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Abstract: Population based search techniques have been developed and applied to wide applications
for their good performance, such as the optimization of the unmanned aerial vehicle (UAV) path
planning problems. However, the search for optimal solutions for an optimization problem is
usually expensive. For example, the UAV problem is a large-scale optimization problem with
many constraints, which makes it hard to get exact solutions. Especially, it will be time-consuming
when multiple UAV problems are waiting to be optimized at the same time. Evolutionary multi-
task optimization (EMTO) studies the problem of utilizing the population-based characteristics of
evolutionary computation techniques to optimize multiple optimization problems simultaneously, for
the purpose of further improving the overall performance of resolving all these problems. EMTO has
great potential in solving real-world problems more efficiently. Therefore, in this paper, we develop a
novel EMTO algorithm using a classical PSO algorithm, in which the developed knowledge transfer
strategy achieves knowledge transfer between task by synthesizing the transferred knowledges from
a selected set of component tasks during the updating of the velocities of population. Two knowledge
transfer strategies are developed along with two versions of the proposed algorithm. The proposed
algorithm is compared with the multifactorial PSO algorithm, the SREMTO algorithm, the popular
multifactorial evolutionary algorithm and a classical PSO algorithm on nine popular single-objective
MTO problems and six five-task MTO problems, which demonstrates its superiority.

Keywords: evolutionary multitasking; evolutionary multi-task optimization; multi-task optimization;
knowledge transfer; particle swarm optimization

1. Introduction

Multi-task optimization (MTO) [1–3] studies how to effectively and efficiently opti-
mize multiple optimization problems simultaneously, and has been developed to be a new
research area in the field of optimization. Suppose there are k optimization tasks to be
optimized at the same time, each task to be a minimization problem. The mathematic de-
scription for an MTO problem can be :{x∗1 , x∗2 , . . . , x∗k} = argmin{ f1(x1), f2(x2), . . . , fk(xk)},
in which the candidate solution xj and the global optimal solution x∗j are both in a Dj-
dimensional search space Xj, j = 1, 2, . . . , k. Function f j with f j : Xj → <, is the objective
function of the j-th task Tj. By implicitly leveraging upon the underlying synergies between
these k objection function landscapes, MTO can enable accelerated convergence towards
the global optima of all these tasks simultaneously [4–7]. Therefore, MTO is very promising
in improving the optimization performance of multiple real-world problems, such as the
path planning for multiple UAVs. Note that, UAV path planning problem aims at finding a
satisfactory path within moderate computation resources and affordable time [8].

To solve the above MTO problems efficiently, many optimizers from the field of optimiza-
tion can be employed to develop different MTO solvers. For example, Bayesian optimization
is developed to handle these MTO problems efficiently in [1]. However, the newly emerged
evolutionary MTO (EMTO) [2,3] has been more popular over the years [9–11]. EMTO utilizes
the population-based evolutionary computation techniques (ECs) to optimize an MTO
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problem. EMTO tries to exploit the population of ECs to realize implicit knowledge transfer
across different optimization tasks during the optimization of an MTO problem.Because
the candidate solutions of the population have already implicitly carried the knowledge or
information of a task during the task’s optimization process.

Over the years, many EMTO algorithms have been proposed. In [2], Gupta et al.
utilized the designed population’s cultural parts to affect the genetic operations of the
employed classical genetic algorithm [12], so as to propose the efficient multifactorial
evolutionary algorithm (MFEA). As a kind of EMTO algorithms based on genetic algorithm,
MFEA has inspired many researchers to develop a lot of efficient EMTO solvers [13–15].
For example, the proposed multifactorial evolutionary algorithm with resource reallocation
(MFEARR) in [16], reset the parameter rmp of knowledge transfer in MFEA via the survival
rate of divergents, for the purpose of suppressing ineffective cross-task knowledge transfer.
Divergents are the offspring generated by two parents who are excellent at different
tasks. Among the rest solvers, we put our attention to the self-regulated knowledge
transfer scheme in [3]. In this scheme, task relatedness is local and dynamic as it is
explored and captured via the evolving population. Then, knowledge transfer adapts to
this dynamic task relatedness via the re-creation of task groups for all component tasks,
and via the evaluation of population on corresponding selected set of tasks. Besides
the above solvers that based on genetic algorithm, many researchers put their effect on
EMTO using particle swarm optimization(PSO) [17]. In [18], Feng et al. developed the
bio-cultural models in MFEA into a stander PSO solver to realize a novel multifactorial PSO
(MFPSO) algorithm. In [19], Cheng et al. optimized each of the component tasks using one
unique population (i.e., swarm), and achieved inter-task knowledge transfer by replacing
the currently global best optima of a task with that of a different task when updating
population’s velocity, so as to propose a multitasking coevolutionary PSO (MT-CPSO)
algorithm. In [20], Song et al. extended a popular dynamic multi-swarm optimization (i.e.,
DMS-PSO) algorithm into EMTO and proposed a multitasking multi-swarm optimization
(MTMSO) algorithm. In MTMSO, each population is responsible for one unique task, and
knowledge transfer across these population is implemented via the probabilistic crossover
on these population’s personal bests. In addition, there are many other EMTO solvers
proposed in recent years [21–27].

Considering the above self-regulated knowledge transfer scheme, a developed self-
regulated evolutionary multi-task optimization (SREMTO) algorithm has demonstrated its
superiority on the test suites as presented in the paper [3]. However, only works based on
genetic algorithms are being studied. The effectiveness and efficiency of the scheme on PSO
is still yet to be explored. Moreover, PSO has been one of the most popular optimization
techniques for its simplicity and rapid convergence rate in the evolutionary computation
community in the past few decades [28–30]. Therefore, the incorporation of the scheme
with the PSO is very promising.

Therefore, this paper tries to propose a more efficient EMTO solver by incorporat-
ing the self-regulated knowledge transfer scheme with a classical PSO algorithm and
redesigning knowledge transfer strategy. Befittingly, the proposed algorithm is referred
to as a self-regulated particle swarm multi-task optimization(SRPSMTO) algorithm. Note
that, two novel knowledge transfer strategies are developed along with two versions of
the proposed SRPSMTO. According to the paper [3], task relatedness in this scheme is
explored and captured by quantifying the abilities (i.e., ability vectors) of every individual
on solving different component tasks. In contrast to the scheme to recreate task groups
using population’s ability vectors during each generation, this paper tries to introduce a
newly devised knowledge transfer strategy to better fit into the classical evolution structure
of a PSO algorithm and the dynamic relatedness between tasks. In the strategy, the task’s
impact on an individual is adapted to the individual’s historical performance on the task
via the knowledge integration operation and the probability selection operation, where
the knowledge integration operation synthesizes the impacts from a set of tasks that are
selected by the probability selection operation. Two versions of knowledge transfer strate-
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gies are developed along with two versions of the proposed algorithm, for the purpose
of studying the performance difference of the proposed algorithm when using these two
strategies. After updating the population’s velocities and positions, each individual of
the population is evaluated on a selected set of tasks that are selected using probability
corresponding to the individual’s ability on these tasks. Several experiments are conducted
on a bi-task MTO problem set and a 5-task MTO problem set, which demonstrated the
superiority of the proposed SRPSMTO.

The remaining paper will be organized as follows. The related background of EMTO,
the self-regulated knowledge transfer scheme and particle swarm optimization are re-
viewed in Section 2. In Section 3, the motivation of this paper is firstly shown, which is
then followed by the details of the proposed algorithm. Several experiments are conducted
in Section 4, the results of which highlights the performance of the proposed SRPSMTO.
Finally in Section 5, some important directions are revealed for future research.

2. Background
2.1. Evolutionary Multi-Task Optimization

Over the past few decades, population-based evolutionary computation techniques
(ECs) have been established, and have shown promising results in handling nonlinear, mul-
timodal and NP-hard problems [31–34]. However most of these techniques can only solve
a single optimization problem. The implicit parallelism of population has not been fully
explored and exploited. As aforementioned, MTO can study the optimization problems via
the simultaneous optimization of multiple tasks, under an assumption that the information
of one task may be helpful in improving the optimization efficiency of the other tasks dur-
ing optimization. The population-based characteristic of ECs makes themselves suitable
for solving these MTO problems. Hence, evolutionary multi-task optimization (EMTO) [2]
is developed as an efficient framework to deal with the MTO problems [4,5,10,21].

EMTO is totally different from traditional evolutionary optimization. In traditional
optimization, each solver independently optimizes an optimization problem within a
problem-specific search spaces. However, EMTO simultaneously solves these tasks in a
unified representation space [2] using only one EMTO solver as illustrated in Figure 1. A
popular unified representation in EMTO community is a random key approach [35], which
encoded each decision variable of problem-specific search spaces via a random key between
0 and 1. By using such a unified representation, the knowledge or useful information from
one of all involved tasks can be implicitly utilized by the rest tasks, avoiding the problem
of complex knowledge representation.

To efficiently solve MTO problems, the multifactorial evolutionary algorithm
(MFEA) [2] is proposed as the first EMTO solver and has inspired many researchers.
MFEA takes inspiration from the bio-cultural models of multifactorial inheritance, which
believes that the complex developmental traits among offspring come from the interac-
tions of genetic and cultural factors. In particular, cultural effects are incorporated via
two aspects of the models in MFEA, that is (1) assortative mating, which considers that
individuals prefer to mate with those belonging to the same cultural background; and
(2) vertical cultural transmission, which believes that the phenotype of offspring is affected
by the phenotype of its parents directly. Accordingly, MFEA splits the population into dif-
ferent skill groups, each representing a kind of culture. Subsequently, MFEA transfers the
genetic materials between tasks in an implicit method, i.e., (1) a random probability (rmp)
which allows individuals from different tasks to mate freely and (2) selective imitation
in which the generated offspring can imitate the skill factor of either of its parent. Ulti-
mately, the implemented MFEA achieves promising results in simultaneously optimizing
multiple tasks.
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Figure 1. Highlighting the distinction between EMTO and traditional evolutionary optimization.
In EMTO, all task-specific search spaces will be encoded within a unified representation space. An
EMTO solver will simultaneously optimize all involved problems within this unified space, and
output the found best solutions for all problems. Contrarily, traditional optimization independently
optimizes each problem in a problem-specific search space.

2.2. Self-Regulated Knowledge Transfer Scheme

An MTO problem usually consists of multiple component tasks. Intuitively, for these
tasks, the higher tasks relatedness, the more common knowledge or re-useful information.
As each of these component tasks has a different fitness landscape, different pairs of
component tasks may probably possess different tasks relatedness. Consequently, one
component task may probably benefit from (or assist in) each of the rest component
tasks to different extents. Hence, a self-regulated knowledge transfer scheme [3] was
proposed by dynamically capturing tasks relatedness and accordingly adjusting the degree
of knowledge transfer across these tasks during their optimization processes, so as to
further improve the efficiency of knowledge transfer.

To capture tasks relatedness for an MTO problem during multitasking, the scheme
refers to a popular used method [36], which computes task relatedness as Spearman’s rank
correlation coefficient [36] for each task pair after randomly sampling tasks’ solution spaces
and obtaining the factorial costs and the factorial ranks of these samples. The factorial
costs and the factorial ranks defined in [2] is given in Definitions 1 and 2. Therefore, for
different task pairs, the more similar in samples’ ranks, the higher correlation between
task pairs. Based on this observation, the scheme defines an ability vector (Definition 3)
to quantify the ability of n-sized population (pop = {pi}n

i=1) on each of the component
tasks. As a result, for two component tasks, the higher tasks relatedness between them, the
more similar in the population’s ranks (i.e., factorial ranks), and the more similar in the
population’s abilities (i.e., ability vectors). Accordingly, the scheme recreates task groups
for each component task based on the ability vectors of the evolving population at each
generation, and evaluates the offspring’s quality of these task groups on some randomly



Sensors 2021, 21, 7499 5 of 21

selected tasks with selection probabilities being the element values in their ability vectors.
Consequently, the more tasks relatedness, the more common groups members with respect
to these tasks, and therefore the higher degree of knowledge transfer between these tasks.

Definition 1. (Factorial Cost): Considering a given task Tj, Ψi,j = λ · δi,j + fi,j is defined as the
factorial cost of individual pi; in which λ is a large penalizing multiplier, and the objective value
fi,j and the total constraint violation δi,j of pi are with respect to Tj. Notably, if pi is feasible with
respect to Tj, then we have Ψi,j = fi,j.

Definition 2. (Factorial Rank): The factorial rank ranki,j of an individual pi on task Tj is defined
as the index of pi in the list of population members sorted in ascending order with respect to its
factorial cost Ψi,j.

Definition 3. (Ability Vector): Individual pi’s ability vector is denoted as φi = {φi,j}k
j=1. φi,j

indicates pi’s ability on handling component task Tj, and is defined as φi,j = fm(ranki,j) where
ranki,j is pi’s factorial rank on Tj and fm monotonically and decreasingly maps the factorial rank
from the range of [1, rmax] to the range of [0.0,1.0]. The term rmax is the maximal value of the
rank and typically equals to population size n.

In [3], the function fm in Definition 3 is defined as:

φi,j = fm(ranki,j) =

{
a1 · ranki,j + b1, ranki,j ∈ [1, m].
a2 · ranki,j + b2, ranki,j ∈ [m + 1, n].

in which n is population size and m (set to n/k when there is k component tasks) indicates
the size of each of the tasks groups. As a line can be represented by two points, parameters
a1 and b1 are determined via points (1, 1.0) and (m, TH) and parameters a2 and b2 are
determined via points (m + 1, TH) and (n, 0.0). (1, 1.0), (m, TH) and (n, 0.0) are the end
points of these line segments. Parameter TH can control the slopes of these two line
segments via manual setting in the range of [0.0, 1.0]. With such kind of definition, superior
individuals for each task can have more chance to be selected into the corresponding task
group while inferior individuals still have room for being selected.

The self-regulated knowledge transfer scheme was implemented into a self-regulated
evolutionary multi-task optimization (SREMTO) algorithm [3]. After comparing with
several efficient EMTO algorithms on two MTO test suites, the SREMTO as well as the
scheme, has demonstrated its superiority.

2.3. Particle Swarm Optimization

Particle swarm optimization (PSO) [17] is a kind of intelligence algorithm that simu-
lates the predation behavior of birds, in which social information are shared between these
birds. Each of the birds, called individuals (i.e., candidate solution for optimization prob-
lem), can benefit from its own experience and all other companions’ previous experience
during its food search process.

In PSO, an individual is represented by a position vector xi = (xi,1, xi,2, . . . , xi,D),
i = 1, 2, . . . , n and a velocity vector vi = (vi,1, vi,2, . . . , vi,D), i = 1, 2, . . . , n, where n is popu-
lation size and D is the dimensionality of the search space of a given optimization problem.
Velocity vector vi indicates an individual pi’s distance and direction in the next step of
movement. An individual’s movement in PSO is influenced by three components, i.e.,
the inertia or momentum component, the cognitive component and the social component.
The inertia component describes the ability of an individual to keep track of its previous
flow direction. The cognitive component identifies the tendency of an individual pi to
move back to its personal best position found by itself so far, labeled as pbesti . The
social component accounts for the influence of the so far found best position by the whole
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population, which is labeled as gbest. Formally, the updates of an individual pi’s velocity
and position on d-th dimension from generation g to g + 1 are as defined as follows:

vg+1
i,d = wvg

i,d + c1r1(pbesti,d − xg
i,d) + c2r2(gbestd − xg

i,d) (1)

xg+1
i,d = xg

i,d + vg+1
i,d (2)

where the parameter w is an inertia weight that adjusts the influence from the inertia
component. c1 and c2 adjust the influence of the personal best pbesti and the gbest
respectively, and usually are real-valued in range [0, 4]. Parameter r1, r2 are random
numbers generated from a uniform distribution in range [0, 1].

3. The Proposed Method
3.1. Motivations

As aforementioned, the self-regulated knowledge transfer scheme adapts knowledge
transfer to task relatedness by dynamically exploring and capturing task relatedness
during optimization. The relatedness of component tasks is important in influencing the
optimization efficiency of EMTO. For the component tasks possessing high task relatedness,
an EMTO solver can efficiently solve them all under the effects of knowledge transfer. On
the contrary, for the component tasks with low task relatedness, the knowledge transfer
may be useless, even harmful, to task optimization process. Therefore, the adaptation of
knowledge transfer to task relatedness really matters in EMTO, and this self-regulated
knowledge transfer scheme is one unique method to realize the adaptation.

Meanwhile, PSO has attained remarkable attention from researchers over the past
decade for its ease of implementation and high efficiency in solving single objective prob-
lems, especially in optimizing continuous problems [37–40]. On the one hand, there are
mainly two operations in a classical PSO algorithm as described above, i.e., velocity updat-
ing and position updating, and there are only three parameters that need to be adjusted,
including the inertia weight w, the learning factor c1 and c2. Hence, PSO can be eas-
ily implemented. On the other hand, many versions of PSO have been proposed , and
have been tested on many complicated problems which have demonstrated promising
outcomes [41–44].

Therefore, the incorporation of the scheme with an classical PSO algorithm is very
promising in generating an efficient EMTO solver. The details of the proposed solver can
be seen at the next chapter.

3.2. Self-Regulated Particle Swarm MTO (SRPSMTO) Algorithm

PSO is a population-based search technique, in which individuals will share experi-
ence with each other, so that all of them can move towards better positions. To handle
MTO problems effectively, the self-regulated knowledge transfer scheme [3] is incorporated
with the PSO algorithm to develop an self-regulated particle swarm MTO (i.e., SRPSMTO)
algorithm. To further obtain better performance, an effective inter-task knowledge transfer
strategy is developed, in which task’s impact on an individual is adapted to the individ-
ual’s historical performance on the task via the knowledge integration operation and the
probability selection operation. Two versions of the inter-task knowledge transfer strategies
are developed, and each version is corresponding to a version of the SRPSMTO algorithm.
The basic structure of the proposed algorithm is shown in Algorithm 1.

In SRPSMTO, the randomly-initialized population are evenly separated into k sub-
groups at the beginning, each subgroup corresponding to a unique task. In the first
generation, the individuals of a task’s subgroup are evaluated only on the task, to obtain
their initial fitness, and their fitness on the other tasks are set to in f . After all individuals
are evaluated, the SRPSMTO updates the pbesti, i = 1, . . . , n and gbestj, j = 1, . . . , k of
population. Then the algorithm obtains individuals’ factorial ranks on all component tasks,
and accordingly computes the individuals’ ability vectors according to the Definition 3. In
step 5 and 6, the algorithm updates the velocities and positions of all individuals. After
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individuals move to new positions, the algorithm evaluates all individuals once again. But
differing from the first generation, the individuals are now evaluated on a set of tasks that
are randomly selected with selection probabilities being the element values in the ability
vectors of the individuals. In step 7 and 8, the pbesti, i = 1, . . . , n, gbestj, j = 1, . . . , k and
the ability vectors of the individuals are updated again. If the stopping conditions are not
satisfied, the algorithm steps into another runs again. Details of the proposed SRPSMTO
will be discussed below.

Algorithm 1 SRPSMTO.

Input:
n (population size)
k (number of tasks)
w, c1, c2 (PSO parameters)

Output:
{x∗1 , x∗2 , . . . , x∗k} (the best solution achieved on each of the k component tasks)

1: Randomly generate a population pop of size n.
2: Evenly separate pop into k subgroups and evaluate each subgroup on one correspond-

ing task.
3: Update the pbesti, i = 1, . . . , n and gbestj, j = 1, . . . , k, and the ability vector

φi = {φi,j}k
j=1 of individual pi in pop.

4: while (stopping conditions are not satisfied) do
5: Update velocities (see Algorithm 2 and 3).
6: Update positions (see Equation (2)).
7: Evaluate all individuals and Update the pbesti, i = 1, . . . , n and gbestj, j = 1, . . . , k

(see Algorithm 4).
8: Update the ability vector of every individual.
9: end while

3.2.1. Inter-Task Knowledge Transfer

In a canonical PSO, population move from place to place under the effects of three
parts: the inertial component, the cognition component and the social component. The
social component represents the impact from the so far found best position of the opti-
mization problem. In EMTO, two or more component tasks are simultaneously optimized
in one unified representation space. Therefore, each individual of the population will be
influenced by multiple component tasks at a same time. With the incorporated SREMTO
scheme, in this paper, the impact of these tasks on an individual can adapt to the individ-
ual’s historical performance on these tasks. In the following, an knowledge integration
operation and a probability selection operation are developed to achieve flexibly inter-task
knowledge transfer.

In the SREMTO scheme, the abilities of every individual on handling different com-
ponent tasks have been quantified via the defined ability vector. Therefore, this paper
devises a knowledge integration operation to integrate the impacts from different tasks, to
assist an individual to move towards more promising regions in the near future. In this
knowledge integration, the impacts of tasks’ so far found best positions are weighted and
summed over by individual’s ability vector when the individual’s velocity is updated. As
a result, different tasks can impact the individual’s movements to different extents, the
degree of which is decided by the individual’s ability values on these tasks. If an indi-
vidual can perform well on multiple tasks (i.e., possessing high ability vales on multiple
tasks), the knowledge integration operation can help the individual move faster towards
promising regions.

Intuitively, a task may probably have positive influence on an individual if the in-
dividual has good performance on the task in history. Therefore, a probability selection
operation is devised to reduce the negative impacts from some tasks to a specific individual.
Specifically, the movement of an individual is now impacted by a set of tasks, and each
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task is selected using individual’s ability value on the task as probability. As a result, each
individual of population can have more chance to move towards better positions

In Algorithm 2, the knowledge integration operation and the probability selection
operation are performed to update the velocity of every individual. In step 4, each task is
selected with a probability of φi,j, and is utilized to update an individual’s velocity. Once
a task Tj is selected, then the gbestj of the task is employed to update the individual’s
velocity via a weighted summation process as shown in step 5 and step 7.

Algorithm 2 VelocityUpdate_V1.

1: for individual pi, i = 1 to n do
2: tempd = 0.
3: for task Tj, j = 1 to k do
4: if rand < φi,j then
5: tempd = tempd + φi,j(gbestj,d − xg

i,d).
6: end if
7: vg+1

i,d = wvg
i,d + c1r1(pbesti,d − xg

i,d) + c2r2(tempd).
8: end for
9: end for

In Algorithm 3, we introduce another type of knowledge integration operation and
the probability selection operation, to develop a second knowledge transfer strategy for the
proposed algorithm. In the knowledge integration operation, the impacts of tasks’ so far
found best positions from different tasks are weighted and summed over by individual’s
ability vector as well. Meanwhile, a normalization process is devised to normalize this
weighted sum as shown in step 8 and 10. In the probability selection operation, the
task that an individual has the greatest ability value is ensured to be selected while the
rest tasks are selected using probabilities as shown in step 2 and 5. These modifications
enhance individuals’ optimization on the tasks that the individual performs well in history.
Therefore, comparing to the Algorithm 2, the knowledge transfer strategy in Algorithm 3
may probably benefit the proposed algorithm when optimizing MTO problems consisting
of more than two component tasks. Contrarily, Algorithm 3 may have less efficiency in
knowledge transfer due to the limitation in the flexibility of knowledge transfer, especially
when two optimized tasks are highly related.

Algorithm 3 VelocityUpdate_V2.

1: for individual pi, i = 1 to n do
2: Get the index jb of the biggest in φi = {φi,j}k

j=1.
3: tempd = 0, norma f = 0.
4: for task Tj, j = 1 to k do
5: if j = jb or rand < φi,j then
6: r2 = rand
7: tempd = tempd + r2 ∗ φi,j ∗ (gbestj,d − xg

i,d).
8: norma f = norma f + φi,j.
9: end if

10: vg+1
i,d = wvg

i,d + c1r1(pbesti,d − xg
i,d) + c2(tempd/norma f ).

11: end for
12: end for

3.2.2. Selective Evaluation

The evaluation of population in a multitasking environment has to take more fac-
tors into consideration, because individuals are affected by multiple tasks simultaneously.
In generally, we should evaluate an individual on all component tasks for better under-
standing the individual’s performance on all tasks, which, however, is computationally
expensive. Therefore, an individual is evaluated on tasks that are selected with selection



Sensors 2021, 21, 7499 9 of 21

probabilities being the element values in its ability vectors as shown in step 4 in Algorithm 4.
For these selected tasks, the task that an individual is most excellent at, is ensured to be
selected. The rest of the tasks are selected with probabilities, and an individual’s fitness on
tasks that has not been evaluated will be set to ∞ as given in step 7 of the Algorithm 4.

Algorithm 4 Population Evaluation.

1: for individual pi, i = 1 to n do
2: Get the index jb of the biggest in φi = {φi,j}k

j=1.
3: for task Tj, j = 1 to k do
4: if j ∈ jb or rand < φi,j then
5: f itnessi,j = f j(positioni).
6: else
7: f itnessi,j = ∞.
8: end if
9: if f itnessi,j is better than pbesti’s fitness on j then

10: Update the pbesti.
11: if f itnessi,j is better than fitness of gbestj then
12: Update the gbestj.
13: end if
14: end if
15: end for
16: end for

After evaluation, an individual’s personal best (i.e., pbesti) is updated if its current
fitness on any component tasks is better as shown in step 9 and step 10 of Algorithm 4, and
the {gbestj}k

j=1 are updated in step 11 and step 12 if the better ones are found.

4. Experiments

In this section, a set of experiments are conducted to evaluate the performance of the
proposed SRPSMTO algorithm in comparison to the MFPSO [18], the SREMTO [3], the
MFEA [2] and as well as a traditional PSO algorithm on two test suits. Meanwhile, an
in-depth analysis is made to demonstrate the effectiveness and efficiency of the proposed
SRPSMTO on handling MTO problems with 5 component tasks via the comparison with
the PSO, the MFEA, the SREMTO. In the last experiment, a parameter study was made to
study the impact of the population size in SRPSMTO. Before the experiments, we will first
detail test problems and the experimental setup in the following.

4.1. Test Problems

Two suites of test problems are used in the following experiments. Test suite 1 contains
nine MTO problems from the CEC 2017 Evolutionary Multi-Task Optimization Competition
as shown in Table 1. Each of these problems are composed of two distinct single-objective
optimization tasks which have their own global optima as well as their own dimension
size and inter-task similarity (i.e., task relatedness). According to the overlapping degrees
of their component tasks’ global optima, these problems can be classified into three cate-
gories, i.e., complete intersection (CI), partial intersection (PI) and no intersection (NI). The
component tasks of the problems in CI set have the same global optima, and those in NI set
will have totally different global optima. For PI set, the component tasks of each problem
will have their own global optima which are only the same on some dimensions. Besides
the above overlapping degrees, the nine MTO problems in test suite 1 can be classified
into 3 classes if according to the inter-task similarity (Rs). That is, low similarity set when
Rs < 0.2, medium similarity set when 0.2 ≤ Rs ≤ 0.8 and high similarity set when Rs > 0.8.
Note that, Rs measures the degree of inter-task similarity of different component tasks in
an MTO problem, and is computed via the Spermans rank correlation coefficient [36]. Rs is
with value of range [−1, 1], and indicates the lowest and highest similarity of component
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tasks using its magnitude of range 0 and 1, respectively. Its positive and negative signs
denote positive and negative similarity between component tasks, respectively.

Table 1. Description of the nine MTO test problems in test suite 1.

Problem Component Task Degree of Intersection D Rs

1
T1: Grewank

Complete intersection 50 1.00T2: Rastrigin

2
T1: Ackely

Complete intersection 50 0.23T2: Rastrigin

3
T1: Ackely

Complete intersection 50 0.00T2: Schwefel

4
T1: Rastrigin

Partial intersection 50 0.87T2: Sphere

5
T1: Ackely

Partial intersection 50 0.22T2: Rosenbrock

6
T1: Ackely

Partial intersection 50(T2: 25) 0.07T2: Weierstrass

7
T1: Rosenbrock

No intersection 50 0.94T2: Rastrigin

8
T1: Griewank

No intersection 50 0.37T2: Weierstrass

9
T1: Rastrigin

No intersection 50 0.00T2: Weierstrass

Test suite 2 contains six five-task MTO problems, as shown in Table 2. Each of the
six MTO problems contain five single-objective optimization tasks, and these tasks are
constructed using a same basic function with the same space search ranges but different
rotation and slight shift. All the five component tasks of each MTO problem are 50 dimen-
sional, and have no intersection on their global optima. The details of the constructed MTO
problems can be seen in the table.

Table 2. Description of the six MTO problem sets in test suite 2.

Problem Basic Function Search Range Degree of Intersection D

1 Rosenbrock [−50,50] No intersection 50

2 Ackley [−50,50] No intersection 50

3 Rastrigin [−50,50] No intersection 50

4 Griewank [−100,100] No intersection 50

5 Weierstrass [−0.5,0.5] No intersection 50

6 Schwefel [−500,500] No intersection 50

Comparing to test suite 1, the MTO problems of test suite 2 are constructed with more
than 2 component tasks. Hence, an EMTO solver’s performance on a more general case of
multitasking can be tested.

To test the performance of the proposed algorithm, the following continuous objective
functions are used to construct MTO problems by treating each of them as a task in test
suites 1 and 2. These functions [45] are simply described as follow.
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(1) Sphere function
f (x) = ∑D

i=1 x2
i .

(2) Rosenbrock function

f (x) = ∑D−1
i=1 [100(xi+1 − x2

i )
2
+ (xi − 1)2].

(3) Perm0db function

f (x) = ∑D
i=1

(
∑D

j=1 (j + β)

(
xi

j −
1
ji

))2
, β=10.

(4) Levy function

f (x) = sin2(πw1)

+∑D−1
i=1 (wi − 1)2[1 + 10sin2(πwi + 1)

]
+(wd − 1)2[1 + sin2(2πwd)

]
,

wi = 1 + xi−1
4 , i = 1, . . . , D.

(5) Ackley function

f (x) = −20 exp
(
−0.2

√
1
D ∑D

i=1 x2
i

)
−

exp
(

1
D ∑D

i=1 cos(2πxi)
)
+ 20 + exp(1).

(6) Griewank function

f (x) = ∑D
i=1

x2
i

4000
−∏D

i=1 cos
(

xi√
i

)
+ 1.

(7) Rastrigin function

f (x) = 10D + ∑D
i=1

[
x2

i − 10 cos(2πxi)
]
.

(8) Weierstrass function

f (x) = ∑D
i=1

(
∑k max

k=0

[
ak cos(2πbk(xi + 0.5))

])
−D ∑k max

k=0

[
ak cos(2πbk · 0.5)

]
,

a = 0.5, b = 3, k max = 20.

(9) Schwefel function

f (x) = 418.9829× D−∑D
i=1 xi sin(|xi|

1
2 )

4.2. Experimental Setup

Four sets of experiments are conducted in the following to (1) demonstrate the ef-
fectiveness of knowledge transfer in the proposed SRPSMTO via the comparison with a
traditional PSO algorithm using test suite 1; (2) compare the performance of the SRPSMTO
with the MFPSO, the SREMTO and the popular MFEA using test suite 1; (3) evaluate the
performance of the SRPSMTO on a more general case of multitasking using test suite 2
while in comparison to the PSO, the SREMTO and the MFEA; (4) study the impact of
parameter settings (population size n) in the SRPSMTO using test suite 1. Note that, two
versions of the proposed SRPSMTO are shown in these experiments. The SRPSMTO_V1
uses the strategy presented in Algorithm 2, and the SRPSMTO_V2 employs the strategy
described in Algorithm 3 in the previous section.
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The parameter settings for the MFPSO, the SREMTO and the MFEA are as sug-
gested in the original literature. The settings for the PSO algorithm are according to
Eberhart et al. [46], and are used in the proposed SRPSMTO. The details of parameter
settings for these algorithm are summarized as follows:

1. Population size: n = 50× k, k is the number of component tasks in an MTO prob-
lem [23]

2. Parameter settings in SRPSMTO:

- inertia weight w: decreases linearly from 0.9 to 0.4
- c1 and c2: c1 = c2 = 1.494
- ability vector: TH = 0.13/k

3. Parameter settings in PSO are same as the settings in the SRPSMTO
4. Parameter settings in MFPSO:

- random mating probability rmp: 0.3
- inertia weight w: decreases linearly from 0.9 to 0.4
- c1, c2 and c3: 0.2

5. Parameter settings in SREMTO:

- probability for crossover: Pα = 0.7
- probability for mutation: Pβ = 1.0
- distribution index of SBX: 1
- distribution index of PM : 39

6. Parameter settings in MFEA:

- random mating probability rmp: 0.3
- distribution index of SBX: 2
- distribution index of PM: 5

Each of the experiments is conducted for 30 runs. The maximum number of function
evaluations (maxFEs) is used in all involved algorithms as the stopping criterion to ter-
minate a run. The maxFEs is set to 100,000 ∗ k in all experiments [36]. The best objective
function error values (FEVs) are defined as the difference between the objective function
value of the found solution and that of the global optimum. After the termination of a
run, the mean and the standard deviation of the achieved FEVs over 30 runs are used to
measure the performance of the algorithm in terms of optimization accuracy. To compare
the performance of multiple algorithms in a multi-task scenario, a performance score as
defined in [36] is employed. More specifically, assume that there are Q algorithms running
on a k-task MTO test problem and each algorithm runs for L runs. The score of an algorithm

q on this k-task MTO problem is obtained by scoreq =
k
∑

j=1

L
∑

l=1
(Iq,j,l − µj)/σj, where Iq,j,l is

the achieved FEVs of algorithm q on the j-th task and l-th run, µj and σj are respectively the
mean and the standard deviation of the achieved FEVs with respect to the j-th task over all
runs of all algorithms. For an algorithm, the smaller the score, the better the performance.

4.3. Experimental Results
4.3.1. The Effectiveness of Knowledge Transfer in SRPSMTO

Two novel versions of knowledge transfer strategy are proposed in this paper, which
are employed in the two versions of the proposed SRPSMTO respectively. To validate
the effectiveness of knowledge transfer in the SRPSMTO, this experiment is conducted
on the nine MTO problems from Table 1 in comparison with a traditional PSO algorithm.
As the PSO employs same parameter settings as the SRPSMTO, the difference between
them will demonstrate the effectiveness of knowledge transfer in the proposed SRPSMTO.
Table 3 and 4 reports the means and bracketed standard deviations of the achieved FEVs
over 30 runs as well as the scores for the algorithms.
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Table 3. Comparison of SRPSMTO (SRPSMTO_V1) and PSO in terms of the means, bracketed
standard deviations and scores of the best achieved FEVs over 30 runs on test suite 1. The better
results are shown in bold.

Problem Task
SRPSMTO_V1 PSO

Mean(Std) Score Mean(Std) Score

1
T1 3.45E−3(7.55E−3)

−3.75E+1
8.70E−3(7.41E−3)

3.75E+1T2 1.69E+1(3.33E+1) 3.08E+2(7.88E+1)

2
T1 2.84E+0(6.62E−1)

−3.78E+1
3.44E+0(6.57E−1)

3.78E+1T2 6.76E+1(2.67E+1) 3.04E+2(1.02E+2)

3
T1 1.01E−2(9.24E−3)

−2.44E+1
7.12E+0(1.01E+1)

2.44E+1T2 7.15E−3(1.04E−2) 5.83E−1(1.05E+0)

4
T1 2.83E+2(7.26E+1)

−1.02E+1
3.13E+2(9.37E+1)

1.02E+1T2 1.82E−7(4.40E−7) 1.94E−2(8.38E−2)

5
T1 1.44E+0(9.40E−1)

−3.83E+1
3.26E+0(6.39E−1)

3.83E+1T2 9.79E+1(3.11E+1) 1.64E+2(6.83E+1)

6
T1 3.19E+0(8.22E−1)

−2.70E+1
3.21E+0(6.83E−1)

2.70E+1T2 2.66E+0(8.16E−1) 9.77E+0(2.48E+0)

7
T1 8.36E+1(4.07E+1)

−4.13E+1
2.33E+2(1.66E+2)

4.13E+1T2 6.69E+1(6.15E+1) 3.26E+2(9.38E+1)

8
T1 5.75E−3(8.13E−3)

−2.99E+1
8.57E−3(8.81E−3)

2.99E+1T2 1.85E+1(3.31E+0) 3.11E+1(4.93E+0)

9
T1 1.42E+2(8.54E+1)

−1.23E+1
3.15E+2(1.04E+2)

1.23E+1T2 4.07E+1(1.04E+2) 8.19E−1(1.73E+0)

Mean - −2.88E+1 - 2.88E+1

Table 4. Comparison of SRPSMTO (SRPSMTO_V2) and PSO in terms of the means, bracketed
standard deviations and scores of the best achieved FEVs over 30 runs on test suite 1. The better
results are shown in bold.

Problem Task
SRPSMTO_V2 PSO

Mean(Std) Score Mean(Std) Score

1
T1 6.17E−3(8.16E−3)

−3.21E+1
8.70E−3(7.41E−3)

3.21E+1T2 2.86E+1(4.06E+1) 3.08E+2(7.88E+1)

2
T1 3.35E+0(7.81E−1)

−2.59E+1
3.44E+0(6.57E−1)

2.59E+1T2 9.15E+1(4.48E+1) 3.04E+2(1.02E+2)

3
T1 1.29E−1(1.93E−1)

−1.28E+1
7.12E+0(1.01E+1)

1.28E+1T2 6.20E−1(1.37E+0) 5.83E−1(1.05E+0)

4
T1 3.03E+2(9.57E+1)

−6.41E+0
3.13E+2(9.37E+1)

6.41E+0T2 1.33E−8(3.41E−8) 1.94E−2(8.38E−2)

5
T1 1.85E+0(9.61E−1)

−3.77E+1
3.26E+0(6.39E−1)

3.77E+1T2 8.56E+1(2.75E+1) 1.64E+2(6.83E+1)

6
T1 3.50E+0(8.06E−1)

−1.95E+1
3.21E+0(6.83E−1)

1.95E+1T2 3.65E+0(1.19E+0) 9.77E+0(2.48E+0)

7
T1 8.48E+1(4.22E+1)

−4.15E+1
2.33E+2(1.66E+2)

4.15E+1T2 8.27E+1(3.51E+1) 3.26E+2(9.38E+1)

8
T1 9.28E−3(8.61E−3)

−2.25E+1
8.57E−3(8.81E−3)

2.25E+1T2 2.02E+1(3.39E+0) 3.11E+1(4.93E+0)

9
T1 9.50E+1(1.25E+2)

−1.59E+1
3.15E+2(1.04E+2)

1.59E+1T2 1.62E+2(6.98E+2) 8.19E−1(1.73E+0)

Mean - −2.38E+1 - 2.38E+1

Table 3 shows us that the SRPSMTO (i.e., SRPSMTO_V1) obtains better scores than
the traditional PSO algorithm with a better mean score −2.88E+1 comparing to the 2.88E+1
of the PSO. Secifically, for all the nine MTO problems, SRPSMTO has demonstrated better
results than the PSO. Especially on problem 1, 2, 5 and 7, the efficient knowledge transfer



Sensors 2021, 21, 7499 14 of 21

strategy in SRPSMTO brings with great improvement in optimization quality on at least
one of the two component tasks. If we look at them in Table 1, we find that there are high
similarities (i.e., Rs ) between the component tasks in most of these problems, which then
indicates the effectiveness of knowledge transfer in SRPSMTO as well as the promising
future of multitasking.

In Table 4, the SRPSMTO (i.e., SRPSMTO_V2) obtains a mean score −2.38E+1, better
than the mean score 2.38E+1 of the PSO. For all of the nine MTO problems, the SRPSMTO
has demonstrated better performance than the PSO. Therefore, knowledge transfer in the
proposed algorithm works efficiently.

In Figure 2, the averaged achieved FEVs convergence curves of the proposed SRPSMTO
(i.e., SRPSMTO_V1) are presented along with that of the PSO. The convergence curves of
the SRPSMTO_V2 is similar to the SRPSMTO_V1’s, and therefore will not be presented
here. From these figures, we can find that the benefits of multitasking can show up at the
very beginning of optimization. In the early 500 generations, the convergence curves of
most tasks of SRPSMTO have shown faster convergence trend than that of the PSO. Only
on the task T2 of problem 9 whose Rs takes a value equal to 0, the SRPSMTO demonstrates
slow convergence trend.

Figure 2. Averaged achieved FEVs convergence curves of the proposed SRPSMTO (i.e., SRPSMTO_V1) versus the PSO on
the 9 test problems of test suite 1.
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4.3.2. Comparison of SRPSMTO with MFPSO, SREMTO and MFEA on Test Suite 1

To learn about the performance of the proposed SRPSMTO, this experiment compares
the SRPSMTO with the MFPSO, the SREMTO and the popular MFEA from the field of
multitasking. Both the two versions of SRPSMTO (i.e., SRPSMTO_V1 and SRPSMTO_V2)
are considered. The experiment is conducted on the popularly used benchmark that is
given in Table 1. Table 5 shows us the means and bracketed standard deviations of the
achieved FEVs over 30 runs as well as the scores for all algorithms.

As shown in Table 5, the two versions of the SRPSMTO have obtained mean scores
with value −4.21E+1 and −3.77E+1, respectively, which is better than that of the MFPSO
(with a mean score 9.41E+1), the SREMTO (with a mean score −2.59E+1) and that of the
MFEA (with a mean score 1.15E+1). In specific, the SRPSMTO_V1 achieved the best results
on problem 1, 2, 3, 5 and 6, and the SRPSMTO_V2 achieved the best results on problem
9. The SREMTO achieved the best results on three of the nine problems, i.e., problem 4, 7
and 8, where both the two versions of the SRPSMTO can still achieve good enough results
as shown in the table. Therefore, both the two version of the proposed SRPSMTO have
demonstrated superiority on this test suite.

4.3.3. Comparison of SRPSMTO with PSO, SREMTO and MFEA on Test Suite 2

To validate the efficiency of the proposed SRPSMTO on handling MTO problems
with more than two-component tasks, we conduct this experiment on the six five-task
MTO problems from test suite 2, as given in Table 2. The MFPSO is not suitable in
handling these problems, and will not be considered here. Table 6 shows us the means and
bracketed standard deviations of the achieved FEVs over 30 runs as well as the scores for
all algorithms.

As shown in Table 6, both the two versions of the proposed SRPSMTO achieved
better mean scores compared to the PSO, the SREMTO and the MFEA, with −4.44E+1 and
−4.64E+1 comparing to the −2.34E+1 of PSO, the 5.43E+1 of SREMTO and the 5.98E+1
of MFEA. Especially for problems 1, 2 and 4, the SRPSMTO achieved the best results.
Therefore, both versions of the proposed SRPSMTO have demonstrated their superiority
on handling MTO problems with more than 2-component tasks.

4.3.4. Parameters Analysis

This subsection studies the impact of population size on the proposed SRPSMTO
(SRPSMTO_V1) using the nine MTO problems from test suite 1. The other parameter
settings are kept the same as the settings in the previous experiments. Table 7 reports the
means, the bracketed standard deviations and the scores of the achieved FEVs over 30 runs.
The SRPSMTO_V2 performs similar results as the SRPSMTO_V1, hence, we only show
SRPSMTO_V1’s results here.

The experimental results in Table 7 show us that, as the population size n increases
from 20 to 180, the mean scores of the SRPSMTO under each parameter settings are getting
smaller and smaller, which indicates that the performance of the proposed SRPSMTO
generally gets better and better. When n = 100, the algorithm outputs the best results (with
a mean score −2.44E+1), which is also a popular setting in most of the EMTO solvers.
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Table 5. Comparison of SRPSMTO, MFPSO, SREMTO and MFEA in terms of the means, bracketed standard deviations and scores of the best achieved FEVs over 30 runs on nine MTO
problems in test suite 1. The best results are shown in bold.

Problem Task
SRPSMTO_V1 SRPSMTO_V2 MFPSO SREMTO MFEA

Mean(Std) Score Mean(Std) Score Mean(Std) Score Mean(Std) Score Mean(Std) Score

1
T1 3.45E−3(7.55E−3)

−3.90E+1
6.17E−3(8.16E−3)

−3.63E+1
9.34E−1(8.34E−2)

1.13E+2
1.09E−2(9.83E−3)

−3.49E+1
9.64E−2(2.33E−2)

−2.76E+0T2 1.69E+1(3.33E+1) 2.86E+1(4.06E+1) 3.76E+2(2.95E+1) 3.33E+1(2.72E+1) 1.53E+2(5.65E+1)

2
T1 2.84E+0(6.62E−1)

−4.40E+1
3.35E+0(7.81E−1)

−3.16E+1
7.29E+0(8.78E−1)

1.05E+2
3.32E+0(8.88E−1)

−3.74E+1
4.57E+0(8.90E−1)

8.39E+0T2 6.76E+1(2.67E+1) 9.15E+1(4.48E+1) 5.19E+2(6.70E+1) 5.92E+1(2.66E+1) 2.11E+2(6.44E+1)

3
T1 1.01E−2(9.24E−3)

−6.22E+1
1.29E−1(1.93E−1)

−6.18E+1
2.12E+1(4.19E−2)

8.08E+1
2.09E+1(4.07E−1)

3.03E+1
2.01E+1(7.57E−2)

1.29E+1T2 7.15E−3(1.04E−2) 6.20E−1(1.37E+0) 1.42E+4(7.84E+2) 5.48E+3(6.45E+2) 2.81E+3(4.23E+2)

4
T1 2.83E+2(7.26E+1)

−3.44E+1
3.03E+2(9.57E+1)

−3.19E+1
8.49E+2(9.53E+1)

1.10E+2
2.49E+2(6.04E+1)

−3.86E+1
5.18E+2(8.69E+1)

−5.04E+0T2 1.82E−7(4.40E−7) 1.33E−8(3.41E−8) 4.50E+3(7.31E+2) 1.09E−15(2.82E−15) 3.71E−1(8.38E−2)

5
T1 1.44E+0(9.40E−1)

−3.56E+1
1.85E+0(9.61E−1)

−2.96E+1
6.49E+0(9.36E−1)

1.04E+2
2.04E+0(9.33E−1)

−2.69E+1
3.05E+0(7.10E−1)

−1.20E+1T2 9.79E+1(3.11E+1) 8.56E+1(2.75E+1) 9.94E+4(4.92E+4) 9.55E+1(3.03E+1) 2.26E+2(8.01E+1)

6
T1 3.19E+0(8.22E−1)

−4.57E+1
3.50E+0(8.06E−1)

−4.00E+1
1.14E+1(1.59E+0)

1.98E+1
3.58E+0(7.35E−1)

−4.07E+1
1.99E+1(9.18E−2)

1.07E+2T2 2.66E+0(8.16E−1) 3.65E+0(1.19E+0) 9.26E+0(1.59E+0) 3.42E+0(9.00E−1) 2.05E+1(2.92E+0)

7
T1 8.36E+1(4.07E+1)

−3.26E+1
8.48E+1(4.22E+1)

−3.03E+1
3.34E+5(1.23E+5)

1.10E+2
8.91E+1(5.66E+1)

−3.36E+1
2.94E+2(2.31E+2)

−1.35E+1T2 6.69E+1(6.15E+1) 8.27E+1(3.51E+1) 5.70E+2(1.12E+2) 6.02E+1(2.32E+1) 1.97E+2(6.51E+1)

8
T1 5.75E−3(8.13E−3)

−3.90E+1
9.28E−3(8.61E−3)

−2.92E+1
1.11E+0(5.06E−2)

9.45E+1
8.70E−3(1.00E−2)

−4.07E+1
9.60E−2(2.12E−2)

1.44E+1T2 1.85E+1(3.31E+0) 2.02E+1(3.39E+0) 2.86E+1(1.40E+0) 1.82E+1(3.00E+0) 2.68E+1(3.15E+0)

9
T1 1.42E+2(8.54E+1)

−4.62E+1
9.50E+1(1.25E+2)

−4.81E+1
1.50E+3(2.34E+2)

1.10E+2
2.46E+2(4.85E+1)

−1.01E+1
5.61E+2(1.04E+2)

−5.32E+0T2 4.07E+1(1.04E+2) 1.62E+2(6.98E+2) 1.35E+4(1.43E+3) 5.11E+3(6.18E+2) 2.98E+3(3.92E+2)

Mean - −4.21E+1 - −3.77E+1 - 9.41E+1 - −2.59E+1 - 1.15E+1
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Table 6. Comparison of SRPSMTO (SRPSMTO_V1 and SRPSMTO_V2), PSO, SREMTO and MFEA in terms of the means, bracketed standard deviations and scores of the best achieved
FEVs over 30 runs on test suite 2. The best results are shown in bold.

Problem Task
SRPSMTO_V1 SRPSMTO_V2 PSO SREMTO MFEA

Mean(Std) Score Mean(Std) Score Mean(Std) Score Mean(Std) Score Mean(Std) Score

1

T1 9.33E+1(4.99E+1)

−5.99E+1

1.00E+2(5.70E+1)

−6.32E+1

1.80E+2(9.40E+1)

1.31E+1

1.91E+2(1.12E+2)

4.83E+0

3.43E+2(9.37E+1)

1.05E+2

T2 8.79E+1(3.94E+1) 7.73E+1(3.89E+1) 1.85E+2(1.13E+2) 2.31E+2(1.55E+2) 2.87E+2(6.41E+1)
T3 9.38E+1(4.30E+1) 9.34E+1(4.14E+1) 3.85E+2(8.77E+2) 1.37E+2(4.02E+1) 5.71E+2(7.65E+2)
T4 8.87E+1(4.36E+1) 6.93E+1(3.05E+1) 2.11E+2(1.34E+2) 1.42E+2(5.67E+1) 3.38E+2(9.57E+1)
T5 9.46E+1(6.11E+1) 9.65E+1(3.21E+1) 1.63E+2(6.05E+1) 1.77E+2(1.57E+2) 2.81E+2(4.57E+1)

2

T1 1.22E−6(9.73E−7)

−4.83E+1

6.87E−2(3.07E−1)

−4.73E+1

2.86E+0(7.85E−1)

−5.41E+0

1.31E+1(9.89E+0)

1.47E+2

1.62E−1(4.46E−2)

−4.59E+1

T2 3.82E−6(3.93E−6) 6.87E−2(3.07E−1) 3.30E+0(3.59E+0) 1.31E+1(9.87E+0) 1.55E−1(4.02E−2)
T3 2.70E−6(2.49E−6) 6.87E−2(3.07E−1) 2.42E+0(5.34E−1) 1.31E+1(9.87E+0) 1.68E−1(3.21E−2)
T4 2.36E−6(1.93E−6) 6.87E−2(3.07E−1) 2.98E+0(9.81E−1) 1.32E+1(9.90E+0) 1.74E−1(3.12E−2)
T5 1.42E−6(1.39E−6) 6.87E−2(3.07E−1) 2.88E+0(9.97E−1) 1.31E+1(9.90E+0) 1.65E−1(4.01E−2)

3

T1 3.19E+2(8.46E+1)

−3.68E+1

3.23E+2(9.69E+1)

−2.57E+1

3.38E+2(9.18E+1)

−2.59E+1

2.79E+2(1.39E+2)

−6.04E+1

5.63E+2(1.25E+2)

1.49E+2

T2 3.04E+2(5.87E+1) 3.03E+2(9.61E+1) 3.14E+2(6.60E+1) 2.52E+2(6.17E+1) 6.10E+2(1.76E+2)
T3 2.92E+2(8.88E+1) 3.08E+2(8.15E+1) 2.98E+2(7.58E+1) 2.82E+2(1.27E+2) 5.93E+2(1.42E+2)
T4 3.04E+2(9.15E+1) 3.19E+2(9.22E+1) 3.04E+2(9.86E+1) 2.57E+2(9.59E+1) 5.95E+2(1.01E+2)
T5 2.97E+2(6.06E+1) 3.43E+2(1.07E+2) 3.40E+2(8.04E+1) 2.65E+2(9.19E+1) 5.73E+2(1.06E+2)

4

T1 6.03E−3(8.50E−3)

−5.13E+1

5.66E−3(1.12E−2)

−5.03E+1

1.35E−2(1.08E−2)

−3.77E+1

1.19E−2(1.17E−2)

−4.78E+1

1.37E−1(3.29E−2)

1.87E+2

T2 9.36E−3(1.18E−2) 8.99E−3(9.76E−3) 2.37E−2(4.29E−2) 4.74E−3(7.55E−3) 1.26E−1(3.18E−2)
T3 6.65E−3(8.61E−3) 4.80E−3(9.05E−3) 7.75E−3(8.27E−3) 7.48E−3(1.14E−2) 1.42E−1(3.18E−2)
T4 4.93E−3(5.65E−3) 7.51E−3(9.42E−3) 1.57E−2(1.84E−2) 1.11E−2(1.11E−2) 1.37E−1(2.74E−2)
T5 6.65E−3(7.50E−3) 9.47E−3(1.16E−2) 9.29E−3(9.91E−3) 8.05E−3(7.52E−3) 1.45E−1(2.60E−2)

5

T1 5.52E+0(1.49E+0)

1.19E+1

3.89E+0(1.10E+0)

−3.14E+1

5.27E+0(1.18E+0)

6.98E−1

8.74E+0(2.98E+0)

1.35E+2

1.34E+0(1.51E−1)

−1.16E+2

T2 5.50E+0(1.16E+0) 4.07E+0(1.36E+0) 5.30E+0(1.78E+0) 9.89E+0(3.92E+0) 1.35E+0(1.03E−1)
T3 5.29E+0(1.66E+0) 4.55E+0(1.43E+0) 5.47E+0(1.68E+0) 1.06E+1(3.68E+0) 1.28E+0(1.21E−1)
T4 5.57E+0(1.65E+0) 4.37E+0(1.32E+0) 4.66E+0(1.72E+0) 9.53E+0(3.96E+0) 1.34E+0(1.49E−1)
T5 6.26E+0(1.62E+0) 4.05E+0(1.25E+0) 5.57E+0(1.42E+0) 1.02E+1(3.60E+0) 1.37E+0(1.35E−1)

6

T1 2.80E+2(3.67E+2)

−8.18E+1

6.53E+2(4.31E+2)

−6.07E+1

2.13E+2(1.83E+2)

−8.51E+1

4.24E+3(8.23E+2)

1.47E+2

3.15E+3(3.48E+2)

8.01E+1

T2 2.56E+2(3.26E+2) 6.33E+2(4.10E+2) 1.85E+2(1.48E+2) 4.36E+3(8.93E+2) 3.18E+3(4.30E+2)
T3 2.90E+2(3.94E+2) 6.29E+2(3.90E+2) 2.16E+2(1.61E+2) 4.22E+3(8.25E+2) 3.08E+3(3.83E+2)
T4 3.00E+2(3.77E+2) 6.91E+2(4.19E+2) 2.69E+2(2.24E+2) 4.41E+3(8.17E+2) 2.99E+3(3.62E+2)
T5 2.86E+2(3.72E+2) 6.45E+2(4.00E+2) 2.36E+2(1.78E+2) 4.14E+3(7.82E+2) 3.11E+3(4.38E+2)

Mean - -4.44E+1 - −4.64E+1 - -2.34E+1 - 5.43E+1 - 5.98E+1
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Table 7. Achieved best FEVs (the mean, the bracketed standard deviations and the scores) by the SRPSMTO using different population size (n) settings. The better results are shown
in bold.

Problem Task
n = 20 n = 60 n = 100 n = 140 n = 180

Mean(Std) Score Mean(Std) Score Mean(Std) Score Mean(Std) Score Mean(Std) Score

1
T1 5.15E−1(2.15E−1)

1.02E+2
8.74E−3(1.02E−2)

−2.33E+1
3.45E−3(7.55E−3)

−3.19E+1
8.05E−3(1.02E−2)

−2.37E+1
7.93E−3(9.37E−3)

−2.28E+1T2 1.67E+2(4.87E+1) 3.53E+1(3.94E+1) 1.69E+1(3.33E+1) 3.46E+1(3.82E+1) 3.67E+1(4.81E+1)

2
T1 6.42E+0(1.21E+0)

9.76E+1
3.56E+0(1.04E+0)

−1.97E+0
2.84E+0(6.62E−1)

−2.50E+1
2.48E+0(5.95E−1)

−3.20E+1
2.34E+0(4.39E−1)

−3.86E+1T2 2.58E+2(1.08E+2) 1.01E+2(5.06E+1) 6.76E+1(2.67E+1) 6.53E+1(2.69E+1) 5.26E+1(1.61E+1)

3
T1 2.07E−1(2.76E−1)

−2.13E+0
2.80E−2(2.80E−2)

−2.78E+1
1.01E−2(9.24E−3)

−2.97E+1
3.35E−1(4.10E−1)

2.17E+1
4.36E−1(4.03E−1)

3.80E+1T2 1.19E+0(2.50E+0) 4.28E−2(7.15E−2) 7.15E−3(1.04E−2) 2.70E+0(5.44E+0) 3.57E+0(4.98E+0)

4
T1 6.07E+2(1.27E+2)

8.03E+1
3.33E+2(8.05E+1)

−1.08E+1
2.83E+2(7.26E+1)

−2.03E+1
2.75E+2(7.82E+1)

−2.17E+1
2.45E+2(7.89E+1)

−2.75E+1T2 5.79E+1(8.40E+1) 4.93E−5(1.42E−4) 1.82E−7(4.40E−7) 1.05E−5(5.60E−5) 3.50E−5(8.50E−5)

5
T1 4.02E+0(6.84E−1)

8.53E+1
2.00E+0(7.53E−1)

−1.17E+1
1.44E+0(9.40E−1)

−2.52E+1
1.55E+0(9.08E−1)

−2.28E+1
1.43E+0(8.59E−1)

−2.55E+1T2 2.66E+3(2.55E+3) 1.21E+2(4.53E+1) 9.79E+1(3.11E+1) 9.50E+1(2.96E+1) 9.48E+1(2.36E+1)

6
T1 8.70E+0(1.68E+0)

1.06E+2
3.98E+0(8.47E−1)

−6.57E+0
3.19E+0(8.22E−1)

−2.88E+1
3.04E+0(7.78E−1)

−3.02E+1
2.58E+0(6.52E−1)

−4.07E+1T2 8.25E+0(1.55E+0) 3.70E+0(1.07E+0) 2.66E+0(8.16E−1) 2.70E+0(1.02E+0) 2.30E+0(7.21E−1)

7
T1 2.49E+3(2.46E+3)

8.33E+1
1.33E+2(5.48E+1)

−1.51E+1
8.36E+1(4.07E+1)

−2.39E+1
9.26E+1(4.36E+1)

−2.11E+1
9.75E+1(5.58E+1)

−2.32E+1T2 2.38E+2(9.24E+1) 9.00E+1(3.76E+1) 6.69E+1(6.15E+1) 7.47E+1(5.67E+1) 6.80E+1(4.18E+1)

8
T1 6.47E−1(2.86E−1)

9.39E+1
9.16E−3(8.62E−3)

−1.23E+1
5.75E−3(8.13E−3)

−2.07E+1
5.99E−3(9.00E−3)

−3.35E+1
7.15E−3(8.70E−3)

−2.73E+1T2 2.48E+1(2.50E+0) 1.96E+1(2.68E+0) 1.85E+1(3.31E+0) 1.68E+1(2.58E+0) 1.76E+1(3.12E+0)

9
T1 3.13E+2(1.25E+2)

5.70E+1
2.00E+2(8.92E+1)

−2.74E+0
1.42E+2(8.54E+1)

−1.37E+1
1.38E+2(8.08E+1)

−1.67E+1
1.24E+2(9.64E+1)

−2.38E+1T2 2.13E+2(3.48E+2) 1.78E+1(6.53E+1) 4.07E+1(1.04E+2) 2.90E+1(1.28E+2) 6.61E+0(1.02E+1)

Mean - 7.81E+1 - −1.25E+1 - −2.44E+1 - −2.00E+1 - −2.13E+1
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5. Concluding Remarks

In this paper, we proposed a SRPSMTO algorithm by incorporating the self-regulated
knowledge transfer scheme with a classical PSO algorithm. Some empirical studies have
been conducted on the proposed algorithm. The results show that the developed knowl-
edge transfer strategies in SRPSMTO are efficient, and can achieve the algorithm with
high performance on the two test suites comparing to the MFPSO, the SREMTO, the
MFEA and the original classical PSO algorithm. Meanwhile, parameter analysis is con-
ducted in the final part of the experiments to study the impact of population size on the
algorithm’s performance.

As knowledge transfer plays an important role in an EMTO solver, in the future,
more strategies can be explored to further improve the solver’s efficiency on multitask-
ing. Particularly, many methods in machine learning can inspire us on designing more
efficient knowledge transfer strategies. For example, transfer learning models [47] may be
useful in helping knowledge transfer of multitasking. Additionally, to solve real world
problems, such as permutation flow shop scheduling problems [48] and quadratic assign-
ment problems [49], further studies may be required to find a method that updates the
particles’ velocities.
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