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Abstract

The abundance and diversity of the LINE-1 (L1) retrotransposon differ greatly among vertebrates. Mammalian genomes contain

hundreds of thousands L1s that have accumulated since the origin of mammals. A single group of very similar elements is active at a

time in mammals, thus a single lineage of active families has evolved in this group. In contrast, non-mammalian genomes (fish,

amphibians, reptiles) harbor a large diversity of concurrently transposing families, which are all represented by very small number of

recently inserted copies. Why the pattern of diversity and abundance of L1 is so different among vertebrates remains unknown. To

address this issue, we performed a detailed analysis of the evolution of active L1 in 14 mammals and in 3 non-mammalian vertebrate

model species. We examined the evolution of base composition and codon bias, the general structure, and the evolution of the

different domains of L1 (50UTR, ORF1, ORF2, 30UTR). L1s differ substantially in length, base composition, and structure among

vertebrates. The most variation is found in the 50UTR, which is longer in amniotes, and in the ORF1, which tend to evolve faster in

mammals. ThehighlydivergentL1 familiesof lizard, frog,andfishshare species-specific features suggesting that theyare subjected to

the same functional constraints imposed by their host. The relative conservation of the 50UTR and ORF1 in non-mammalian verte-

brates suggests that the repression of transposition by the host does not act in a sequence-specific manner and did not result in an

arms race, as is observed in mammals.
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Introduction

The LINE-1 (or L1) non-LTR retrotransposon is one of the most

widely distributed transposable elements in vertebrate ge-

nomes (Tollis and Boissinot 2012). The abundance and diver-

sity of L1 differs considerably among vertebrates, and is

probably one of the genomic features that show the most

variation in this group. At one end of the spectrum, mamma-

lian genomes host an extremely large number of L1 insertions

that have accumulated since the origin of mammals and ac-

count for close to 20% of their mass (Lander et al. 2001;

Mouse Genome Sequencing et al. 2002). In contrast, L1 in

non-mammalian vertebrates are represented by much smaller

copy numbers, from a few hundreds to several thousand el-

ements, representing <0.5% of their genome size (Hellsten

et al. 2010; Howe et al. 2013). This is likely due to a higher rate

of DNA deletion in these genomes but could also reflect var-

iations in the rate of fixation of novel insertions, or both

(Duvernell et al. 2004; Furano et al. 2004; Novick et al.

2009; Blass et al. 2012; Tollis and Boissinot 2013).

Another difference between mammals and non-mammals

reside in the mode of evolution of L1 (fig. 1). In mammals, only

the most recently evolved group of elements is active at a

given time so that a single family of progenitor is usually pro-

ducing novel insertions. In the long-term, this mode of evolu-

tion results in a ladder-shaped phylogeny, demonstrating the

replacement of one family by a younger one, and so forth

(Smit et al. 1995; Furano 2000). This mode of evolution is

consistent with an arms race between the host, which

represses L1 transposition, and L1, which evolves to bypass

repression by the host. Conversely, in reptiles and fish, several

highly divergent families are concurrently active in the same

genome. These active families have coexisted for extended

period of time, since their divergence may pre-date the

origin of vertebrates (Furano et al. 2004; Novick et al. 2009).

The differences in the evolutionary dynamics of L1 among

vertebrates have far-reaching consequences because L1 activ-

ity has considerably influenced other genomic features and

since L1 insertions can be both a source of deleterious alleles

GBE

� The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Genome Biol. Evol. 8(12):3485–3507. doi:10.1093/gbe/evw247 Advance Access publication October 19, 2016 3485

Deleted Text: 100
Deleted Text: 1000 
Deleted Text: less than 
Deleted Text: Blass, et&nbsp;al. 2012; 
Deleted Text: <xref ref-type=
http://creativecommons.org/licenses/by-nc/4.0/


(Boissinot et al. 2006) and evolutionary novelties (Warren et al.

2015). It is thus important to determine the mechanisms re-

sponsible for these differences. A number of studies have ex-

amined the population dynamics of L1 insertions in

mammalian (Boissinot et al. 2006; Witherspoon et al. 2006;

Rishishwar et al. 2015) and non-mammalian species

(Duvernell, et al. 2004; Blass et al. 2012; Tollis and Boissinot

2013) but no studies have examined the evolution of the L1

sequence across vertebrates. In fact, almost everything we

know about L1, from its structure to its mechanism of trans-

position, results from studies in mammals, with a focus on

human and murine rodents (for a recent review, see

Richardson et al. 2015). Considering the difference in the evo-

lutionary dynamics of L1 between mammals and non-mam-

malian vertebrates, it is unlikely that everything we know from

mammals applies to fish and reptiles. Analyzing L1 evolution in

a phylogenetically broader comparative context could cer-

tainly improve our understanding of the biology of L1 across

genomes but also give us powerful insights into mammalian

L1 biology.

L1 transpose through a process called target-primed re-

verse transcription (TPRT) where reverse transcription of the

L1 RNA into cDNA takes place at the site of insertion (Luan

et al. 1993; Cost et al. 2002). A typical mammalian L1 element

is 6–7 kb long and contains a 50UTR, two open-reading frames

(ORF1 and ORF2) and a 30UTR (fig. 2A). L1 insertions typically

end with an A-rich tail and are flanked by short (<10 bp)

target site duplication. In modern human L1, the 50UTR con-

tains a CpG island and acts as an internal promoter, which

drives transcription of the full-length L1 transcript (Swergold

1990; Severynse et al. 1992; DeBerardinis and Kazazian

1999). The 50UTR of the mouse and rat L1 is bipartite and

consist of tandem arrays of monomers (~200 bp for mouse,

~650 bp for rat), which contain CpG-island and transcriptional

signals, connected to ORF1 by an ~250-bp region called the

tether (fig. 2A) (Adey, Tollefsbol, et al. 1994; Furano 2000).

The 50UTR shows little or no homology among mammalian

species or even among families within the same species (Adey,

Schichman, et al. 1994; Khan et al. 2006; Sookdeo et al.

2013). Evolutionary analyses in primates and rodents have

demonstrated that L1 lineages have repeatedly acquired

novel 50UTR, possibly in response to the host repression of

L1 transcription (Jacobs et al. 2014). The human 50UTR con-

tains an anti-sense promoter on the negative strand (Speek

2001) and a small ORF, termed ORF0, which is transcribed and

translated but has no known function (Denli et al. 2015).

ORF1 and ORF2 are both necessary for L1 transposition.

ORF1 contains a coiled-coil domain (CCD), which promotes

the formation of ORF1p trimers, a non-canonical RNA recog-

nition motif (RRM) and a highly conserved C-terminus domain

(Martin and Bushman 2001; Martin et al. 2003; Januszyk et al.

2007; Khazina and Weichenrieder 2009). The function of

ORF1 remains obscure but it has been shown to have nucleic

acid chaperone activity (Martin and Bushman 2001) and

recent studies showed that the human ORF1p requires phos-

phorylation for retrotransposition in a cell culture-based assay

(Cook et al. 2015). ORF1p participate in the formation of L1

ribonucleoprotein particles (RNP), which is a necessary step of
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FIG. 1.—Pattern of evolution of L1 families in mammals and non-mammals. The phylogenies are ML trees based on the data of Khan et al. (2006) and

Novick et al. (2009). The number of copy for each family is indicated in bold. (A) This phylogeny represents the evolution of L1 families in human and

demonstrates the ladder-like mode of evolution typical of mammals. (B) This phylogeny is based on lizard L1 families (Novick et al. 2009) and is typical of non-

mammalian vertebrates (reptiles, amphibians and fish).
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the transposition process (Kolosha and Martin 1997; Kulpa

and Moran 2005). Interestingly, recent studies showed that

interactions of purified ORF1p with nucleic acids exemplified

several of the predicted properties of the L1 RNP, including

stabilization of the putative TPRT intermediate (Callahan

et al. 2012). The latter paper is particularly informative as it

demonstrated that rapid oligomerization between ORF1p

trimers upon their binding to nucleic acid is essential for

retrotransposition, a novel coiled-coil-dependent property

which is conserved despite extensive remodeling of the

coiled-coil during evolution. ORF2 is highly conserved

among mammals and contains endonuclease and reverse

transcriptase domains (Mathias et al. 1991; Feng et al.

1996). A short (~40 bp) inter-genic region (IGR) separates

the two ORFs in human, whereas an IGR spanning several

hundred base pairs was found in marsupials, megabats and

afrotheria (Yang et al. 2014). Mouse L1 lacks an IGR and the

30 end of ORF1 overlaps with the 50 end of ORF2. The dicis-

tronic structure of L1 is unusual in eukaryotes and it is still

unclear how the ORFs are translated. Two possibilities have

been offered. Either there are two ribosome entry sites (Li

et al. 2006), one for each ORFs, or the ribosome that trans-

lated ORF1 scan through the IGR to ORF2 start codon and

reinitiate translation (Alisch et al. 2006).

The ORFs of L1 are AT rich, with a strong A-bias on the

positive strand, which could account for premature poly-ade-

nylation signals and inefficient transcription, at least in cell cul-

ture based retrotransposition assays (Perepelitsa-Belancio and

Deininger 2003; Han et al. 2004). The 30UTR shows very little

conservation among species, yet all mammalian 30UTRs contain

a poly-G tract of unknown function (Howell and Usdin 1997)

and end with a functional but weak poly-adenylation signal,

which is often by-passed during transcription, resulting in the

transduction of 30 flanking sequences (Pickeral et al. 2000).

A

B

FIG. 2.—(A) Typical structure of human and murine rodents full-length L1 elements (CCD = Coiled-coil domain; RRM= RNA recognition motif; CTD= C-

terminal domain; EN =Endonuclease domain; RT= Reverse transcriptase domain). (B) Schematic structure of full-length L1 families in mammals, lizard, frog

and zebrafish.
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Here, we performed a comparative analysis on the evolu-

tion of L1 active families across mammals and in three non-

mammalian vertebrates species. We demonstrate that the

length, structure, and base composition of L1 differs substan-

tially among vertebrates but is remarkably conserved within

species, exemplifying the finely tuned co-evolution between

L1 and its host. We propose that these variations reveal fun-

damental differences in the nature of the interactions be-

tween L1 and its vertebrate hosts.

Materials and Methods

We collected full-length copies from the genome of 14 mam-

mals (the opossum, armadillo, elephant, hyrax, rat, mouse,

rabbit, mouse lemur, human, dog, giant panda, horse, cow,

and pig), a non-avian reptile (the green anole Anolis carolinen-

sis), an amphibian (the African-clawed frog Xenopus tropicalis),

and a teleost fish (the zebrafish Danio rerio). The coordinates of

the elements were retrieved from the repeatmasker tables

available at the genome.ucsc.edu website. Each element was

recovered with 2 kb of sequence upstream and downstream to

accurately identify the start and the end of the full-length ele-

ment. Only full-length and recently active elements were used

in the analysis to limit the uncertainties inherent to the con-

struction of consensus sequences in each species. A phyloge-

netic analysis using ORF2 was first performed to identify active

or recently active families,which were recognizedasmonophy-

letic clusters of elements with branch length<2% divergence.

To insure accuracy, we only used families for which we could

collect at least eight full-length genomic copies. A consensus

sequence was then derived for each active or recently active

family. This approach was used for all organisms except for

human and mouse, for which we used the consensi described

in Khan et al. (2006) and Sookdeo et al. (2013).

Sequences were manipulated and consensi were gener-

ated using Geneious 8.1.5, created by Biomatters and avail-

able at www.geneious.com (last accessed October 20, 2016).

The location of the ORFs was determined using the ORF finder

tool implemented in Geneious 8.1.5 and the presence of func-

tional motifs was determined with the search tool at http://

www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi (last accessed

October 20, 2016). The level of identify among amino acid

sequences was calculated using Geneious 8.1.5. Searches for

similarity among regions that could not be reliably aligned (the

UTRs) were performed using DOTMATCHER at http://www.

bioinformatics.nl/cgi-bin/emboss/dotmatcher (last accessed

October 20, 2016). Repeated motifs were searched using

the Tandem Repeats Finder website at https://tandem.bu.

edu/trf/trf.html (last accessed October 20, 2016) (Benson

1999). The presence of known phosphorylation motifs was

determined using the Eukaryotic Linear Motifs search engine

at http://elm.eu.org/. The presence and structure of CCDs was

assessed using the COILS server at http://www.ch.embnet.

org/software/COILS_form.html (last accessed October 20,

2016). COILS calculate the probability that a given protein

sequence forms a coiled-coil structure. Protein domains that

can form coiled coils typically consist of seven residues repeats

(or heptads) with non-polar or hydrophobic residues at the

first (a) and fourth (d) positions of the heptads. The analysis

was run with window width of 14, 21, and 28. Since the

results were very similar among analyses, we present only

the results obtained with the 28 residues window width. A

conservative cut-off of 90% was used to define an amino acid

as participating in a coiled coil structure. In our analysis, we

differentiated canonical heptads (a–b–c–d–e–f–g), non-ca-

nonical coiled coils (regions with a high probability to partici-

pate in the formation of a coiled coil but which deviate from

the canonical heptad structure, for example, a–b–c–b–c–d–e–

f–g or a–b–c–g–a–f–g) and non-coiled coil regions (with low

probability to participate in the formation of a coiled coil).

A phylogeny of all active families was built using the maxi-

mum likelihood method and a LG + G+I + F model of mutation,

as determined by the model estimation tool, implemented in

MEGA 5.0 (Tamura et al. 2011). The robustness of the nodes

was determined using 1,000 bootstrap replicates.

Base composition and codon usage were determined using

the CAIcal program at http://genomes.urv.es/CAIcal/ (last

accessed October 20, 2016) (Puigbo et al. 2008). For each

codon, the Relative Synonymous Codon Usage (RSCU) was

estimated (Sharp et al. 1986). The RSCU is defined as the

number of time a codon is used for a given amino acid divided

by the number of synonymous codons for that amino acid. We

also calculated two estimators of codon bias: Nc (Wright 1990)

and CAI (Sharp and Li 1987). Nc (e.g., the effective number of

codonused inagene)quantifieshowmuch theuseofa specific

codon deviates from equal use of all synonymous codons for a

given amino acid. Nc ranges in value from 20 (when each

amino acid is exclusively encoded by a single synonymous

codon) to 61 (when all synonymous codons are equally repre-

sented). The parameter CAI (Codon Adaptation Index) esti-

mates the codon bias given the codon usage of the organism

and the GC content of the gene. It ranges from 0 to 1, 1 mean-

ing that it is always the most common synonymous codon that

is used and the codon bias is low. The codon usage of the

organisms was obtained from the codon usage database at

http://www.kazusa.or.jp/codon/ (last accessed October 20,

2016). For mammals we performed the analysis with the

human and the mouse codon usage and we obtained identical

results. Since the lizard codon usage was poorly represented in

the database, we estimated the codon usage from the lizard

cDNA entries available in GenBank. Statistical significance of

CAI is estimated by comparing the observed CAI values with

the expected CAI (or eCAI), which describes the random codon

usage assuming the GC content of the gene studied.

RNA secondary structures were investigated using the

RNAfold web server at the Vienna RNA web suite (Gruber

et al. 2008). Putative Internal Ribosome Entry Sites (IRES)

were identified using the IRESPred tool, which uses 35
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features based on sequence and structural properties to pre-

dict the presence of cellular or viral IRES (Kolekar et al. 2016).

We also used the Viral IRES Prediction System (VIPS), which

uses the secondary structure of four groups of known viral

IRES to predict putative viral IRES (Hong et al. 2013).

Results

We derived full-length consensus sequences for 14 mamma-

lian species, the green anole, the African clawed frog and the

zebrafish. A single consensus was derived for each mamma-

lian species because their genome hosts a single active (or

recently active) L1 family, with the exception of the house

mouse. The mouse genome contains three active families

but only one of them was included in this analysis (L1Md_A)

since they are similar in sequence and have been analyzed in

details elsewhere (Sookdeo et al. 2013). In the anole, frog, and

zebrafish, we derived 12, 12, and 17 L1 consensi, respectively.

These species are known to host a larger number of L1 families

(Furano et al. 2004; Novick et al. 2009) but the stringency of

the criteria we used to construct full-length consensi did not

permit deriving consensi for all active families. Thus, the data-

set analyzed here consists of 55 consensus sequences (avail-

able as fasta file in supplementary material S1, Supplementary

Material online).

Phylogenetic Relationships and Divergences

We first performed a phylogenetic analysis using the most

conserved region of L1, ORF2 (fig. 3). Mammalian L1 se-

quences form a monophyletic group with strong support.

The lizard L1 elements also form a clade, composed of two

divergent sub-clades (Lizard clade 1 and clade 2 on fig. 3).

Two highly divergent clades are also found in zebrafish and

frog but these clades do not form species-specific groups,

suggesting that their divergence could have occurred before

the split between teleostean fish and tetrapods.

The identity among mammalian ORF2 ranges from 48.4 to

76.1% (table 1). As expected the identity between the opos-

sum L1 and the placental mammals is lower (48.4–53.6%)

than among placentals (58.2–76.1%). The identity between

the two most divergent clades in lizard, frog, and zebrafish is

comparatively much lower, with average values of 26.5%,

27.5%, and 31.2%, respectively. The identity within each of

the clades is also low with average values of 51.8%, 38.5%,

and 37.9% for clade 1 in lizard, frog, and fish, respectively.

The divergence between L1 families, as well as the phyloge-

netic analysis, clearly indicates that each non-mammalian

genome contains a large diversity of L1 families, which is

very ancient and has persisted since the origin of vertebrates.

Structural Evolution of LINE-1 in Vertebrates

Full-length L1 elements vary substantially in length among and

within organisms (table 2, fig. 2 and supplementary material

S2, Supplementary Material online). Mammalian L1s tend to

be longer (7.1 kb on average) than the frog (5.7 kb), and fish

(5.8 kb) L1s. There is no significant difference in the length of

the elements belonging to the two main L1 clades in frog and

fish. In lizard, elements of clade 1 are similar to mammalian L1

in length (6.4 kb on average) but clade 2 elements are similar

to frog and fish with regard to length (5.4 kb).

Since there is very little variation in the length of ORF1 and

ORF2, differences among vertebrate L1s are caused by varia-

tion in the length of the 50UTR, 30UTR, and IGR (table 2).

Mammalian L1s and lizard clade 1 elements are characterized

by 50UTRs that are considerably longer (1.5 and 1.3 kb on

average, respectively) than the fish, frog, and lizard clade 2

L1s (0.16, 0.14, and 0.23 kb, respectively). The length of the

30UTR can also differ greatly among families, yet these varia-

tions do not follow a clear evolutionary pattern and the ac-

quisition of long 30UTRs seems to have occurred sporadically.

For example, the 30UTR of mammals shows a considerable

range of length from 148 bp in horse to 994 bp in elephant,

with an extreme value of 2,751 bp in armadillo. Similarly the

30UTR of the zebrafish ranges from 167 to 807 bp, with the

evolution of a very long 30UTR of 2,124 bp in the L1-11A

family.

The presence and length of an IGR also significantly affects

the overall length of the elements (table 2, fig. 2). Fish, frog,

and lizard clade 2 elements have a relatively long IGR that

ranges from 257 to 1,032 bp. Conversely, six out of the

nine lizard clade 1 elements are lacking an IGR, and for five

of those, ORF1 and ORF2 overlap. Most mammalian L1 have a

small IGR ranging from 26 to 82 bp. The exceptions are the

opossum, elephant, hyrax, and pig, with IGR ranging from

423 to 719 bp (fig. 4). Assuming that Afrotheria (elephant

and hyrax) is the sister group to all other placental mammals

(Meredith et al. 2011), we can infer that the ancestral mam-

malian L1 had a long IGR that was lost after the split between

Afrotheria and the other placentals and that the pig IGR was

acquired independently.

Base Content and Codon Usage

To investigate the intrinsic constraints on LINE composition

and how this is influenced by the context of their host ge-

nomes, we compared GC content and codon usage across

species and among families within species. The overall base

content of L1 in vertebrates tends to be AT-rich, with GC

content ranging from 33.9 to 48.1%. There are considerable

differences in base composition among regions of L1 and

among vertebrates (table 2), although the average genomic

GC content differs only moderately among vertebrates

(~41% on average in mammals, ~40.3% in lizard, ~40.0%

in frog, and ~38.6% in zebrafish). There is however very little

variation in the GC content of L1 within species, even among

the divergent lizard, frog, and fish families (table 2 and sup-

plementary material S2, Supplementary Material online). The
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FIG. 3.—Maximum likelihood phylogeny of L1 families based on ORF2 amino acid sequences.
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50UTR tend to be enriched in GC, relative to other regions of

L1. This is particularly true in mammals, with an average GC

content of 57.2% in the 50UTR. The mammalian 30UTR is also

GC-rich (46.3%) when compared with other vertebrates,

which have remarkably low GC content in this region of L1

(from 24.7% in fish to 35.0% in frog). Since mammals have

on average longer UTRs than other vertebrates, the high GC-

content at the extremities of the elements contributes signif-

icantly to the higher GC content of mammalian L1 relative to

lizard and fish.

There are also remarkable differences in the GC content of

the ORFs (table 2). The GC-content of ORF1 and ORF2 are sig-

nificantly different among vertebrates (ANOVA; F3, 51=70.61;

P< 0.00001 for ORF1; F3, 51=79.31; P<0.00001 for ORF2). In

Table 2

Length and GC Composition of L1 Families in Mammals, Lizard, Frog, and Fish

Total 50UTR ORF1 IGR ORF2 30UTR

Mammals Length 7,144 � 894 1,471 � 581 1,011 � 82 172 � 222 3,836 � 22 654 � 638

[6,020–9,646] [906–3,229] [891–1,158] [26–719] [3,807–3,882] [148–2,751]

% GC 42.6 � 1.6 57.2 � 5.8 39.1 � 2.2 36.9 � 4.1 37.9 � 1.3 46.3 � 2.5

[39.2–45.3] [43.3–63.1] [35.9–44.1] [29.7–42.3] [35.5–39.2] [40.7–49.5]

Lizard Clade 1 Length 6,435 � 165 1,268 � 198 1,066 � 21 24 � 48 3,760 � 52 345 � 118

[6,151–6,703] [792–1,465] [762–1,125] [0–110] [3,645–3,813] [194–570]

% GC 36.4 � 1.0 45.2 � 2.9 37.3 � 2.8 34.5 � 5.7 33.5 � 1.1 33.1 � 5.8

[34.8–37.8] [39.5–49.7] [34.7–43.8] [30.5–38.5] [31.7–35.0] [22.5–40.2]

Clade 2 Length 5,381 � 139 229 � 11 981 � 193 310 � 64 3,737 � 17 125 � 29

[5,234–5,510] [216–238] [762–1,125] [270–384] [3,723–3,756] [96–154]

% GC 35.1 � 1.2 44.5 � 1.2 39.7 � 2.1 46.1 � 5.7 32.5 � 0.7 32.6 � 6.7

[33.6–35.9] [43.1–45.4] [37.3–40.9] [39.6–50.0] [31.7–33.0] [25.3–38.5]

Frog Length 5,712 � 234 142 � 18 999 � 83 598 � 263 3,735 � 159 239 � 81

[5,470–6,340] [91–162] [873–1,113] [257–1,032] [3,225–3,855] [98–365]

% GC 44.5 � 3.3 55.2 � 4.4 50.5 � 4.0 43.7 � 4.6 43.3 � 3.2 35.0 � 4.9

[38.3–48.1] [44.0–59.5] [42.7–54.2] [33.7–50.1] [37.5–47.0] [25.9–42.3]

Fish Length 5,794 � 404 165 � 42 877 � 70 536 � 132 3,773 � 71 448 � 471

[5,380–7,293] [113–267] [780–1,059] [311–730] [3,516–3,837] [167–2,157]

% GC 36.9 � 1.3 41.3 � 3.6 47.1 � 2.9 33.7 � 3.2 35.9 � 1.5 24.7 � 4.6

[33.9–39.2] [36.0–47.5] [41.0–52.8] [27.7–40.4] [33.3–38.6] [16.7–34.0]

FIG. 4.—Evolution of the mammalian IGR. The figure suggests that the ancestor of mammals had an IGR that was lost after the split between afrotheria

(elephant and hyrax) and other mammals and that an IGR was regained in pig. The branch-lengths on the phylogeny are not up to scale.
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mammalsand lizard,bothORFsshowaconsiderableenrichment

in adenine (42.2% on average in ORF2 and 43.4% in ORF1),

which is observed at the three codon positions (fig. 5). In frog

and zebrafish, adenine also tends to be more frequent than the

other three bases (33.7% in ORF2 and 32.1% in ORF1), yet the

difference isnotaspronouncedas inmammalsand lizard, result-

inginanoverallhigherGCcontentoftheORFs(table2).Zebrafish

ORF2 is unique because it is enriched for both adenine and thy-

mine. It can be noted that within each species the base compo-

sition, and in particular the frequency of adenine, is strikingly

similar at all codon positions. In all vertebrates, however, the

GC content of ORF1 is significantly higher than ORF2 (P<0.05

for all species using t-test; table 2), the largest difference being

found in zebrafish (ORF1=47.1%; ORF2=35.9%).

Considering the differences in base composition in the

ORFs, we decided to examine how this relates to codon

usage. Table 3 shows the codon usage for ORF1 and ORF2

in all taxa as well as an estimator of the bias for each codon

(RSCU). With very few exceptions, when a codon with an

adenine at the third position is available, it will be the codon

most frequently used. This is true for both ORFs and in all taxa.

This was further confirmed by calculating two estimators of

codon usage bias, CAI and Nc. CAI compares the codon usage

of a gene of interest (ORF1 and ORF2 in our case) with the

codon usage of the host’s genome whereas Nc estimates how

the codon usage differs from equal usage of synonymous

codons (table 4). The elevated values of Nc are consistent

with a substantial codon usage bias, yet none of the values

of CAI were significantly different from expectation given the

codon usage of the host and the GC content of the genes.

This is not really surprising since the enrichment in adenine is

found at all three codon positions.

We examined how differences in base composition affect

the amino acid composition of the ORFs (fig. 6). Two obser-

vations can be made. First, mammalian and lizard L1 are en-

riched in lysine and glutamic acid, two amino acids encoded

by A-rich codons (AAA and AAG for lysine and GAA and GAG

for glutamic acid), and for both amino acids it is the A-rich

codon that is strongly preferred (AAA and GAA; table 3).

Second, the frog and fish L1s contain a higher proportion of

three amino acids encoded by codons that are less likely to

contain an A: alanine (GCA, GCC, GCG, GCU), proline (CCA,

CCC, CCG, CCU), and Serine (AGC, AGU, UCA, UCC, UCG,

UCU). These differences in amino acid composition are ob-

served for both ORFs and are thus unlikely to result from se-

lection on the function of the proteins.

One of the consequences of an enrichment in A-rich codon

is the potential formation of premature polyadenylation signal

and thus inefficient transcription (Perepelitsa-Belancio and

Deininger 2003). We estimated the average number of canon-

ical and non-canonical (AATAAA, ATTAAA) poly-adenylation

signals in the ORFs. As expected, the number of potential

premature poly-adenylation signals in the ORFs is larger in

mammals (16.3 on average) and lizard (25.0) than it is in

fish (12.2) and frog (7.5), suggesting that the transcription

of L1 might be more efficient in frog and fish than in amniotes

(supplementary material S2, Supplementary Material online).

Evolution of the 50UTR

Previous work in mammals has shown that L1 has the ability to

recruit novel 50UTR, possibly to bypass host repression of tran-

scription (Adey, Schichman, et al. 1994; Khan et al. 2006;

Sookdeo et al. 2013). We thus decided to examine how

common the replacement of 50UTR across vertebrates is. As

reported above, 50UTRs fall in two categories: the long 50UTR

of mammals and lizard clade 1 and the short 50UTR of fish,

frog and lizard clade 2. These differences reflect an L1-specific

evolutionary trend, since there are no substantial differences

in the length of 50UTRs among eukaryotes (Mignone et al.

2002) Based on the phylogeny of L1 (fig. 3), we can infer

that the ancestral state is most likely a short 50UTR and that

a long 50UTR evolved independently twice, in the ancestor of

all mammals and in the anole lineage.

Using DOTMATCHER we compared the 50UTRs of mam-

mals but we failed to find any significant similarity among

them, which is consistent with the rapid 50UTR turnover de-

scribed in primates and rodents (Adey, Schichman, et al.

1994; Khan et al. 2006; Sookdeo et al. 2013). Despite the

absence of homology among 50UTRs, almost all mammalian

L1s begin with a sequence of consensus G2-6(A/C)G2AGNCA

AGATGGCGGA, the motif CAAGATGGC corresponding to a

YY1 transcription factor binding site which is critical for tran-

scription initiation (Athanikar et al. 2004). The only excep-

tions are the mouse and rat elements which do not start with

the YY1 binding site but it was shown that the monomers

constitutive of their 50UTR contain signals for transcription

initiation (Adey, Tollefsbol, et al. 1994). Mammalian 50UTRs

have very high GC content (from 51.9% to 61.6%), with

two notable exceptions: the cow (43.3%) and the armadillo

(46.4%), which also happen to have the longest 50UTRs in

mammals (3,229 and 2,029 bp, respectively). All mammalian

50UTRs are enriched in CpG dinucleotides, which are forming

CpG islands. The average number of CpG dinucleotides is

62.1 and varies from 31 in opossum to 94 in horse. The

region of the 50UTR that fits the definition of a CpG island

always reside at the 50 extremity of the UTR, with the excep-

tion of the cow (whose CpG island begins ~250 bp from the

50 extremity). A number of 50UTRs contain motifs (~70–100

bp) that are tandemly duplicated two (rat, hyrax), three

(horse, elephant, opossum), or many (mouse) times (fig. 7).

Other elements are dramatically enriched in G-rich (pig) or T-

rich (dog, cow, armadillo) low-complexity repeats, the cow

presenting the most extreme examples since it contains a

~840-bp region composed exclusively of T-rich short repeats

(fig. 7).

Though similar in length, the long 50UTRs of the lizard clade

1 differ from the mammalian 50UTRs in several respects. The
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FIG. 5.—Base composition at the three codon positions for ORF1 and ORF2.

Genome Biol. Evol. 8(12):3485–3507. doi:10.1093/gbe/evw247 Advance Access publication October 19, 2016 3495

The Evolution of LINE-1 in Vertebrates GBE



Table 3

Codon frequency and Relative Synonymous Codon Usage (RSCU) for ORF1 and ORF2 in Mammals, Lizard, Frog, and Fish

AA Codon ORF1 ORF2

Mammals Lizard Frog Fish Mammals Lizard Frog Fish

FREQ RSCU FREQ RSCU FREQ RSCU FREQ RSCU FREQ RSCU FREQ RSCU FREQ RSCU FREQ RSCU

Ala GCA 22.6 2.0 21.2 2.1 33.1 1.5 20.0 1.2 25.1 2.3 19.5 2.1 23.5 1.5 17.8 1.6

Ala GCC 11.8 1.0 7.5 0.8 26.4 1.2 18.1 0.9 11.5 1.0 7.2 0.8 21.5 1.3 8.6 0.8

Ala GCG 2.2 0.2 4.6 0.5 15.6 0.7 17.5 0.8 1.0 0.1 4.5 0.5 5.3 0.3 2.1 0.2

Ala GCU 8.8 0.8 7.7 0.7 12.6 0.6 21.3 1.1 7.1 0.6 6.3 0.7 14.0 0.9 15.3 1.4

Arg AGA 43.1 3.3 50.4 3.9 31.9 2.0 21.7 1.5 35.3 4.0 35.1 3.8 19.3 2.4 20.0 2.7

Arg AGG 22.6 1.7 14.6 1.1 16.6 1.0 10.5 0.7 11.9 1.3 15.8 1.7 11.9 1.5 8.4 1.1

Arg CGA 5.2 0.4 4.0 0.3 9.5 0.6 13.9 1.0 2.9 0.3 1.4 0.2 5.0 0.6 4.2 0.6

Arg CGC 2.4 0.2 1.8 0.1 19.3 1.2 15.6 1.1 1.3 0.1 0.6 0.1 5.6 0.7 3.9 0.6

Arg CGG 3.6 0.3 4.6 0.4 11.0 0.7 10.5 0.7 1.1 0.1 2.3 0.2 3.6 0.4 2.1 0.3

Arg CGU 2.8 0.2 3.3 0.2 6.5 0.4 14.5 1.1 0.6 0.1 1.1 0.1 2.8 0.3 6.0 0.8

Asn AAC 33.4 1.0 19.0 0.9 26.4 1.2 22.9 1.1 35.6 1.1 21.2 0.6 29.5 1.2 19.9 0.6

Asn AAU 34.0 1.0 23.7 1.1 17.6 0.8 18.7 0.9 30.1 0.9 47.5 1.4 19.7 0.8 41.1 1.4

Asp GAC 24.2 1.0 30.1 1.0 33.4 1.2 32.0 1.1 26.4 1.2 18.3 0.8 24.9 1.2 17.9 0.8

Asp GAU 22.2 1.0 29.2 1.0 20.8 0.8 27.1 0.9 19.0 0.8 29.1 1.2 16.3 0.8 29.1 1.2

Cys UGC 2.8 1.1 1.5 0.7 3.5 0.9 3.4 0.9 8.4 1.3 3.5 0.7 7.4 1.3 5.9 0.7

Cys UGU 1.0 0.5 2.2 0.7 1.3 0.2 3.0 0.9 4.6 0.7 7.1 1.3 4.5 0.7 10.1 1.3

Gln CAA 35.6 1.1 40.9 1.4 39.7 1.3 26.1 1.1 25.3 1.4 30.5 1.4 35.0 1.4 24.1 1.3

Gln CAG 26.6 0.9 19.9 0.6 22.3 0.7 20.0 0.9 10.5 0.6 11.9 0.6 14.3 0.6 13.8 0.7

Glu GAA 78.3 1.4 86.0 1.3 41.9 1.2 53.0 1.3 50.6 1.5 57.1 1.5 29.4 1.4 29.8 1.4

Glu GAG 32.4 0.6 49.1 0.7 27.1 0.8 31.3 0.7 17.1 0.5 19.7 0.5 12.8 0.6 12.8 0.6

Gly GGA 13.0 1.7 13.7 1.6 13.1 1.1 13.5 1.4 18.1 2.0 17.9 1.6 11.5 1.2 12.3 1.4

Gly GGC 4.8 0.6 4.9 0.6 16.3 1.4 11.4 1.2 7.7 0.8 6.7 0.6 10.7 1.1 7.4 0.8

Gly GGG 8.0 1.1 10.0 1.2 10.3 0.9 7.1 0.7 6.1 0.7 10.9 1.0 9.1 0.9 5.6 0.6

Gly GGU 5.0 0.6 5.5 0.6 6.8 0.6 7.6 0.8 5.1 0.5 8.9 0.8 7.9 0.8 11.6 1.2

His CAC 7.4 1.0 4.6 0.9 15.3 1.4 12.6 1.3 14.0 1.3 5.3 0.7 18.6 1.2 9.5 0.7

His CAU 6.4 1.0 5.8 1.1 7.0 0.6 6.9 0.7 8.4 0.7 8.8 1.3 11.5 0.8 16.0 1.3

Ile AUA 42.7 1.5 31.4 1.5 20.6 1.3 13.5 0.7 47.3 1.3 51.2 1.6 39.3 1.5 32.2 1.1

Ile AUC 20.0 0.7 11.7 0.5 16.8 1.0 22.5 1.2 35.9 1.0 14.1 0.4 19.3 0.7 15.6 0.5

Ile AUU 20.6 0.8 20.8 1.0 13.1 0.8 20.6 1.1 27.2 0.7 33.3 1.0 18.9 0.7 39.4 1.4

Leu CUA 22.8 1.7 13.7 1.0 28.6 1.9 12.8 0.8 23.9 1.6 19.6 1.2 36.0 1.7 17.0 0.9

Leu CUC 12.4 0.9 7.1 0.5 16.8 1.2 16.4 1.1 18.6 1.3 5.8 0.3 23.0 1.1 11.2 0.6

Leu CUG 14.2 1.1 17.9 1.2 20.1 1.4 22.9 1.4 16.0 1.1 10.1 0.6 22.1 1.0 12.6 0.7

Leu CUU 11.4 0.9 9.7 0.6 9.5 0.6 16.8 1.1 9.1 0.6 8.3 0.5 16.5 0.8 24.9 1.3

Leu UUA 13.6 1.0 22.3 1.6 8.8 0.6 10.7 0.7 13.8 0.9 38.3 2.3 20.6 1.0 34.6 1.8

Leu UUG 5.8 0.4 15.3 1.0 6.5 0.4 13.9 0.9 7.3 0.5 15.9 1.0 8.9 0.4 15.2 0.8

Lys AAA 75.7 1.3 92.0 1.4 35.7 1.3 54.7 1.4 86.0 1.5 98.1 1.5 53.6 1.5 59.9 1.5

Lys AAG 35.6 0.7 40.5 0.6 17.1 0.7 24.2 0.6 31.5 0.5 32.3 0.5 17.1 0.5 20.8 0.5

Met AUG 25.6 31.6 17.1 22.9 21.0 23.3 17.5 16.5

Phe UUC 16.6 1.2 11.3 0.9 15.3 1.2 17.3 1.0 21.7 1.2 10.1 0.6 15.6 0.9 14.4 0.5

Phe UUU 9.8 0.8 14.8 1.1 9.5 0.8 19.1 1.0 14.7 0.8 23.6 1.4 17.9 1.1 42.0 1.5

Pro CCA 22.8 2.2 10.2 1.9 31.9 1.6 15.8 1.4 22.4 2.2 14.2 2.1 27.4 1.7 21.1 1.7

Pro CCC 9.6 0.9 3.8 0.7 18.8 0.9 8.4 0.7 8.8 0.9 5.9 0.8 20.9 1.3 10.4 0.8

Pro CCG 0.6 0.1 2.0 0.4 13.3 0.7 10.1 0.9 1.7 0.2 3.4 0.5 4.0 0.2 2.1 0.2

Pro CCU 7.8 0.8 4.6 0.9 15.8 0.8 11.2 1.0 8.6 0.8 4.3 0.6 12.4 0.8 16.8 1.3

Ser AGC 9.8 1.1 3.5 0.4 11.8 1.3 13.7 1.2 7.9 1.0 3.9 0.6 8.6 0.8 6.1 0.4

Ser AGU 7.6 0.9 8.8 1.1 3.8 0.4 6.9 0.6 6.9 0.8 7.8 1.2 5.2 0.5 11.3 0.8

Ser UCA 19.8 2.2 16.8 2.1 11.8 1.2 14.3 1.2 19.5 2.3 14.1 2.1 16.2 1.5 30.9 2.0

Ser UCC 8.2 0.8 4.4 0.6 15.3 1.6 10.1 0.8 8.2 1.0 5.5 0.8 19.7 1.8 12.8 0.8

Ser UCG 2.0 0.2 6.0 0.8 4.8 0.5 12.8 1.1 1.7 0.2 3.7 0.6 3.7 0.4 3.2 0.2

Ser UCU 6.8 0.7 8.0 1.0 10.5 1.0 14.5 1.1 6.0 0.7 5.5 0.8 10.9 1.0 27.3 1.8

(continued)
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lizard 50UTRs are more conserved across families than mam-

malian 50UTRs (with the exception of family L1_AC9), al-

though lizard families are more divergent than mammalian

families in their ORFs. The first ~120 bp of the elements are

the most conserved, with a number of motifs that are found

across all families (fig. 8). Similar to mammals, the 50 extremity

is remarkably conserved among elements with a consensus

sequence GACTTCCGGTGN8ATGGCG. Lizards 50UTRs have a

significantly lower GC content (45.2% vs. 57.2% in mam-

mals; t = 4.957, P<0.001) and the presence of two CpG is-

lands separated by ~300–400 bp, instead of a single one in

mammals. The number of CpG is however similar to mammals

with an average of 56 CpGs in lizard. None of the lizard

50UTRs shows sign of tandem duplication, nor do they contain

regions enriched in low-complexity repeats. As mentioned

above, the 50UTR of L1_AC9 shows no similarity with other

lizard 50UTRs, and probably results from the acquisition of a

novel promoter, as occurs frequently in mammals. It should be

noted though that the L1_AC9 50UTR is remarkable among L1

since it has the lowest GC content (39.5%) of all elements

analyzed here, it does not have a CpG island and it contains an

extremely small number of CpG dinucleotides (13), given its

length (1,352 bp).

The small 50UTRs of the lizard clade 2, frog and fish do not

have much in common. Although similar in length, these 50UTRs

differ substantially in GC content, the frog 50UTR being more

GC-rich (55.2%) than the fish (41.3%) and lizard clade 2

(44.5%) 50UTRs, but the number of CpG dinucleotides is similar

among species with ~7 CpG on average. In all three species, the

50 extremity of the 50UTR is extremely conserved across families,

with consensus sequences GGGNGCTGCGCATGC, GGGGGCG

TGGCC and GGACTTCCGGTT in lizard, frog, and zebrafish, re-

spectively (fig. 8). A search for transcription factor binding sites

revealed that the start of the zebrafish L1s corresponds to the

canonical target sequence of the XrpFI transcription factor

whereas the 50 end of the lizard and frog elements show sim-

ilarity to the Sp1 transcription factor binding site. In lizard, the

first 100 bp is relatively conserved among families and all frog

families share two conserved motifs (A/G)GACGC(G/A) and GA

GCTCCG, located about 30 and 40 bp from the start of the

element, respectively. In zebrafish, we failed to find any similarity

among 50UTRs past the very beginning of the elements.

Evolution of ORF1

ORF1 has recently attracted the attention of researcher in the

field of L1 biology because the function of ORF1p remains

Table 3 Continued

AA Codon ORF1 ORF2

Mammals Lizard Frog Fish Mammals Lizard Frog Fish

FREQ RSCU FREQ RSCU FREQ RSCU FREQ RSCU FREQ RSCU FREQ RSCU FREQ RSCU FREQ RSCU

Thr ACA 29.8 1.9 27.6 2.0 26.9 1.3 16.4 1.1 36.1 2.2 25.7 2.2 27.7 1.6 23.2 1.7

Thr ACC 17.0 1.1 10.6 0.8 22.1 1.2 13.0 0.8 15.0 0.9 6.5 0.6 21.5 1.2 9.6 0.7

Thr ACG 5.0 0.3 7.1 0.5 12.8 0.7 15.2 1.0 4.1 0.2 5.5 0.5 6.2 0.3 2.8 0.2

Thr ACU 12.2 0.8 11.3 0.8 15.1 0.8 16.8 1.1 10.8 0.7 8.7 0.7 15.6 0.9 17.0 1.3

Trp UGG 5.8 9.7 7.0 4.0 23.7 30.7 24.2 19.9

Tyr UAC 7.8 1.0 11.3 0.8 12.3 1.3 11.6 1.1 18.3 1.1 13.5 0.7 20.3 1.0 11.6 0.7

Tyr UAU 7.2 1.0 13.3 1.2 6.3 0.7 7.1 0.9 14.0 0.9 25.5 1.3 18.6 1.0 23.3 1.3

Val GUA 10.2 1.2 9.1 1.1 11.5 1.2 9.1 0.7 9.7 1.4 15.7 1.9 13.8 1.6 10.8 1.1

Val GUC 7.4 0.9 5.8 0.6 11.5 1.2 10.1 0.9 5.6 0.8 4.0 0.5 9.1 1.0 6.0 0.7

Val GUG 8.4 1.0 12.8 1.4 10.8 1.1 16.4 1.3 7.8 1.1 8.3 1.0 7.2 0.8 8.2 0.8

Val GUU 6.2 0.8 7.1 0.8 5.0 0.5 13.9 1.1 4.3 0.6 5.7 0.6 5.3 0.6 13.9 1.4

NOTE.—The most frequent codon and the highest RSCU for each amino acid are highlighted in grey. Codons with an A at the third position are in bold.

Table 4

CAI, the Effective Number of Codons, and the Average GC Content at the Three Codon Positions

ORF1 ORF2

CAI Nc GC1 GC2 GC3 CAI Nc GC1 GC2 GC3

Mammals 0.728 � 0.017 48.67 � 4.33 45.6 � 2.5 32.4 � 3.2 39.4 � 3.1 0.734 � 0.009 45.30 � 1.68 39.5 � 1.2 32.9 � 1.0 40.7 � 2.2

Lizard 0.756 � 0.014 47.28 � 2.72 45.7 � 3.7 29.2 � 3.5 38.3 � 2.9 0.719 � 0.013 44.79 � 3.07 37.3 � 1.4 29.4 � 0.8 33.0 � 2.4

Frog 0.783 � 0.020 55.08 � 2.22 58.3 � 4.4 45.5 � 3.0 49.6 � 4.8 0.789 � 0.001 51.63 � 2.11 47.5 � 3.6 38.6 � 2.5 43.7 � 4.0

Fish 0.745 � 0.020 56.88 � 3.85 54.3 � 3.5 39.3 � 3.3 47.7 � 4.3 0.733 � 0.008 49.08 � 1.59 40.5 � 2.2 35.6 � 2.0 31.7 � 1.9
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incompletely understood and because a region of ORF1, the

CCD, is particularly unstable at the sequence level (Furano

2000; Boissinot and Furano 2001; Sookdeo et al. 2013). It

was suggested that this instability might reflect an antagonistic

arms race between L1 and its host. In all species examined

here, the general structure of ORF1 is conserved and includes

a CCD, a non-canonical RRM, and a C terminal domain (CTD).

The CC domain is located 2 to ~123 amino acid from the N

terminus and is highly variable in sequence, length and struc-

ture. Conversely the RRM and the CTD are very conserved

among L1 families as attested by high identity value, similar

to the identity reported for ORF2 (table 1). A number of resi-

dues and motifs are conserved across all elements, including

two non-canonical RNA-recognition motifs (the blue boxes on

fig. 9), the three amino acids forming the conserved salt bridge

that stabilize the structure of ORF1p (orange arrows) and the

residues providing RNA-binding side chains (green arrows)

(Khazina and Weichenrieder 2009). In addition, several

motifs involved in the phosphorylation of ORF1p (Cook et al.

2015) are conserved, although never across all families (fig. 9).

The putative PDPK docking motif at the start of the RRM and

the PP1 docking motif in the center of the CTD are conserved

in mammals, lizard clade 2, frog and fish but not in lizard clade

1. Lizard L1s appear to have an additional PDPK docking motif

that is absent from all other species. Other PDPK and PKA

docking motifs shown to be important in human (Cook

et al. 2015) are not predicted to act as phosphorylation dock-

ing sites in other vertebrates or even other mammals.

The N-terminal region of ORF1 and the CCD are extremely

variable in length, so that it was not possible to obtain a

FIG. 6.—Frequency of amino acids in ORF1 and ORF2 for mammals, lizard, frog, and zebrafish.
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reliable alignment for this region. Yet, several observations

regarding the general structure of the CCD can be made.

First, the structure of the CCD is more complex and more

variable in mammals and lizard than in fish and frog (fig.

10). All frogs and most fish elements have CCDs that consist

of uninterrupted series of canonical heptads. In lizard and in

mammals, the structure of the CCD is imperfect and consists

of series of heptads separated by non-canonical coiled-coil

forming sequences or non-coiled-coil forming group of

amino acids. Second the sequence conservation of the CCD

differs considerably among organisms. This region is so diver-

gent among mammals that it is not possible to obtain a

reliable alignment in this group of vertebrate. Similarly, this

region is highly variable in frog and fish and an alignment

could not be obtained within these two species. In contrast,

the CCD of lizard’s L1 is remarkably conserved and a reliable

alignment can readily be generated for all elements belonging

to clade 1. This strongly suggests that the selective pressure

acting on this region is different among vertebrates.

We also examined the presence in the CCD of the RhxxhE

motif which is often associated with parallel trimeric coiled coil

(R occupying the g position of an heptad and E in position e of

the following heptad; R = Arg, E = Glu, h stands for any hy-

drophobic residue and x for any residue) (Kammerer et al.

FIG. 7.—Dotmatcher analysis of the horse, elephant, dog, and cow 50UTR against themselves. Note the long tandem duplication in horse and elephant

and the repeats rich region of the dog and cow 50UTRs (framed with blue boxes).
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2005), although it can be found associated with dimeric and

even tetrameric coiled coils (Xu and Minor 2009). We found

that all placental L1 possess two such motifs arranged in

tandem, with a third downstream motif present in some spe-

cies (fig. 10). The RhxxhE motif (either isolated or in tandem) is

also found in all but two frog L1 families and all but four fish

families. This motif is however conspicuously rare in lizard and

is found in only 2 families out of 12 families. We examined the

composition of the different position of the heptads in lizard

(supplementary material S3, Supplementary Material online)

and we found that Arg at position g is indeed rare (with a

frequency of 0.1) while Glu and Lys are the most common

amino acid at this position (0.34 and 0.22, respectively). In all

other species, Arg is the most common amino acid in g (0.3 in

mammals to 0.4 in frog) whereas Glu and Lys are found at low

frequency at this position (~0.1). Position e of the lizard L1 is

occupied principally by Lys or Gln (~0.25 for each) while Glu is

the most frequent amino acid in all other species (~0.3).

Interestingly, mutations of Arg (to Ala or Lys) or Glu (to Ala

or Leu) residues in known trimeric coiled coils were shown to

produce dimeric or tetrameric structures (Kammerer et al.

2005). The near complete absence of the RhxxhE motif and

the differences in the amino acid composition of the heptads

in lizard suggests either that the trimeric structure of ORF1p is

achieved by different means in lizard or that the lizard ORF1p

does not form trimers, but tetramers or dimers.

Evolution of the ORF1-ORF2 Inter-Genic Spacer

The presence or absence of an IGR is one of the most variable

structural features in L1. Most mammals and lizard clade 1

elements have no or very short IGR but the phylogenetic anal-

ysis on figure 3 suggests that the presence of a long IGR is

probably the ancestral state, with independent losses in lizard

clade 1 and in mammals, following the split between

FIG. 8.—Alignment of the 50 termini of L1 in mammals (A), lizard clade 1 (B), lizard clade 2 (C), frog (D), and zebrafish (E). The length of the alignments

varies among groups since the length of the 50 termini that could be aligned differed.
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Afrotheria and all other mammals. The IGR varies considerably

in base composition and in sequence among organisms. In

mammals, long IGRs tend to be AT-rich. The pig IGR contains

several poly-A stretches and the opossum several imperfect

short tandem repeats, whereas the hyrax and elephant IGR do

not contain any repeats (supplementary material S4,

Supplementary Material online). The long IGRs of lizard

clade 2 do not contain any repeats but differ from the rest

of the element by a high GC content (~46%) due to the

presence of several G-rich stretches. Most frog IGRs do not

contain repeats and their base composition (~44.2%) is similar

to the base composition of ORF2 (~43.7%). Fish IGRs have a

very low GC content (~34% on average) and all but two

families contain several T-rich short repeats (supplementary

material S4, Supplementary Material online).

We examined if repeats, as well as non-repeated sequences

in the IGR, could be involved in the formation of secondary

structure at the RNA level. The analysis of RNA secondary

structure did not reveal any obvious shared patterns among

IGRs, even within species. In some species, RNAfold identified

stem-loop structures of various lengths but other IGRs did not

show such structures (data not shown).

Because the presence of an internal ribosomal entry site

(IRES) upstream of ORF2 has previously been proposed (Li

et al. 2006), we examined the possibility that the IGRs contain

IRES for translation of the downstream ORF2. The IRESPred

webserver, which detects IRES in a sequence of interest by

searching for sequence and structural features found in

known nuclear and viral IRES sequence (Kolekar et al. 2016),

predicts the presence of IRES in 32 out of 36 long IGR se-

quences. The program failed to predict the presence of IRES

in only two frog and two fish elements. The nature and posi-

tion of the putative IRES was further examined by the VIPS

server (Hong et al. 2013), which search for structural similarity

with known viral IRES. VIPS detected IRES in 31 long IGR in-

cluding three of the four mammals (pig, elephant, and opos-

sum). In all cases, similarity was detected with the IRES of

cripavirus, a virus belonging to the dicistroviridae family, and

the regions predicted to act as IRES were located<10 bp from

ORF2 start codon in all but two elements (fig. 11 and supple-

mentary material S4, Supplementary Material online). The

dicistroviridae IRES consists of three stem-loop structures

that interact directly with the 40S and 60S ribosomal subunits,

without requiring protein factors (Pfingsten and Kieft 2008;

Nakashima and Uchiumi 2009). Figure 11B shows an example

of dicistroviridae IRES RNA structure together with the second-

ary structure of the predicted IRES of three L1 IGRs, which also

exhibit the three stem-loop structures typical of cripavirus IRES.

Despite the uncertainty associated with IRES prediction pro-

gram, it is significant that two different algorithms predicted

the presence of IRES, and that VIPS identified the same type of

viral IRES in the same position, independently of the sequence,

base composition and length of the IGR.

Evolution of ORF2

ORF2 encodes the reverse transcriptase domain necessary for

retrotransposition and, not surprisingly, it is the most con-

served region of L1. There is very little variation in the length

FIG. 9.—Amino acid alignment of the RRM and CTD. The two RRMs are boxed in blue, the amino acids forming the stabilizing salt bridge are indicated

with orange arrows, the residues providing RNA-binding side chains are indicated with green arrows, and the PDPK docking sites are boxed in red and the

PP1 docking site in purple.
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of this ORF (3516–3882 a.a.) and all elements contain con-

served endonuclease and reverse transcriptase domains. The

cysteine-rich motif located at the C-terminus, which has been

shown to be essential for retrotransposition (Moran et al.

1996; Doucet et al. 2010), is found in all elements, with a

consensus CX3CX7HX4C in mammals and in a small number

of non-mammalian families and CX2CX8HX4C in all other

non-vertebrate L1s. The PCNA-interacting box located be-

tween the endonuclease and reverse transcriptase domain,

which is also necessary for retrotransposition (Taylor et al.

2013), is also present in all species, with slight variation in

consensus among species.

Evolution of the 30UTR

Finally, we focused our attention on the 30UTR, which has

been shown to contain a conserved poly-purine tract of un-

known function in mammalian L1 (Howell and Usdin 1997).

There is considerable variation in the length of the 30UTR but

mammalian L1s tend to have longer 30UTRs than other verte-

brates (table 2). The main difference among vertebrates

resides in the GC content, mammalian 30UTRs being enriched

in GC (46.3%) relative to other vertebrates (24.7% in zebra-

fish to 35.0% in frog). This difference is mainly due to the

presence in mammals of a G-rich poly-purine tract. This poly-

purine tract is surprisingly absent in rabbit, which also has the

lowest GC content in mammals. With few exceptions (the

anole L1AC_17 and 20 families), other vertebrate 30UTRs

lack a G-rich tract but they always contain repeated regions.

In lizard and frog, these repeated regions can take the form of

a C-rich poly-pyrimidine tract, of a T-rich repetitive region or of

a combination of poly-C and poly-T tracts. All zebrafish 30UTRs

contain long poly-T tracts that occupy most of the length of

the UTR and which can form T-rich microsatellites. In all spe-

cies, L1 ends with a canonical poly-adenylation signal (AATAA

A) followed by a poly-A tail.

Discussion

We identified a number of differences in the sequence of

active L1 among vertebrates including (1) a stronger A bias

on the positive strand in mammals and lizard than in frog and

FIG. 10.—Schematic structure of the CCD of ORF1. The structure of the coiled coils is based on the analysis with a 28 residues window width.

3502 Genome Biol. Evol. 8(12):3485–3507. doi:10.1093/gbe/evw247 Advance Access publication October 19, 2016

Boissinot and Sookdeo GBE

Deleted Text:  to 
Deleted Text: ; Moran, et&nbsp;al. 1996


fish, (2) the independent evolution of long GC-rich 50UTRs in

amniotes, (3) the loss of the IGR in amniotes, (4) species-spe-

cific repeated motifs in the 30UTR, (5) a higher level of evolu-

tionary conservation of the 50UTR and ORF1 in non-

mammalian vertebrates than in mammals. Although our sam-

pling of mammalian genomes is probably representative of L1

diversity in this vertebrate class, the same is not true for other

vertebrate lineages (reptiles, amphibians, fish), which are rep-

resented by a single model species. Comparative studies have

shown that the profile of diversity and abundance of trans-

posable elements differs greatly among fish, amphibians and

reptiles species (Castoe et al. 2011; Chalopin et al. 2015; Sun

et al. 2015) and additional studies on other representatives of

these groups will be necessary to determine if the evolutionary

trends we describe here apply widely across non-mammalian

vertebrates. Preliminary analyses of the few teleostean con-

sensus deposited in Repbase (salmon, medaka, fugu) suggest

that L1 in these species share the structure and base compo-

sition as the zebrafish L1 (unpublished observations).

Functional Implications

In all species examined here, we found that the ORFs are en-

riched in adenine (and thymine in zebrafish ORF2) at all three

positions of codons, resulting in the use of sub-optimal codons

for translation and a biased amino acid composition of ORF1p

and ORF2p. The compositional bias of L1 is similar to the bias

reported in lentiviral retroviruses, which have adenine-rich ge-

nomes (van Hemert and Berkhout 1995), use sub-optimal

codons (Jenkins and Holmes 2003) and encode lysine-rich

proteins (Berkhout and van Hemert 1994). It is believed that

the cause of this bias in lentiviridae is G-to-A hypermutation

during reverse transcription (Vartanian et al. 1994; Deforche

et al. 2007) but sequence editing by restriction factors of the

FIG. 11.—(A) Schematic structure of the IGR showing the position of the predicted IRES. (B) RNA structure of the predicted IRES of the elephant, frog L1-

15 and zebrafish L1-1A compared with the IRES of a dicistroviridae, the cripavirus-1 infecting the insect Homalodisca coagulata (GenBank accession number

KT207917).
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APOBEC3 family could also contribute to the bias (Lecossier

et al. 2003). Our data do not allow us to determine if the same

mechanisms are at play in L1. It is however well documented

that APOBEC3 proteins play a role in inhibiting L1 retrotran-

sposition (Schumann 2007). A search of the lizard genome (at

genome.ucsc.edu) revealed the presence of several homo-

logues of mammalian APOBEC3 genes but these genes are

absent from the genome of the frog and fish (Conticello et al.

2005). Since organisms that lack APOBEC3 genes have a less

biased base composition, it is tempting to speculate a role of

APOBEC3 sequence editing in the adenine enrichment of L1 in

amniotes.

The most striking difference among vertebrates L1 resides

in the length, structure and level of conservation of the 50UTR.

Vertebrates 50UTRs fall into two types: the long GC-rich 50UTR

of mammals and lizard clade 1 and the much shorter 50UTR of

lizard clade 2, frog and fish. Although similar in length and

base composition, the long 50UTR of mammals and lizard

differ drastically in their mode of evolution. The mammalian

50UTR shows very little homology among species past the YY1

transcription initiation site (Athanikar et al. 2004). This is due

to the frequent acquisition of novel, non-homologous 50UTR

during the evolution of mammals (Adey, Schichman, et al.

1994; Khan et al. 2006; Sookdeo et al. 2013). Presumably,

the acquisition of a novel 50UTR by an L1 family allows this

family to avoid sequence-specific repression of transcription,

resulting in an arms race between L1, which is escaping re-

pression by acquiring new promoters, and the host which

must evolve repressors of the novel 50UTR. This scenario is

consistent with the coevolution between the KZNF transcrip-

tional silencer and L1 in primates (Jacobs et al. 2014). In con-

trast, the lizard clade 1 50UTRs can be aligned over most of

their length and do not show sign of replacement. The only

exception is family L1_AC9, which carries a non-homologous

50UTR. Similarly we failed to find evidence of replacement of

the short 50UTRs of fish, frog and lizard clade 2, which are

highly conserved in length and exhibit strong conservation of

several motifs across highly divergent families. This suggests

that the transcription of L1 elements within a species, as well

as the regulation of transcription by the host, relies on the

same biochemical machinery and that the arms race between

the promoter sequence and host repressors is an evolutionary

feature specific of mammals.

Although the general structure of ORF1 is conserved

among organisms, we found substantial differences in the

rate of evolution of the CCD. In mammals, the CCD is evolving

very rapidly in sequence and structurally, which is consistent

with adaptive evolution in response to a host repressor

(Boissinot and Furano 2001). This results in very diverse and

non-alignable CCDs, composed of an alternation of canonical

and disrupted heptads (for an example in mouse, see Sookdeo

et al. 2013). In contrast, the CCD in lizard is relatively con-

served among families and the structure of the CCD in frog

and fish is composed of a perfect succession of canonical

heptads. This suggests that the CCD might not be evolving

adaptively in non-mammalian vertebrates, implying that the

arms race hypothesized in mammals does not exist in non-

mammals or does not involve an interaction between a host

factor and the CCD.

Another major difference between vertebrate L1 is the

ubiquitous presence of an IGR in frog, fish, lizard clade 2

and some basal mammals (opossum and afrotheria). An ob-

vious implication of the presence or absence of an IGR is the

effect this region will have on the translation of the ORFs. The

IGRs differ considerably in length and base composition, yet

the two IRES detection programs we used (IRESPred and VIPS)

suggest the presence of IRES in the vast majority of elements

with long IGR. Considering the uncertainty of in silico IRES

predictions, it will be necessary to validate experimentally

the presence of functional IRES in the IGR. It is interesting to

note that the presence of a functional IRES upstream of ORF2

has been postulated in mouse L1 (Li et al. 2006). Studies in

human however demonstrated that the region upstream of

ORF2 was not necessary for efficient retrotransposition (Alisch

et al. 2006), leading to the suggestion that ORF2 was trans-

lated by an unusual termination/re-initiation mechanism. In

the context of a long IGR, the possibility for spurious re-initi-

ation seems significant given the length of the IGR and would

constitute a very inefficient and risky mechanism to translate

ORF2. It should be noted that these experimental studies were

conducted on mouse and human L1, which have no or very

small IGRs. The only functional study performed in a species

with an IGR was done on an ancestral megabat L1 (Yang et al.

2014). It was shown that the IGR was dispensable and in fact

inhibits retrotransposition. However since the mobility of the

megabat L1 was tested in a human cell line, it is plausible that

these experiments do not recapitulate L1 retrotransposition in

its native environment. Furthermore, the wide distribution of

an IGR across vertebrates and the persistence of an L1 element

with a long IGR in megabat (Yang et al. 2014) contradict a

strong negative impact of this region on retrotransposition in

natural conditions.

Interestingly, the VIPS program found that the region of the

IGR adjacent to ORF2 has some structural similarities with the

IRES of dicistroviridaes, a family of positive-stranded RNA vi-

ruses (Pfingsten and Kieft 2008; Nakashima and Uchiumi

2009). These viruses related to picornaviridaes infect inverte-

brates and have a linear genome consisting of two open-read-

ing frames separated by an IGR, hence the name of the family.

This dicistronic structure is very similar to the one of L1, al-

though L1 is not related to this family of viruses. This raises the

intriguing possibility that dicistroviridaes and L1 have indepen-

dently evolved similar mechanisms for the translation of their

second ORF.

The 30UTR differ considerably in composition among or-

ganisms and the presence of a highly conserved poly-G tract

in mammals is, in fact, a mammalian-specific feature. It was

shown that the mammalian poly-G tract has the ability to form
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intra-strand tetraplexes but also stable RNA secondary struc-

tures (Howell and Usdin 1997). The exact role of the poly-G

tract remains unclear and it has been shown that retrotran-

sposition using an L1 vector with a disrupted 30UTR can occur

(Moran et al. 1996). Experiments will be required to determine

if the 30UTR of other vertebrates also form non-standard struc-

tures, at the DNA or RNA level. It is however puzzling that the

highly divergent L1s of fish, frog and lizard, each have species-

specific repeated motifs (a mixture of poly-C and poly-T in

lizard and frog and long poly-T tracts in fish) suggesting

that, not only the potential ability to generate unusual struc-

ture, but also the base composition of the repeats could be

functionally important.

L1 Evolution and Host-L1 Interactions

One of the most striking observations is the overall conserva-

tion of L1 in sequence and structure within each vertebrate

lineage. This is particularly obvious in frog and fish, which

contain multiple deeply divergent L1 families that are similar

in base composition, structure (presence of IGR) and sequence

(high conservation of the 50 termini and presence of similar

repeats in the 30UTR) within each species but different among

species. Considering that L1 families have coexisted in these

genomes since the origin of vertebrates, they had ample time

to diversify functionally (by acquiring different promoters or

evolving different base composition) in order to colonize dis-

tinct genomic niches and/or recruit different hosts factors. Yet,

they did not. This is suggestive of a high level of adaptation of

L1 to the host’s genome wherein coexisting elements are sub-

jected to the same functional constraints imposed by the host.

For instance, we can speculate that all L1 families in reptiles,

amphibians and fish rely on a highly conserved host factor for

their transcription, and that any change in the promoter

would be deleterious to L1 replication.

These differences also suggest that the mechanism of con-

trol of L1 in non-mammalian hosts is radically different than it

is in mammals. In mammals, a number of processes have

evolved to regulate L1 transposition and this regulation yielded

the arms race exemplified by the frequent replacement of

50UTR and adaptive evolution in ORF1 (Khan et al. 2006;

Sookdeo et al. 2013). In non-mammalian vertebrates, we do

not see any evidence for such an arms race. This is not sur-

prising considering the diversity of transposable elements

these genomes harbor. In addition to L1, the lizard genome

hosts an even larger number of L2 families and other LINEs

(CR1, RTE), numerous DNA transposons and LTR-retrotran-

sposons (Novick et al. 2009; Alfoldi et al. 2011; Novick et al.

2011). In the frog and zebrafish, this diversity could be even

higher (Hellsten et al. 2010; Howe et al. 2013; Chalopin et al.

2015). In these species, it is very unlikely that the host has

evolved mechanisms of repressions that are specific to each

type of transposable elements. A more efficient strategy

would be to repress transposition non-specifically, the way

DNA methylation is acting. Thus, from the point of view of

the host, the different L1 lineages are functionally equivalent

and are not repressed in a specific manner, thus removing the

need for change. The absence of an arms race between L1

and its non-mammalian host is highly consistent with the phy-

logeny of L1, which does not show the cascade structure

typical of mammalian L1, but fits the expectation of a stochas-

tic birth and death model of evolution.

The apparent lack of an arms race between L1 and its host

in non-mammalian vertebrates can find its origin in the pop-

ulation dynamics of L1 insertions in those genomes. In fish and

reptiles, very young insertions are over-represented suggesting

a low rate of fixation of L1, possibly because novel insertions

are under stronger purifying selections in fish and reptiles than

they are in mammals (Furano et al. 2004; Tollis and Boissinot

2012). This is particularly true for long elements, including full-

length ones, which are found at extremely low frequency in

natural populations of stickleback (Blass et al. 2012) and anole

(Tollis and Boissinot 2013), and almost never reach fixation.

Consequently, the number of full-length progenitors in a

given genome is very small in these species. In contrast, full-

length elements in mammals attain high frequency and can

eventually reach fixation, although not to the same extent as

short truncated elements do (Boissinot et al. 2001). This accu-

mulation gives rise to genomes with hundred or thousand

potentially active copies (DeBerardinis et al. 1998; Goodier

et al. 2001; Beck et al. 2011; Streva et al. 2015). This differ-

ence between mammals and non-mammals is most likely due

to a lower rate of ectopic recombination in mammals and thus

a lower negative effect of long insertions, which are more

likely to mediate deleterious chromosomal rearrangements

(Furano et al. 2004; Myers et al. 2005; Song and Boissinot

2007). We can speculate that the accumulation of L1 progen-

itors in mammalian genomes could yield a higher rate of trans-

position in mammals, thus setting the stage for an arms race

between L1 and its host. In contrast, the very small number of

progenitors in a given fish or reptile genome could result in a

low transposition rate that would be insufficiently deleterious

to trigger the evolution of a specific response by the host. The

hypothesis of a differential rate of transposition among verte-

brates will require experimental evidence. The model species

analyzed here constitute excellent systems to address this

question.

Supplementary Material

Supplementary materials S1–S4 are available at Genome

Biology and Evolution online (http://www.gbe.oxfordjour-

nals.org/)
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