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Hypertension is a leading mortality cause of 410,000 patients in USA. Cerebrovascular structural
changes that occur as a result of chronically elevated cerebral perfusion pressure are hypothesized

to precede the onset of systemic hypertension. A novel framework is presented in this manuscript

to detect and quantify cerebrovascular changes (i.e. blood vessel diameters and tortuosity changes)
using magnetic resonance angiography (MRA) data. The proposed framework consists of: 1) A novel
adaptive segmentation algorithm to delineate large as well as small blood vessels locally using

3-D spatial information and appearance features of the cerebrovascular system; 2) Estimating

the cumulative distribution function (CDF) of the 3-D distance map of the cerebrovascular system

to quantify alterations in cerebral blood vessels’ diameters; 3) Calculation of mean and Gaussian
curvatures to quantify cerebrovascular tortuosity; and 4) Statistical and correlation analyses to identify
the relationship between mean arterial pressure (MAP) and cerebral blood vessels’ diameters and
tortuosity alterations. The proposed framework was validated using MAP and MRA data collected from
15 patients over a 700-days period. The novel adaptive segmentation algorithm recorded a 92.23% Dice
similarity coefficient (DSC), a 94.82% sensitivity, a 99.00% specificity, and a 10.00% absolute vessels
volume difference (AVVD) in delineating cerebral blood vessels from surrounding tissues compared to
the ground truth. Experiments demonstrated that MAP is inversely related to cerebral blood vessel
diameters (p-value < 0.05) globally (over the whole brain) and locally (at circle of Willis and below).

A statistically significant direct correlation (p-value < 0.05) was found between MAP and tortuosity
(medians of Gaussian and mean curvatures, and average of mean curvature) globally and locally (at
circle of Willis and below). Quantification of the cerebrovascular diameter and tortuosity changes may
enable clinicians to predict elevated blood pressure before its onset and optimize medical treatment
plans of pre-hypertension and hypertension.

One in three adults in the US suffers from hypertension. Hypertension is a leading contributor of death in 410,000
patients in USA'. Many factors such as renal dysfunction, high sodium intake, and chronic stress contribute in the
development of hypertension. The chronic elevation of cerebral perfusion pressure (CPP) changes the cerebro-
vasculature of the brain and disrupts its vasoregulation mechanisms. This cerebral vascular alteration has a severe
effect on the human body organs® and is a leading cause of cognitive impairment, strokes, dementia, ischemic
cerebral injury, and brain lesions®. Specifically, recent studies hypothesized that changes in the cerebrovasculature
and CPP precede the systemic elevation of blood pressure (BP)**.

Currently, sphygmomanometers are used to measure repeated brachial artery pressure to diagnose systemic
hypertension after its onset. However, this method cannot detect cerebrovascular alterations that lead to adverse
events which may occur prior to the onset of hypertension. Quantifying these cerebral vascular structural changes
could help in predicting patients who are at a high risk of cerebral adverse events. This may enable early medi-
cal intervention prior to the onset of systemic hypertension, potentially mitigating vascular-initiated end-organ
damage.
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Figure 1. A framework for detection and quantification of cerebral vascular changes.

Previous studies have demonstrated vascular changes with hypertension. A direct relationship between cere-
bral microvascular changes and hypertension was demonstrated using ultra high-resolution magnetic resonance
angiography (MRA) of the lenticulostriate arteries (LSAs)®. Chen et al. analyzed 3-D time-of-flight (TOF)-MRA
and found that there is a significant decrease in the number of LSA stems in hypertension patients compared to
normal people’. Cerebrovascular structural alterations such as changes in blood vessels’ diameters and tortuosity
have been used in the diagnosis of many diseases. Cerebral blood vessels’ change in diameters has been reported
as an early sign of cerebrovascular dysfunction from both in-vivo and clinical observations®’. Vascular resist-
ance in hypertension resulted from the reduction of lumen size of small size arteries and arterioles'’. Carotid
artery diameter change in rats has been correlated to the chronic elevation of BP''. Pulmonary hypertension in
humans has been reported to correlate to changes of pulmonary arterial diameters!>!>. Abnormal or excessive
vascular tortuosity of blood vessels has also been clinically observed to precede the onset of multiple vascular and
non-vascular diseases'*!. Vascular tortousity has been linked to hypertension, genetic defects, aging, atheroscle-
rosis, and diabetes mellitus'®. Tortuosity has been used to measure how sharply a vessel is twisting or bending.
Tortuosity of retinal blood vessels has been used and assessed by ophthalmologists as a diagnostic parameter'®-!8,
Increase of tortuosity of coronary vessel was linked to patients with hypertension'®. Hemispheric white matter
tortuosity has been correlated to the severity of systemic hypertension and elevated cerebral perfusion pressure?.
Thus, detection and quantification of cerebral vascular changes in diameters and tortuosity at an early stage would
help clinicians in early diagnosis and identification of patients at a risk of hypertension, and initiating a treatment
before the onset of the disease.

However the widespread usage of imaging technologies such as magnetic resonance angiography, alterations
or remodeling of cerebral blood vessels’ diameters and tortuosity have not been correlated to elevated arterial
pressure due to limitations associated with current segmentation algorithms which cannot delineate small blood
vessels efficiently. Manual segmentation of blood vessels is time consuming and intensive, error-prone, and is sub-
ject to inter-observer variability. In addition, semi-automatic blood vessel segmentation algorithms may need fur-
ther investigation, revisions and/or evaluations by clinicians. In this manuscript, a novel framework is presented
to automatically segment and accurately measure and quantify cerebrovascular changes using MRA data, and
correlate these changes to mean arterial pressure (MAP). The framework includes a proposed novel automatic
local adaptive segmentation algorithm which was capable of delineating both large as well as small blood vessels
from MRA data. To the best of our knowledge, this study is the first to investigate the cerebrovasculature changes
that precede hypertension from MRA.

Methods

The proposed framework (Fig. 1) includes 3 basic modules: 1) a novel, 3-D fully-automated local adaptive seg-
mentation algorithm that extracts large as well as small cerebral blood vessels accurately, 2) a feature extraction
module where imaging markers are quantified to predict the potential of elevated blood pressure, and 3) a sta-
tistical and correlation analysis module to correlate MAP to cerebrovascular change. These three modules are
explained in more details in the following subsections.

A 3-D Local adaptive segmentation algorithm. Segmentation is an essential step in most of the med-
ical imaging analysis systems. Segmentation accuracy is affected by many factors such as scanning parameters,
application domain, and imaging modality. Particularly, segmentation of cerebral blood vessels from MRA data
has several challenges including the complex nature of the vasculature, diameter and density of small vessels,
dynamic range of intensities, acquisition errors, noise, and high inter- person variability of the vascular tree which
hinders the creation of common atlas to be used for segmentation, as done for other human organs. Therefore,
there is a limitation of current segmentation algorithms to delineate cerebral blood vessels efficiently, specifically
smaller ones.

Skull stripping. A preprocessing step (Fig. 2) precedes the segmentation step to account for any biasing or inho-
mogeneity of the MRA data. A nonparametric bias correction algorithm? was used to reduce any effects of noise
and remove data inconsistencies. Then, a homogeneity enhancement algorithm employing a 3-D generalized
Gauss-Markov random field (GGMRF) model* was used. It makes use of the 3-D spatially homogeneous pair-
wise interactions of the 26-neighborhood system and minimizes differences between a centered voxel and its 26
neighbors using the following energy function:
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Figure 2. Steps of Preprocessing Stage.
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Figure 3. Empirical density normalization using the LCDG model.

such that g, and g, represent original and new estimated gray-levels; v, represents the 26-neighborhood system;
7, , represents the GGMRF potential; A and p represent the scaling factors; a ¢ {1, 2} was used to define the prior
distribution of the estimator (o = 1 for Laplace or o = 2 for Gaussian); and (3 was used in controlling the
smoothing level such that 5¢[1.01, 2.0] (8 = 2 for smoothing and 3 = 1.01 for relatively abrupt edges). A skull
stripping procedure was utilized and applied on the preprocessed data to remove human brain’s fat tissues that
have a similar visual appearance to that’s of blood vessels and retain brain tissues only. It combines Markov-Gibbs
random field (MGRF) model of data with a geometric deformable model (brain isosurface) which preserves the
cerebral topology during the process of extraction. Algorithm 1 presents the details of skull stripping algorithm.

A Linear Combination of Discrete Gaussians (LCDG)-based segmentation. A Bayesian framework was used to
extract an initial vasculature where a linear combination of discrete Gaussians (LCDG)* was used for estimating
marginal probability density of MRA voxel values for cerebral vessels and other cerebral tissues (Fig. 3). The
LCDG model used has C, positive and C, negative components for cerebral vessels and other tissues and is given
by the following equation:

S o
pw,@(q) = ZWp,rw(qu,r) - an,lw(qul) 2)
r=1 =1

where ®,(g) is the cumulative Gaussian function with 6 = (g, 02) for the mean, i, and variance, o such that
(q|0) = Py(q + 0.5) — Py(g — 0.5)) for g=1,...,Q —2,¥(0]f) = Py(0.5) and P(Q — 1]|0) = 1—
®,(Q — 1.5). Total summation of the non-negative weights of the LCDG models is equal to one. For detailed
description of the LCDG model, see*?*. Parameters of the LCDG model (prior probability, number of Gaussian
components, mean, and variance) were estimated using the modified Expectation Maximization (EM) algo-
rithm??. Finally, the extraction of the blood vessels was performed based on the following Bayesian rule:
P(v)p(q|v) > P(O)p(q|O). Where P(v) is the prior probability of the cerebral blood vessels, and P(O) is the prior
probability of the other cerebral tissues.

Blood vessels’ segmentation refinement. The initial segmentation of the vasculature may miss some of the small
blood vessels. To handle this challenge, a novel 3-D local adaptive segmentation algorithm has been developed
(Fig. 4). The algorithm processes the initially segmented vasculature to find more blood vessels, specifically the
smaller ones. In this algorithm, each slice was divided into a set of connected components. A search window of
adaptive size was then centered around every component in the set where a new separation threshold was esti-

+ . . . .
matedasT = %, where 1, represents average intensity of blood vessels and 1, represents average intensity of
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other cerebral tissues. A novel seed-generation refinement algorithm was developed and utilized to detect seeds
within regions that have a high potential to contain smaller vessels missed in the initial segmentation. A 3-D
region growing connected components algorithm was subsequently used to delineate the final, connected vascu-
lature. Steps of the segmentation algorithm are presented in Algorithm 2.

Cerebral vascular system feature extraction. Median vascular radius. For each subject, medians of
vascular radii were obtained by estimating distance map for the delineated vascular tree. Making use of these
measurements, the cumulative distribution function (CDF) of the vascular radii was estimated as the cumulative
distribution of the PDE. The CDF Fy of a discrete random variable X is obtained as F(x) = P(X < x) = 3, f(¢).
The CDF provides a probability estimate for the blood vessels the exists at or below a specific vascular diameter
point. Each CDF value represents the average of the vascular diameters in the MRA volume (Fig. 5).

Algorithm 1. Brain tissue extraction from MRA scans.

1. Apply bias field correction for the MRA brain data using?!, Fig. 7(b).

2. Use the 3D GGMRF homogeneity enhancement model to enhance the brain data while maintaining the edges between
different brain structures (e.g., blood vessels and brain tissue), Fig. 7(c).

3. Perform skull stripping (retain only brain tissues) using the Brain Extraction Tool (BET)?! to get an initial skull stripped
data.

4. Calculate the 3D Euclidean distance map for the binary mask of the volume that obtained from Step 3 and use this map
to calculate a predefined set of N iso-surfaces, Fig. 7(d).

5. Use the LCDG to get an initial map m of two classes, (brain tissue, and non-brain), through the accurate estimation of
the marginal density of the MRA voxels, Fig. 3.

6. Use analytical estimation to obtain the Gibbs potentials of m to identify the spatial interaction probabilities.

7. While k <N

(a) Use the modeled features, (first-order appearance and second-order spatial interaction), and Bayes classifier to
classify all voxels of each kth iso-surface.

(b) Check if there still non-brain tissues in the kth iso-surfaces?
* Yes — Go to Step 7a

* No — Break

8. Using morphological and connectivity analysis to extract the brain tissues and discard any other tissues, Fig. 7(f).

Algorithm 2. Local Adaptive Segmentation.

1. Use the LCDG model to get an initial segmentation of the skull stripped MRA data.

2. For each axial cross-section S;, i=1ton

(a) Use morphological and connectivity analysis to identify the different Y connected regions, Fig. 7(c).
(b) For each binary sub-region (BW), R;, i € {1,...,Y}, in cross-section S;

i. Initialize a 3-D cube, C, of size Nj; X No; x N3; around the center of the BW component, R;, and calculate the
volume of the current blood vessel segments, Vip;;-
ii. Start a new segmentation for the current C, then calculate the the new blood vessel volume, vy,
iii. Does Vpew — Vinir > T (pre-defined threshold)?
A. Yes — Vinir < Vyew, update the size of C, then repeat step 2(b)ii
B. No — Continue

iv. Add the obtained segmentation of C to the final segmentation volume.

End for

End for

3. Return the segmented MRA brain volume.

Tortuosity of cerebral blood vessels.  Tortuosity from imaging modalities can be measured either as the ratio of a
vessel curve length over the line distance between the two ends'*?>%, or as the cumulative sum of angles between
segment vectors normalized by vessel length (total curvature or mean curvature)?*-2. Gaussian and mean curva-
tures are considered to be the most significant types of curvatures in surface theory”. Thus, in the proposed
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Figure 5. Visualization of the distance map calculated for each blood vessel.

framework, tortuosity was measured from MRA data by calculating mean and Gaussian curvatures across the
whole vasculature of each patient. Mean curvature equals (k, + k,)/2, where k;, k, are the principal curvatures,
and is an extrinsic measure of curvature that depends on the embedding. Gaussian curvature equalsk, x k, and
is an intrinsic property of the surface and does not depend on the embedding of the surface.

The surface of the segmented vascular tree was modeled as a triangulated mesh. Following the methodology
proposed by Smedby et al.*®, and generalizing to higher dimensions, we defined tortuosity as the integral of abso-
lute curvature |K]|. Total (or Gaussian) curvature K was estimated in the neighborhood of each mesh vertex using
the algorithm of Chen and Schmitt®!. Briefly, let v; be the coordinates of vertex i, n; is the surface normal (a
weighted average of normals to the triangles incident on i), and N; is a vertex neighborhood of i, specifically the
one-ring neighborhood if it contains at least four neighbors, or two-ring neighborhood in other cases. Then for
each vertex j in N, let e ="V, — v and t; = %, the finite-difference approximation of normal curva-

1] 1T 1
- % Euler’s theorem states that the normal curvature along tangent
%ij
direction t is k(0) = klcosze + kzsinzﬁ, where 6 is the angle t makes with the first principal direction E}, and k,
and k, (principal curvatures), with k; > k,. Given a sample of tangent vectors and corresponding normal curva-
tures, the Chen-Schmitt algorithm estimates principal directions and curvatures. The total curvature K = k; x k,
can then be computed (Fig. 6).

ture at v; in the direction ¢ is kij =

Materials and procedure. Magnetic resonance angiography scans and blood pressure measurements used
in this study were collected from 15 participants (Female =7, Male =8, Age =49.2 + 7.3 years) during a study
period that extended for 700-days (day 0 (t,) and on day 700 (¢,)). The total number of data sets processed was
30. Data were collected and approved by the Institutional Review Board at the University of Pittsburgh and the
research was performed in accordance to the relevant guidelines and regulations. Participants of ages 35-60 years
were enrolled in the study with the following exclusion criteria: 1) general medical conditions: ischemic coronary
artery disease, pregnancy, chronic liver disease, cancer (treatment < 12 months), diabetes mellitus (fasting blood
glucose > 125 mg/dL), or chronic kidney disease (creatinine > 1.2 mg/dL); 2) neuropsychiatric conditions: mul-
tiple sclerosis, stroke, epilepsy, serious head injury, brain tumor, and major mental illness; 3) using prescription
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Figure 6. Visualization of the calculation of curvatures. N is the normal vector, and k1, k2 are the principal
curvatures (maximum and minimum normal curvatures).

Patient Age Gender Race BMI SBP1 DBP1 SBP2 DBP2 MAP(pre) MAP(post)
1 50 1 1 3297 121.5 85.5 118.5 69 97.5 85.5
2 41 1 1 27.59 125.5 88.5 129.5 93 100.8 105.2
3 59 1 2 23.32 130.5 82.5 120.5 78 98.5 92.2
4 35 2 1 42.77 118 80.5 105.5 69 93 81.2
5 48 1 1 30.64 130.5 83 143.5.5 94 98.8 110.5
6 53 2 2 22.77 121 88.5 130.5 100.5 99.3 110.5
7 59 2 1 25.70 120 80.5 103.5 66.5 93.7 78.8
8 58 1 1 28.43 129 78.5 134.5 86 95.3 102.2
9 50 1 2 25.53 114 84.5 120 88 94.3 98.7
10 54 2 2 28.31 119 84.5 115.5 76 96 89.2
11 53 2 2 28.40 124.5 73 101 69 90.2 79.7
12 55 1 2 33.83 133.5 85 123.5 79.5 101.2 94.2
13 50 2 1 31.79 124 81.5 106.5 70.5 95.7 82.5
14 36 1 2 39.33 105.5 85 132.5 95.5 91.8 107.8
15 46 2 2 28.55 124 81.5 108.5 74.5 95.7 85.8

Table 1. Participant Demographics and Characteristics. Gender (1 =male, 2 =female), Race (1 = white,
2 =black), BMI: body mass index, SBP1 and SBP2: systolic blood pressure at f, and ¢, respectively, DBP1 and
DBP2: diastolic blood pressure at ¢, and ¢, respectively, MAP(pre) and MAP(post): MAP at t; and t, respectively.

medications for hypertension and psychotropic drugs. Participant were selected to be pre-hypertensive with a
systolic BP > 120 and <140 mmHg or a diastolic BP >80 and <90 mmHg.

Initial screening via phone calls was made with each participant to ensure eligibility. All participants provided
informed consent before any study procedures. Participants had to attend to the lab three times within two weeks.
During the first visit, participants provided their medical history, blood pressure readings, some physical traits
such as weight, height, etc. (Table 1). In the second visit, blood pressure readings were taken from the partici-
pants, followed by a 2-hour neuropsychological battery of tests. The third visit included a 1-hour MRI screening.

Blood pressure measurements were obtained using the auscultatory technique with cuff size appropriate to
patient arm after giving him/her a seated rest of 5-minutes. Two measurements were taken with at least 1-minute
separation time. This procedure was repeated on a second day and the average of the four readings taken during
both visits was calculated and used to calculate MAP value. Participants were invited to the follow-up assessment
after approximately 2 years where the blood pressure measurements and the MRA scans were obtained again.
Average of blood pressure readings on #, was 122 4+ 6.9 mmHg systolic and 82 £ 3.8 mmHg diastolic, while on
t;, average was 118.9 £ 12.4 mmHg systolic and 79.9 + 11.0 mmHg diastolic. Blood pressure measurements of
patients were comparable over time, but measurements for each patient changed or stayed the same temporally.

MRA scans were collected by a 3T Trio TIM scanner with a 12-channel phased-array head coil. Each scan was
composed of 3-D multi-slab high-resolution images with about 160 slices, a thickness of 0.5 mm, a resolution of
384 x 448, a flip angle of 15 degrees, a repetition time of 21 ms, and an echo time of 3.8 ms. MRA data were ana-
lyzed blinded to patients’ blood pressure.
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Figure 7. Sample output of the local adaptive segmentation algorithm: (a) Original (raw) image, (b) After
bias-correction, (c) After GGMRF-enhancement, (d) Distance map and iso-surfaces generated, (e) Subsurfaces-
based extraction of brain tissues, (f) Final delineated cerebrovasculature (h) Initial LCDG global segmentation,
(i) Results after applying the proposed local adaptive segmentation from the same plane, (j) and preceding and
succeeding planes, and 3-D visualization of results using a growing tree model (k-m).

Results

Segmentation and statistical analysis. The proposed automatic novel adaptive segmentation algorithm
was evaluated using commonly used segmentation evaluation metrics; Dice similarity coefficient (DSC), the
absolute vessels volume difference (AVVD), sensitivity, and specificity. The first metric is the DSC, one of the
most commonly used similarity metrics, that characterizes the agreement between the segmented (S) and the
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Figure 8. Segmentation results for three MRA subjects (a—c). The maximum intensity projection (MIP) (first-
row); 3D segmentation obtained by the proposed segmentation approach (second-row).

Method Sensitivity Specificity DSC,% | AVVD, %
Proposed 94.82% 99.00% 92.2311 10.03
GSB 85.28% 97.50% 80.12 23.62

Table 2. Result of comparing the proposed segmentation algorithm and the Global Statistical Based approach
(GSB)** in terms of the Sensitivity, Specificity, DSC and AVVD.

Variable (feature) Chi-Squared (x?) (Df=1) | p-value
Median of Mean curvature 4.0297 0.04
Median of Gaussian curvature | 4.1731 0.04
Average of Mean curvature 4.3503 0.037
Median of vascular radius 4.1022 0.04

Table 3. MAP Response on Change of Tortuosity and Diameter of Blood Vessels Globally.

Variable (feature) Chi-Squared (x?) (Df=1) | p-value
Median of Mean curvature (lower) 4.072 0.04
Median of Gaussian curvature (lower) | 3.9889 0.04
Average of Mean curvature (lower) 4.5309 0.03
Median of vascular radius (lower) 4.6443 0.03

Table 4. MAP Response on Change of Tortuosity and Diameter of Blood Vessels Locally.

gold standard (G) regions based on the determination of true positive (TP) value, true negative (TN) value, false
negative (FN) value, and false positive (FP) value. The TP is defined as the number of positively labeled voxels
that are correct; the FP is the number of positively labeled voxels that are incorrect; the TN is the number of neg-
atively labeled voxels that are correct; and the FN is the number of negatively labeled voxels that are incorrect.
These values are used to calculate the DSC as described in details in®%: The calculated value of the DSC can have
a percentage value in the range 0% to 100%, where 0% means strong dissimilarity and 100% means that there is

SCIENTIFIC REPORTS |

(2019) 9:11105 | https://doi.org/10.1038/s41598-019-47368-1


https://doi.org/10.1038/s41598-019-47368-1

www.nature.com/scientificreports/

Patient (A) Patient (B)
1 : : : : ————————r 1 : . . : — :
0.9- - 0.9 i
0.8 . o8t 1
07t i 07 1
0.6 0.6/ 1
e .
gosr . gost 1
0.4F 1 0.4- 1
o3 /7 1 03 1
02t // —Day0 | 0.2f
a2 ---Day 700
011/ 1 0.1F
% 0.5 1 1.5 2 25 3 35 4 0 02 04 06 08 1 12 14 16 18
Vascular radius in mm Vascular raduis in mm
(a) (b)

Figure 9. CDF estimations and the corresponding medians of vascular radii at ¢, and ¢, for subjects A, B. (a)
CDF saturated at a vascular radius of smaller value on t, compared to ¢, for Subject A. (b) CDF saturated at a
vascular radius of smaller value for Subject B on ¢, compared to ¢,.

Day 0 (t,) Day 700 (t,)
Subject | Systolic BP DiastolicBP | MAP Systolic BP DiastolicBP | MAP
A 124.5mmHg 73 mmHg 90.17mmHg | 101mmHg 69 mmHg 79.67
B 125.5mmHg 88.5mmHg 100.83 mmHg 129.5mmHg 93 mmHg 105.17

Table 5. Measurements of Blood Pressure of Subjects A, B.

a perfect similarity. To obtain the gold standard that was used in the segmentation evaluation process, an MRA
expert delineated the brain vessels. The second used evaluation metric is AVVD, an area-based metric, which
measures the volume difference (percentage) between the output of the segmentation framework, S, and the gold
standard, G, as follows:

G — §|

AVVD(G, §) =
G| )

where |G — §| is the absolute difference between the number of voxels in G and S, |G| is the number of voxels in

G. Moreover, both the sensitivity, ( Sens = L), and specificity, Spec = ) of the segmentation have

N
TP+ FN TN + FP
been evaluated to measure both the true positive and true negative detection accuracy.

The proposed automatic novel adaptive segmentation algorithm obtained a DSC of ~92.23%, a sensitivity of
~94.82%, a specificity of ~99.00%, and an AVVD of ~10.00% in delineating cerebral blood vessels compared to
the manually segmented ground truth. These results demonstrate the high accuracy and efficacy of this algorithm.
Figure 7 shows an output instance of the segmentation algorithm. To highlight the accuracy enhancement of the
proposed approach over existing methods, a comparison to the global statistical approach?* was conducted and
the results are shown in Table 2. Figure 8 shows sample 3-D segmentation results for three MRA subjects along
their maximum intensity projection (MIP). These qualitative results demonstrate how the proposed segmentation
approach is capable of obtaining fine details of the brain vasculature.

R-software version 3.2 was utilized to perform statistical analysis. The add-on package Ime4*® was used to
study the potential correlation between blood pressure measurements and MRA data. MAP dependence upon
features of the cerebral vasculature was tested using a mixed-effects linear model of fixed effects of median of
vascular radius (represents blood vessels diameters) and averages and medians of both Gaussian curvature and
mean curvature of cerebral blood vessels (represent tortuosity of blood vessels). A random intercept per patient
was also included in the test model. This analysis defined MAP using the equation that follows,
MAP = (2 * Diastolic BP + Systolic BP)/3. For each feature quantified, we tested our framework both globally
(over the whole brain) and locally (brain was segmented into upper section (above circle of Willis), and lower
section (circle of Willis and below)). Correlation analysis was performed using MATLAB R2017a software.

Results of statistical experiments demonstrated a statistically significant (p-value < 0.05) inverse correlation
between MAP and alterations in diameters of blood vessels (represented by median of vascular radius) globally
over the whole brain (Table 3) and locally at the lower section of the brain (Table 4). Additionally, the statistical
analysis demonstrated that MAP was significantly correlated with median of mean curvature, median of Gaussian
curvature, and average of mean curvature, (p-value < 0.05) globally (Table 3) and locally at the lower section of
the brain (Table 4). In the upper section of the brain (above the circle of Willis), the p-values for median of mean
curvature, median of Gaussian curvature, average of mean curvature and average of Gaussian curvature were
0.068, 0.063, 0.060, 0.027 respectively.
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Figure 10. CDF estimations and the corresponding median vascular radii for a hypertensive subject and a
normotensive subject. Elevated blood pressure corresponded to CDF saturation at a smaller vascular radius
value. These results support the efficacy of the presented framework.
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Figure 11. A sample of two patients to explain the correlation between Tortuosity and Mean Arterial Pressure
(MAP). Patient 1 shows a decrease in tortuosity index from ¢, to ¢, corresponding to a decrease in MAP value
for this patient. Patient 2 shows a slight increase from ¢, to ¢, corresponding to an increase in MAP value for this
patient. Hence, these results show that MAP is directly correlated to tortuosity of cerebral blood vessels.

Discussion and Limitations

It is common that patients with hypertension are asymptomatic, sometimes even in advanced stages. Even a
measurement of high blood pressure is often neglected as a temporary result due to stress or other factors rather
than chronic hypertension. Predicting the potential of developing a hypertension in early stages may help in
slowing the progression of the disease by following proactive and preventive lifestyles recommended by clinicians.
Timely information regarding vascular health would potentially enhance the quality of life for patients and their
families and reduce the health care costs. In this study we presented a framework that would help clinicians in
predicting elevated blood pressure before its onset. The proposed automatic local adaptive segmentation algo-
rithm was able to rapidly delineate large and small cerebral blood vessels with high degrees of specificity and
sensitivity. Importantly, the 3-D segmentation algorithm is fully automatic and is applicable to both healthy,
and non-healthy vessels. Previous methodologies published in literature are suitable only for healthy vessels due
to inherent assumptions that do not fit with pathological vessels such as linearity and circular cross-section®.
Studies that developed automatic cerebrovasculature segmentation algorithms have been reported®-3*. For exam-
ple, one study proposed an architecture based on using a deep convolutional neural network (CNN) to auto-
matically segment cerebral blood vessels from TOF-MRA datasets of healthy subjects by training the delineated
manually annotated data. Their proposed framework was able to delineate cerebral blood vessels with a DSC
ranging from 0.764 to 0.786°°. A deep learning approach called DeepVesselNet was proposed in*® where a 3-D
CNN architecture was employed to segment blood vessels along with other tasks such as vessels center-lines pre-
diction and bifurcations detection. In their methodology, they used cross-hair filters (one of the components of
DeepVesselNet) from three intersecting 2-D filters to help in avoiding memory and speed problems of traditional
3-D networks while at the same time taking advantages of the 3-D information in volumetric data. Their exper-
iments showed that their method performed well compared to 3-D filters and at the same time improved speed
and memory consumption significantly. Another MRA- based vasculature segmentation method was proposed
in* where they first performed background subtraction and vessel reservation by applying volume projection,
2-D segmentation, and back-projection operations. Then, they utilized a stochastic expectation maximization
algorithm to estimate the PDF of remaining vessels’ voxels, which were assumed to be mixture of one Rayleigh
and two Gaussian distributions. Their method classified image voxels into three classes; background, middle
region, and vascular structure. Subsequently, the K-means method, which is based on the gradient of remain-
ing vessels was utilized to detect true positives around boundaries of vessels effectively. The methodology could
achieve accurate segmentation in regions of low contrast. However, one disadvantage of their method was the
computing time consumed by the K-means method to determine the appropriate gradient value. In contrast, the
proposed segmentation algorithm utilizes an adaptive thresholding methodology and overcomes the limitations
associated with MRA images such as biasing, noise, or resolution problems, which enables efficient extraction of
small and large cerebral blood vessels. Importantly, the automatic nature of this framework ensures that there will
be no intra- or inter-observer variability because there are no human interactions.
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This study demonstrated that changes of cerebral blood vessel diameters were inversely correlated to MAP
globally (over the entire brain) as well as at and below the circle of Willis (lower section of the brain). Cerebral
blood vessels below the circle of Willis are typically larger compared to blood vessels in the upper compartment of
the brain. While the segmentation algorithm can delineate these smaller blood vessels, changes in the small blood
vessel diameters were not statistically significant. This is potentially due to the smaller variations in diameters of
small blood vessels that is limited by the resolution of the MRA images. Our proposed approach used CDE which
is a measure of diameter over the entire volume of the brain rather than the diameter of a vessel at a specific point.
Thus, CDF was used to represent the median radius of the vessels globally, simplifying temporal comparisons and
facilitating analysis. As an example, Fig. 9 presents the temporal alterations in radii of blood vessels and CDFs for
two different subjects A and B. MAP values for subject A were decreasing from ¢, to ¢,, while MAP values for sub-
ject B were increasing from £, to t,. As shown in Fig. 9, the CDF for subject A saturated (CDF reaches 1) at a vas-
cular radius of smaller value on ¢, (higher MAP) compared to t,. On the contrary, the CDF for subject B saturated
at a vascular radius of smaller value on t, (higher MAP) compared to ¢, (Table 5). The given results supported
the efficacy of the presented framework to distinguish intra-patient temporal alterations in cerebrovasculature
and demonstrated an inverse relationship between MAP and vascular diameters. Importantly, the framework
recognized temporal alterations in cerebral vascular system in response to MAP in non-hypertensive patients
(MAP < 120 mmHg). Thus, the presented framework would help ascertain risk of cerebral vascular events or sys-
temic hypertension before its onset. Figure 10 illustrates median vascular radii of a hypertensive and normoten-
sive subjects and their corresponding CDFs. The CDF of the hypertensive subject saturated at a vascular radius of
smaller value (solid line), compared to the normotensive subject (dotted line). Additionally, the median vascular
radius of the hypertensive subject was 0.46 mm smaller compared to the normotensive subject demonstrating the
capability of the framework to discern inter-patient variabilities.

In the proposed framework, blood vessels’ tortuosity was measured by the calculation of mean and Gaussian
curvatures. Algorithms proposed in literature have typically used a 2-D methodology for estimating curvatures.
In contrast, our framework presents a novel 3-D methodology to estimate curvatures by using a 3-D mesh to
model the vasculature obtained from segmentation. This three dimensional approach results in a more accurate
representation and calculation of tortuosity in the cerebral volume. Our study demonstrated that change in cere-
brovascular tortuosity was strongly correlated to MAP (Fig. 11) globally and in the lower section of the brain. In
the upper section of the brain, the correlation values were not statistically significant due to the limited clinical
sample size and smaller tortuosity changes observed in small diameter blood vessels. However, the correlation
was trending towards statistical significance and additional data collection is currently underway. In summary,
the results of this study is supportive of previously published hypothesis that cerebrovascular tortuosity changes
may precede hypertension®” 14151920,

A limitation of our study is that we had temporal MRA data from a small sample size of 15 patients. To the
best of our knowledge, there are no free standard databases available in this field. Despite the small sample size,
the cerebrovascular changes were adequate to enable statistical significance. The efficacy of the proposed frame-
work to detect and quantify cerebrovascular structural changes could potentially enable clinicians in formulating
appropriate medical treatment plans to mitigate risks of adverse events. Additionally, the framework may enable
better follow-up of patients and to test the effectiveness of the treatment regimen in slowing down the progres-
sion of cerebrovascular changes. However, despite the accuracy of the framework in quantifying cerebrovascular
changes from MRA, our approach may be limited to patients with high risk of hypertension or adverse events due
to cost considerations. While MRA is expensive, the cost hypertension medication alone is $2000/year per patient
and the hospitalization cost for a hemorrhagic stroke is over $ 32,000%°. Thus, MRA screening may be cost effec-
tive long-term especially in patients with high risk of developing hypertension. Access to MRA, while limited in
remote rural areas, is readily available in major care centers and hospitals that serve rural areas in the US.

Data Availability

Materials, data, and associated protocols will be available to readers after the manuscript is being accepted.
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