., adrenal permissive 
HSD3B1 (1245C), which encodes for enzyme which is resistant 
to degradation, and adrenal restrictive form, which encodes for 
enzyme which is degraded easily. The presence of  an adrenal 
permissive form of  this gene might lead to increased androgen 
production and thus impacting disease severity. It can also 
result in associated features such as androgenic alopecia.[51] 
Spain recorded one of  the highest COVID‑19 mortality rates 
worldwide, i.e. 544 per million population in the initial phases of  
the pandemic, as compared to other European countries.[52] This 
could be due to the prevalence of  adrenal permissive HSD3B1 
allele among the Spanish population.[53]

Genetic variants
In recent studies, genetic variants (a group of  alleles present on 
various chromosomes) are found to be associated with COVID‑19 
severity.[54] DNAH7 gene encodes for dynein axonemal chain 7. 
It is a component of  ciliary axonemes. Variations in DNAH7 
can result in decreased mucociliary clearance and eventually 
severe COVID‑19 symptoms.[55] CLUAP1 gene is responsible for 
the formation of  clusterin‑associated protein 1, which helps in 
ciliogenesis.[56] CLUAP1 gene containing the super variant SNP 
rs2301762 can lead to alteration in the functioning of  cilia and 
is known to be associated with severe disease.[57] Moreover, the 
effect of  SARS‑CoV‑2 on cilia can be gauged by the fact that 
COVID‑19 infection leads to ciliary dysregulation and anosmia.[58]

Acute myocardial damage has been reported among certain 
COVID‑19 patients.[59] Genes DES and SPEG can be associated 
with cardiomyopathies and cardiac manifestations of  the 
infection. Gene DES and gene SPEG encode for muscle-specific 
intermediate filament and muscle‑enriched protein kinase, 
respectively.[60] SNPs in Chr2_221 located near the genes DES 
and SPEG are associated with cardiomyopathy. This can also 
be enhanced by SARS‑CoV‑2 leading to acute damage of  the 
myocardial tissues.[59]

COVID‑19 leads to platelet activation and may predispose 
patients to various thrombotic diseases.[61] STXBP5 encodes for 
syntaxin 1 binding protein. It promotes platelet secretion and is 
associated with thromboembolic disorders.[62] Chr6_148 is a super 
variant, which contains 101 SNPs. These SNPs are present in 
STXBP5 gene (89 in STXBP5 and 6 in STXBP5‑AS1). Mutations 
in STXBP5 predispose to venous thromboembolic disease and 
might result in increased mortality in COVID‑19 patients.[54]

Another genetic factor influencing disease severity is 
WSB1 gene. It functions as receptor binding molecule of  
interleukin‑21 (IL‑21).[63] Three variant SNPs are found on 
Chr17_26, which includes SNP rs60811869 which is an 
expression quantitative trait locus of  WSB1 gene. Genetic 
variations in this region will also result in higher mortality among 
COVID‑19 patients due to an altered immune system.
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Of  late, C9orf72 gene, which is an autophagy gene and is 
associated with vesicular trafficking and lysosomal activity, 
has also been shown to affect outcomes in COVID‑19. It is 
responsible for the degradation of  inflammatory mediators 
like TLRs. There are many hexanucleotide repeat expansions, 
which are present in it. Intermediate repeats (repeats of  >10) 
show a higher degree of  methylation among them and can 
result in severe infection due to decreased degradation of  the 
inflammatory markers.[64]

Ellinghaus et al . [65] have recently shown that 3p21.31 
gene cluster has a significant association with severity in 
COVID‑19 positive patients with respiratory failure. This is 
a cluster of  six genes, namely, SLC6A20, LZTFL1, FYCO1, 
CXCR6, CCR9, and XCR1. SLC6A20, which encodes for 
sodium‑amino acid transporter, forms a complex with ACE‑2 
and facilitates entry of  SARS‑CoV‑2. Increased expression 
of  this gene can lead to more entry of  the virus into the 
cell. Other genes in the cluster such as LZFTL1 and CXCR6 
are to influence ciliogenesis and activity of  natural killer 
cells. A variation in the genetic components of  these genes 
can also have an effect on disease progression.[66] Various 
genome‑wide association studies have been undertaken 
to ascertain the effect of  different genetic variations on 
COVID‑19. SNP rs11385942 on chromosome 3 has been 
identified as a risk variant in such studies, signifying the role 
of  host genetics on COVID‑19 severity.[67]

Pregnancy
Physiological conditions such as pregnancy are also postulated 
to have effects on COVID‑19 infection. Usually, an increase 
in ACE‑2 is seen during pregnancy and this poses a greater 
risk of  acquiring SARS‑CoV‑2 infection during pregnancy.[68] 
A decrease in Th1 response compared to Th2 response is 
observed during pregnancy, which might lead to lesser clearance 
of  virus‑infected cells and severe COVID‑19 infection.[69] Other 
factors that can result in severe COVID‑19 in gravid females 
can be a decrease in natural killer cells and reduced dendritic 
cells. These need to be studied further to accurately ascertain 
the relationship between these immunological changes and the 
severity of  COVID‑19.[69]

Risk factors
Habits such as smoking and alcoholism are attributed to increased 
severity of  many viral infections, possibly due to reduced level of  
natural killer (NK) cells among people who smoke.[70] Similarly, 
other habits such as substance abuse can also have an effect of  
COVID‑19 infections.

Smoking
Smoking is found to have a direct relationship with the worsening 
of  COVID‑19 symptoms in the majority of  studies.[71] Benzano 
et al.[72] in their study found a significant correlation between 
smoking and COVID‑19 severity with about 82% patients with 
severe COVID‑19 being smokers.

This can be due to the upregulation of  ACE‑2 receptors 
in current smokers, which result in increased uptake of  the 
SARS‑CoV‑2 virus by the host cells.[73] Recent studies have also 
demonstrated that a significant increase in ARs and ACE-2 
receptors is seen among elderly male smokers.[18] This can in 
turn lead to an increase in viral entry into cells and severe clinical 
manifestations of  the disease. This is corroborated in the study 
by Maggi et al.[74]

In contrast, Purohit and Panda in their study showed a protective 
influence of  smoking against SARS‑CoV‑2 infection. The 
probable causes for such an observation could be squamous cell 
metaplasia (SQM) and ACE‑2 expression. SQM is seen among 
smokers and usually results in the altered cell surface, which could 
hamper the entry of  the virus into the cell. Certain studies have 
also shown that nicotine decreases the expression of  ACE‑2, 
hence decreasing infection. Further analysis of  smoking and its 
effect on COVID‑19 is still warranted to better understand the 
interplay of  various factors.[75]

Alcoholism and substance abuse
Alcohol consumption is known to reduce immunity to viral 
infections and makes the host more vulnerable to COVID‑19.[76] 
This was substantiated by Saurabh et al.[77] in their study, wherein 
alcohol consumption was found to be a risk factor for the 
development of  symptomatic COVID‑19. Substance abuse leads 
to cardiomyopathy, lung injury, and pulmonary hypertension, 
which results in a bad prognosis of  COVID‑19 infection.[78] 
This has been substantiated in studies by Wang et al.[79] and 
Althobaiti et al.[80]

Figure 4 depicts the summary of  gender and host genetic factors 
influencing COVID-19 severity.

Conclusion

Host factors such as TMPRSS2 and ACE‑2 expression, androgen, 
and ARs play a major role in contributing to higher severity and 
mortality in male gender. Understanding the interplay of  gender 
and host genetic factors influencing COVID-19 mortality is the 
need of  the hour to devise appropriate management and research 
should be carried out to find out the role of  antiandrogen 
in decreasing the severity of  COVID‑19. It will also be of  
immense help for primary caregivers to devise effective triage 
and management protocols for future COVID‑19 surges.

Key Messages

•	 Gender and genetic factors influence the severity of  
COVID‑19.

•	 The presence of  androgens in males has shown to be a risk 
factor for severe SARS‑CoV‑2 infection.

•	 Antiandrogens or ADT as used in prostate cancer can also 
be used for the treatment of  COVID‑19.

•	 X‑chromosome carries genes that are responsible for immune 
response.
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•	 Estrogen is protective against severe COVID‑19.
•	 Children usually have milder symptoms because of  the 

presence of  higher proportion of  lymphocytes, high level of  
melatonin, and cross protection conferred by other vaccines.

•	 Genetic variation among hosts, i.e. SNPs in DNAH7, 
DES, SPEG, STXBP5, and chromosome 3 cluster of  genes 
influence the disease severity of  COVID-19.
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