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Abstract: The plastic deformation processes and fracture behavior of a Ti–5Al–5Mo–5V–1Cr–1Fe
alloy with bimodal and lamellar microstructures were studied by room-temperature tensile tests
with in situ scanning electron microscopy (SEM) observations. The results indicate that a bimodal
microstructure has a lower strength but higher ductility than a lamellar microstructure. For the
bimodal microstructure, parallel, deep slip bands (SBs) are first noticed in the primary α (αp) phase
lying at an angle of about 45◦ to the direction of the applied tension, while they are first observed in
the coarse lath α (αL) phase or its interface at grain boundaries (GBs) for the lamellar microstructure.
The β matrix undergoes larger plastic deformation than the αL phase in the bimodal microstructure
before fracture. Microcracks are prone to nucleate at the αp/β interface and interconnect, finally
causing the fracture of the bimodal microstructure. The plastic deformation is mainly restricted to
within the coarse αL phase at GBs, which promotes the formation of microcracks and the intergranular
fracture of the lamellar microstructure.

Keywords: Ti–5Al–5Mo–5V–1Cr–1Fe alloy; in situ observation; slip band; microcrack; fracture mech-
anism

1. Introduction

Due to their strength, corrosion resistance, and heat resistance, near-β-titanium alloys
have been widely used in aerospace and automotive engineering as structural materials [1].
With the continuous progress of aerospace and automotive technology, more challenging
requirements are imposed on the mechanical properties of titanium alloys [2]. The de-
sign of titanium alloys with better mechanical properties is therefore the focus of many
studies [3–6].

Previous studies found that the mechanical properties of titanium alloys are closely
related to the morphology and distribution of the α phase [7–9]. Two types of typical
microstructure (bimodal and lamellar microstructures) can be obtained in titanium alloys
by different heat treatments [10]. Many studies concerning the microstructure–property
relationship of titanium alloys showed that bimodal variants have a higher ductility and
lower strength than their lamellar counterparts [11–13]. Qin et al. [14] found that the yield
strength (σ0.2) of lamellar variants reaches 1900 MPa while that of bimodal alloys is around
1600 MPa. Zheng et al. [15] found that the elongation of bimodal variants is 11.5–14.5%
and that of lamellar alloys is 4.5–9.5%. Therefore, the microstructure plays an essential role
in determining the mechanical properties of titanium alloys.

Many studies have been performed to reveal the essential mechanism underpinning
the different mechanical properties of titanium alloys induced by bimodal and lamellar
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microstructures. Wu et al. [16] found that the higher ductility of bimodal alloys can be
mainly attributed to the more numerous deformation mechanisms available to the equiaxed
primary α phase (αp) in bimodal alloys (including dislocation slips, twins, and shear bands)
than those of the α lath (αL) in lamellar structures. Some believed that the tensile fracture
of near-β-titanium alloys is sensitive to micro-void nucleation. Qin et al. [17] found that the
tensile fracture of lamellar alloys is a process of the initiation of nano-scale voids, followed
by their growth and coalescence in the deformation band, and transgranular shearing. The
reason for the formation of micro-voids is the stress concentration caused by the difference
in the strength of the α phase and β matrix. Stress concentration at the GBs is derived
from the precipitation of the αL phase along the α/β interface, which results in micro-void
nucleation. This behavior is mainly responsible for the low ductility of lamellar alloys.
Prior research into the deformation and properties of materials is based on ex situ test
methods, which make it difficult to provide direct evidence of the deformation and fracture
behavior; therefore, detailed information concerning the evolution of a microstructure, and
its corresponding effect on the fracture process under tension, remains unclear.

Recently, in situ tensile SEM observation has become a powerful and effective tool
to evaluate the deformation behavior from a microstructural perspective by capturing
the microstructural evolution dynamically [18,19]. Huang et al. [20] indicated that local-
ized stress concentration at the GBs derived from the geometric incompatibility between
neighboring α grains was mainly responsible for microcrack formation in a Ti–6Al alloy.
Zhang et al. [21] studied the deformation mechanism of a Ti–5Al–2Sn–2Zr–4Cr–4Mo alloy
with a bimodal microstructure, implying that the αp had high compatibility of deformation
and the slip line in the αp phase was the primary deformation mechanism. Shao et al. [22]
found that microcracks were primarily initiated along the αL phase at the edges of the
sample. To date, however, the essential mechanism of the effect of microstructure on
the mechanical properties of titanium alloys remains unclear, which hinders any further
attempts to improve the mechanical properties of alloys.

In this study, Ti–5Al–5Mo–5V–1Cr–1Fe alloy samples with bimodal and lamellar
microstructures were prepared through heat treatments. Their room-temperature tensile
deformation process and fracture behavior were monitored in real time by in situ SEM
observations. On this basis, the aim of this work is to ascertain the essential effects of
microstructure on the mechanism of tensile deformation and fracture of titanium alloys.
The results of this work are expected to provide a basis for future improvement in the
mechanical properties of such titanium alloys.

2. Materials and Methods
2.1. Materials

The as-received material in this study was a forged Ti–5Al–5Mo–5V–1Cr–1Fe alloy
provided by Baoti Group Ltd (Baoji, China) as cuboidal specimens (98.0 mm in length,
20.0 mm in width, and 7.0 mm in height) with a nominal composition of 5.07% Al, 4.81%
Mo, 4.74% V, 1.06% Fe, 0.95% Cr, and the rest Ti (all in wt%). The α + β/β transition
temperature (Tα + β→β) of this alloy is about 865 ◦C.

To obtain the desired microstructure, two as-received cuboids were, respectively,
solution-treated at 830 ◦C (below Tα + β→β) and 895 ◦C (above Tα + β→β) for 2 h. Then, these
cuboids were cooled in a furnace (FC) to 750 ◦C and held for 2 h before air cooling (AC).
Thereafter, they were aged at 600 ◦C for 8 h, before air cooling (AC) to room temperature
(Figure 1).
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the work-hardening resulting from previous mechanical polishing. A micro-stage (Figure 
2a) and Mini MTS (Liweiauto Ltd., Hangzhou, China) controller (with a maximum load 
capacity of 2500 N) were employed to clamp the sample and control the tensile strain rate, 
respectively. The Mini MTS system was adopted to measure the mechanical properties of 
in situ samples. Before in situ testing, the sample was mechanically polished and then 
stretched at a speed of 1.5 μm/s at room temperature in vacuum. 

 
Figure 2. (a) Mechanical test bench; (b) geometry and dimensions of in situ tensile test specimens at 
room temperature (units: mm). 

Processes during the in situ tensile deformation in bimodal and lamellar microstruc-
tures were observed using a JSM-5600 field-emission gun SEM (JEOL Ltd., Tokyo, Japan) 
with an accelerating voltage of 15 kV. Several interruptions were allowed by the loading 
system during tensile testing: this allowed the load to be held while capturing the SEM 
micrographs, after which the tensile test was resumed from the same applied load and 
displacement at the same rate. Three repeated in situ tensile tests were carried out under 
each set of experimental conditions, and typical results were provided. The tensile direc-
tion for the corresponding SEM images printed herein was parallel to the vertical direc-
tion. 

Electron backscattered diffraction (EBSD) measurements were conducted before and 
after in situ tensile tests using an AZtec system (Oxford Instruments Group, Oxford, Eng-
land) coupled to a Hitachi-Regulus 8230 cold field emission SEM (Hitachi High-Technol-
ogies Corporation, , Tokyo, Japan). The operating voltage used was 20 kV to optimize the 

Figure 1. Heat treatment routes for bimodal and lamellar samples.

2.2. In Situ Tensile Test

The sample for the in situ tensile test was cut by wire-electrode cutting with a gauge
length of 1.5 mm, a gauge width of 1.5 mm, and a thickness of 1.0 mm (Figure 2). It was
mechanically polished using emery papers with SiC (5 µm, 3 µm, 1 µm, and 0.25 µm). Then,
it was chemo-mechanically polished using Al2O3 (0.04 µm) suspension to remove the work-
hardening resulting from previous mechanical polishing. A micro-stage (Figure 2a) and
Mini MTS (Liweiauto Ltd., Hangzhou, China) controller (with a maximum load capacity of
2500 N) were employed to clamp the sample and control the tensile strain rate, respectively.
The Mini MTS system was adopted to measure the mechanical properties of in situ samples.
Before in situ testing, the sample was mechanically polished and then stretched at a speed
of 1.5 µm/s at room temperature in vacuum.
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Figure 2. (a) Mechanical test bench; (b) geometry and dimensions of in situ tensile test specimens at
room temperature (units: mm).

Processes during the in situ tensile deformation in bimodal and lamellar microstruc-
tures were observed using a JSM-5600 field-emission gun SEM (JEOL Ltd., Tokyo, Japan)
with an accelerating voltage of 15 kV. Several interruptions were allowed by the loading
system during tensile testing: this allowed the load to be held while capturing the SEM
micrographs, after which the tensile test was resumed from the same applied load and
displacement at the same rate. Three repeated in situ tensile tests were carried out under
each set of experimental conditions, and typical results were provided. The tensile direction
for the corresponding SEM images printed herein was parallel to the vertical direction.

Electron backscattered diffraction (EBSD) measurements were conducted before and
after in situ tensile tests using an AZtec system (Oxford Instruments Group, Oxford, UK)
coupled to a Hitachi-Regulus 8230 cold field emission SEM (Hitachi High-Technologies
Corporation, Tokyo, Japan). The operating voltage used was 20 kV to optimize the quality
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of the diffraction patterns. The EBSD samples were electropolished using a solution of 8%
perchloric acid (HClO4) and 92% CH4O at −25 ◦C.

3. Results
3.1. Microstructure of As-Heat-Treated Samples

Figure 3a shows backscattered electron (BSE)-SEM images of bimodal samples before
in situ tensile testing. Since this sample was solution-treated at a temperature below
Tα + β→β, some coarse globular αp phases were maintained, which were evenly distributed
in the β matrix. For the lamellar microstructure seen in Figure 3b, αp was completely
dissolved during solution treatment at a temperature above Tα + β→β (i.e., 895 ◦C for
2 h), while coarse αL, formed during subsequent low-temperature aging treatment, was
distributed along GBs of the βmatrix.
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3.2. The Stress–Displacement Curves during In Situ Testing

The stress–displacement curves of bimodal and lamellar microstructures under in
situ stretching are demonstrated in Figure 4. The drops in the curves are caused by slight
stress relaxation during the pauses for SEM imaging, in which three typical drops for each
sample are marked, respectively (A, B, and C for the bimodal microstructure and A’, B’,
and C’ for the lamellar microstructure).
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As can be seen from Figure 4, σ0.2 and the ultimate tensile stress (σth) of the bimodal
microstructure are 1041.8 and 1220.5 MPa, which are much lower than those of specimens
with a lamellar microstructure (σ0.2 = 1102.7 MPa, σth = 1441.3 MPa). The maximum tensile
displacement of the bimodal microstructure is about 872 µm, while that of the lamellar
microstructure is about 736 µm. This result indicates that the lamellar microstructure is
stronger, but less ductile than the bimodal microstructure, which is consistent with findings
from previous studies [11–15].

3.3. Microstructure Evolution during In Situ Stretching
3.3.1. Microstructure Evolution of Bimodal Microstructure

Figure 5a illustrates the in situ SEM images of the bimodal microstructure at position A.
At this stage, some parallel and deep SBs can be seen in a small number of αp phase regions.
These SBs generally lie at an angle of 41◦ to 49◦ with the tensile direction. As shown in
Figure 5c, most of them are quite short (only several microns) and strictly confined within
a single αp phase, while some of them not only cross the whole αp phase grain, but also
pass through the αp/β interface and enter the region containing the βmatrix (Figure 5b).
In addition, there is a certain region of distortion arising at the αp/β interface (Figure 5d),
which may be attributed to the deformation incompatibility between αp and β due to their
different crystal structures.
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through the αp/β interface; (c) SBs formed in the region containing the αp phase; (d) distortion at the αp/β interface region.

Figure 6 illustrates BSE-SEM images of bimodal samples stretched at position B.
Obvious necking appears (Figure 6a) and some microcracks form on the edge of the
sample (Figure 6b) caused by the increasing strain. The microcrack tends to propagate
along the αp/β interface and gradually grows to the center of the sample, as shown in
Figure 6b. Noticeable SBs can be found in the β matrix adjacent to regions of αp phase
and the distortion at the αp/β interface increases in severity (Figure 6d). This indicates
that a higher stress concentration arises at this region near the αp/β interface. In addition,
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Figure 6c shows that the SBs in the αp phase become deepened and some tiny microcracks
are also initiated in the βmatrix close to regions containing the αp phase.
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formed on the edge of the sample; (c) microcracks initiated from the αp/β interface; (d) distortion was aggravated around
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Figure 7 illustrates in situ SEM images of the bimodal microstructure at position C
(after fracture). The fracture surface is relatively rough (Figure 7e) and significant necking
can be observed at the region close to the fracture surface (Figure 7c,f). As shown in
Figure 7b,d, many microcracks form in the region close to the fracture surface: these
nucleate at and generally propagate along the αp/β interface (the crack path is tortuous).
Although the number of SBs increases, the αp phase still maintains a granular shape
(Figure 7d) and grains are wrapped by the significantly distorted βmatrix (Figure 7d). As
can be seen in Figure 7a, the morphology of the βmatrix near the fractured zone becomes
streamlined in shape, implying that it undergoes significant plastic deformation before
fracture. Therefore, the βmatrix undergoes greater deformation than the αp phase during
in situ stretching; in addition, this deformation is relatively uniformly distributed in the β
matrix, probably due to the excellent deformation compatibility.

To assess the deformation behavior of the bimodal microstructure during in situ
tensile loading, an area of the sample was selected for tracking, and the SEM images thereof
at different stages were recorded. Figure 8a,c show the SEM images of the same area
on a specimen with a bimodal microstructure surface at the stage of positions A and B,
respectively: with increasing strain, the sample surface became significantly rougher and
took on an undulate appearance (Figure 8c). To determine the strain in this local area, the
changes in distance between two αp phase grains on the sample surface were measured.
Stretched from position A to position B, the distance increased from 135.71 µm (position A)
to 167.85 µm (position B), indicating some 23.68% of the plastic deformation appears along
the tensile direction (εL) in this region.
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Figure 8b,d are magnified images of Figure 8a,c, respectively. Although the sample
underwent severe plastic deformation, the distribution of SBs in the β matrix remained
relatively uniform. For further analysis, 25 αp phase grains were selected for calibration
(and assigned serial numbers 1 to 25). The size changes of these 25 αp phase grains along
the tensile direction from positions A to B were statistically studied (Table 1); most αp phase
regions have εL values of less than 10%, and their average εL value is 9.72%, which is only
41% of the average εL value over the region. This result demonstrates that during tensile
deformation, the βmatrix was subject to larger plastic deformation than the αp phase.



Materials 2021, 14, 5794 8 of 19
Materials 2021, 14, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 8. In situ SEM images of bimodal samples; (a) a selected area at position A; (b) magnified 
image showing the morphologies of αp phase at position A; (c) the area in (a) stretched to position 
B; (d) magnified image illustrating the deformation within αp phase at position B. 

Figure 8b,d are magnified images of Figure 8a,c, respectively. Although the sample 
underwent severe plastic deformation, the distribution of SBs in the β matrix remained 
relatively uniform. For further analysis, 25 αp phase grains were selected for calibration 
(and assigned serial numbers 1 to 25). The size changes of these 25 αp phase grains along 
the tensile direction from positions A to B were statistically studied (Table 1); most αp 
phase regions have εL values of less than 10%, and their average εL value is 9.72%, which 
is only 41% of the average εL value over the region. This result demonstrates that during 
tensile deformation, the β matrix was subject to larger plastic deformation than the αp 
phase. 

Table 1. Calculation of εL values for αp phase (Figure 8) from positions A to B. 

No. Position A (μm) Position B (μm) Δ (Position A→B) (μm) εL (%) 
αp1 6.54 7.15  0.61  9.33 
αp2 6.78  7.30  0.52  7.67 
αp3 6.84  7.52  0.68  9.94 
αp4 5.67  6.13  0.46  8.11 
αp5 5.34  5.77  0.43  8.05 
αp6 6.78  7.44  0.66  9.73 
αp7 7.12  7.73  0.61  8.57 
αp8 7.46  8.32  0.86  11.53 
αp9 8.64  9.43  0.79  9.14 
αp10 7.54  8.61  1.07  14.19 
αp11 8.13  9.27  1.14  14.02 
αp12 5.49  5.98  0.49  8.93 
αp13 4.91  5.39  0.48  9.78 
αp14 5.17  5.62  0.45  8.70 
αp15 7.80  8.25  0.45  5.77 
αp16 6.19  6.86  0.67  10.82 
αp17 6.89  7.29  0.40  5.81 

Figure 8. In situ SEM images of bimodal samples; (a) a selected area at position A; (b) magnified
image showing the morphologies of αp phase at position A; (c) the area in (a) stretched to position B;
(d) magnified image illustrating the deformation within αp phase at position B.

Table 1. Calculation of εL values for αp phase (Figure 8) from positions A to B.

No. Position A (µm) Position B (µm) ∆ (Position
A→B) (µm) εL (%)

αp1 6.54 7.15 0.61 9.33
αp2 6.78 7.30 0.52 7.67
αp3 6.84 7.52 0.68 9.94
αp4 5.67 6.13 0.46 8.11
αp5 5.34 5.77 0.43 8.05
αp6 6.78 7.44 0.66 9.73
αp7 7.12 7.73 0.61 8.57
αp8 7.46 8.32 0.86 11.53
αp9 8.64 9.43 0.79 9.14
αp10 7.54 8.61 1.07 14.19
αp11 8.13 9.27 1.14 14.02
αp12 5.49 5.98 0.49 8.93
αp13 4.91 5.39 0.48 9.78
αp14 5.17 5.62 0.45 8.70
αp15 7.80 8.25 0.45 5.77
αp16 6.19 6.86 0.67 10.82
αp17 6.89 7.29 0.40 5.81
αp18 8.22 9.12 0.90 10.95
αp19 5.94 6.43 0.49 8.25
αp20 9.83 10.57 0.74 7.53
αp21 8.14 9.36 1.22 14.99
αp22 4.87 5.21 0.34 6.98
αp23 5.59 6.28 0.69 12.34
αp24 8.64 9.78 1.14 13.19
αp25 6.19 6.72 0.53 8.56

Average 9.72



Materials 2021, 14, 5794 9 of 19

3.3.2. Evolution of the Lamellar Microstructure

Figure 9 shows BSE-SEM images of specimens with a lamellar microstructure during
in situ stretching at position A’ on the stress–displacement curve (Figure 4). As shown in
Figure 9d, some parallel SBs form within or at the boundaries of the αL phase at an angle
of about 45◦ to the tensile direction. Differing from those in specimens with a bimodal
microstructure, in which such SBs measure only several microns, these SBs aligned along
the length of the αL phase are significantly longer and can always grow to several tens
of microns.

Materials 2021, 14, x FOR PEER REVIEW 9 of 19 
 

 

αp18 8.22  9.12  0.90  10.95 
αp19 5.94  6.43  0.49  8.25 
αp20 9.83  10.57  0.74  7.53 
αp21 8.14  9.36  1.22  14.99 
αp22 4.87  5.21  0.34  6.98 
αp23 5.59  6.28  0.69  12.34 
αp24 8.64  9.78  1.14  13.19 
αp25 6.19  6.72  0.53  8.56 

   Average 9.72 

3.3.2. Evolution of the Lamellar Microstructure 
Figure 9 shows BSE-SEM images of specimens with a lamellar microstructure during 

in situ stretching at position A’ on the stress–displacement curve (Figure 4). As shown in 
Figure 9d, some parallel SBs form within or at the boundaries of the αL phase at an angle 
of about 45° to the tensile direction. Differing from those in specimens with a bimodal 
microstructure, in which such SBs measure only several microns, these SBs aligned along 
the length of the αL phase are significantly longer and can always grow to several tens of 
microns. 

 
Figure 9. (a) In situ SEM images of lamellar microstructure at position A’; (b,c) magnified image 
showing several SBs in an αL phase or at its interface; (d) magnified image showing plentiful SBs in 
a long coarse αL phase at a GB at an angle of about 45° to the tensile direction.  

Figure 9. (a) In situ SEM images of lamellar microstructure at position A’; (b,c) magnified image showing several SBs in an
αL phase or at its interface; (d) magnified image showing plentiful SBs in a long coarse αL phase at a GB at an angle of
about 45◦ to the tensile direction.

Figure 10 illustrates BSE-SEM images of lamellar samples during in situ stretching at
position B’. As the strain increases, SBs gradually extend and connect with each other along
the length of αL at which some extremely long SBs are formed. As shown in Figure 10d,
the connected SBs in the αL at the grain boundary are over one hundred microns in length,
besides which certain microcracks evolving from SBs can also be found in the αL grains or
at their interfaces.
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Figure 10. (a) In situ SEM images of lamellar microstructure at position B’; (b,c) magnified image showing several
microcracks formed in αL phase or at their interfaces; (d) magnified image showing SBs connected with each other and
forming an SB with a length of 127.51 µm.

Figure 11 exhibits in situ SEM images of lamellar samples during stretching at po-
sition C’. No obvious necking occurs in the sample until it fractures, which indicates
that the lamellar microstructure undergoes less plastic deformation than the bimodal mi-
crostructure. Although there are slight SBs in the βmatrix adjacent to the fracture surface,
they are fewer in number than in specimens with a bimodal microstructure. Judging
from Figure 11c,d, specimens with a lamellar microstructure generally fracture along the
GBs, which results in a sharp fracture surface.
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Figure 11. (a) In situ SEM images of the lamellar microstructure at position C’; (b,d) magnified images showing many small,
shallow dimples on the fracture surface; (c) magnified image showing the sample with a shape fracture surface generally
breaking along the GB; (e) some short crossed SBs are shown in the βmatrix adjacent to the fracture surface.

As shown in Figure 12a,c, the changes in a selected area of the lamellar microstructure
from position A’ to position B’ are tracked. The changes in roughness of the sample surface
are small and there are fewer SBs compared with those in specimens with a bimodal
microstructure (Figure 11). The εL value in this local area from position A’ to position B’ is
found to be 1.33% (less than that in specimens with a bimodal microstructure).
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Figure 12. In situ SEM images of the lamellar microstructure; (a) a selected area at position A’; (b) magnified image showing
the morphologies of αL phase at position A’; (c) the area in (a) stretched to position B’; (d) magnified image illustrating the
deformation within αL phase at position B’.

Figure 12b,d demonstrate magnified versions of Figure 12a,c, respectively. To quantify
the deformation behavior, 12 αL phase grains were selected for calibration and assigned
serial numbers 1 to 12. As shown in Figure 12b, SBs are mainly found in the large αL phase
(αL12), which can extend along the GB, while they are scarcely found in the β matrix or
small αL phase regions. With the increase in strain from position A’ to position B’, SBs in
αL12 deepen, while the microstructure in the β matrix and small αL phase changes little
(Figure 12d). The εL values of the selected 12 αL phase grains deformed from position A’
to position B’ were statistically analyzed (Table 2). According to the data in Table 2, the
relatively small αL phase (αL1-αL11) has quite small εL values (less than 1.0%), while the εL
value of the long αL phase at the GB (αL12) is found to be 5.79%, which is 3.35 times greater
than the εL value across this area; the deformation in the lamellar microstructure is mainly
concentrated in the large αL phase found at the GB (i.e., αL12).

Table 2. Calculation of εL values of αL phase (Figure 12) from positions A’ to B’.

No. Position A’ (µm) Position B’ (µm) ∆ (Position
A’→B’) (µm) εL (%)

αL1 3.441 3.459 0.018 0.52
αL2 2.957 2.973 0.016 0.54
αL3 6.068 6.108 0.040 0.66
αL4 3.925 3.934 0.009 0.23
αL5 4.084 4.108 0.024 0.59
αL6 7.189 7.257 0.068 0.95
αL7 2.996 3.012 0.016 0.53
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Table 2. Cont.

No. Position A’ (µm) Position B’ (µm) ∆ (Position
A’→B’) (µm) εL (%)

αL8 5.839 5.874 0.035 0.60
αL9 6.226 6.283 0.057 0.92
αL10 5.144 5.181 0.037 0.72
αL11 2.527 2.545 0.018 0.71
αL12 26.774 28.324 1.550 5.79

- - - Average 1.06

4. Discussion

Recently, investigators have found that mechanical behavior and its related mecha-
nism of action are sensitive to the initial microstructure of titanium alloys. Specimens with
a bimodal microstructure are found to have a lower strength but higher ductility than those
with a lamellar microstructure [11–15], while the essential reason for the differences in
mechanical behavior between bimodal and lamellar microstructures is still hotly debated.
Huang et al. [23] found that the αp phase in specimens with a bimodal microstructure plays
a major role in accommodating the plastic strain of titanium alloys due to its good com-
patibility during deformation, while Tan et al. [24] stated that cracks are readily initiated
at SBs in the αp phase, which lies at the crux of the tensile deformation. Liu et al. [25,26]
considered that a high stress concentration at the αL/β grain boundary results in inter-
granular fracture and low ductility of specimens with a lamellar microstructure, whereas
Qin et al. [27] found that the crack nucleates inside the β grains and will spread under
high tensile stress without hindrance in the larger β grains, leading to the low plasticity of
specimens with a lamellar microstructure. In this study, their quite different mechanical
properties were found to be essentially attributed to different microstructural evolutions
during tensile loading.

4.1. Deformation Mechanisms and Microstructural Evolution of the Bimodal Microstructure

Based on the results of in situ SEM observation, the deformation mechanisms and mi-
crostructural evolution of the bimodal microstructure are shown schematically in Figure 13.

The bimodal microstructure contains coarse globular αp grains distributed in the
β matrix (Figure 13a). Under a relatively small strain (Figure 13b), many parallel, deep
SBs are formed inside some αp phase regions due to the limited slip systems of αp and
the stress concentration caused by their relatively large size. As previously proved by
Semiatin et al. [28], the ratio of critical resolved shear stress in the α phase at room temper-
ature was 1:0.7:3.2 for basal ({0001}<11−20>), prismatic ({1−100}<11−20>), and pyramidal
slip ({1−101}<11−20>), respectively. This indicates that pyramidal slip is difficult to take
place and the αp phase is more likely to slip along its basal or prismatic plane at room
temperature. Figure 14 demonstrates four examples of SB identification for a bimodal
microstructure after in situ stretching. These SBs essentially correspond to prismatic or
basal slip systems and to single slip behavior with a relatively large Schmid factor (SF)
(SF > 3.7), which agrees well with the results of Semiatin et al. [28].
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tributed in the bimodal microstructure. For the same αp phase, there is a large difference 
in SF values for basal and prismatic slips (Figure 15b,c); the one with the maximum SF is 
supposed to be the easiest to activate [21]. Therefore, it is difficult for the αp phase to acti-
vate both basal and prismatic slips simultaneously. SBs are prone to occur along a single 
basal or prismatic plane of the αp phase, which is oriented solely along the maximum 
shear stress direction, i.e., at an angle of 45° to the applied tension. Differing from the αp 
phase, there are significantly more slip systems in the β phase, among which {1−10}<111>, 
{11−2}<111>, and {12−3}<111> slips were thought to be the three typical cases [28,29]. As 
presented in Figure 15d,f, there is no significant difference in the SF values for these three 
types of slips in the β phase. Thus, it is difficult to observe β phase regions’ slip strictly 
along one single plane especially under a small strain. 

Figure 14. Examples of identification of activated slip systems on the αp phase in bimodal microstruc-
ture; (a,b) a basal slip activates (SF = 0.38) in the αp phase; (c,d) a basal slip activates (SF = 0.37) in the
αp phase; (e,f) a prismatic slip activates (SF = 0.45) in the αp phase; (g,h) a prismatic slip activates
(SF = 0.46) in the αp phase.

In addition, as shown in Figure 15a, the orientations of αp phases are randomly
distributed in the bimodal microstructure. For the same αp phase, there is a large difference
in SF values for basal and prismatic slips (Figure 15b,c); the one with the maximum SF
is supposed to be the easiest to activate [21]. Therefore, it is difficult for the αp phase to
activate both basal and prismatic slips simultaneously. SBs are prone to occur along a single
basal or prismatic plane of the αp phase, which is oriented solely along the maximum
shear stress direction, i.e., at an angle of 45◦ to the applied tension. Differing from the αp
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phase, there are significantly more slip systems in the β phase, among which {1−10}<111>,
{11−2}<111>, and {12−3}<111> slips were thought to be the three typical cases [28,29]. As
presented in Figure 15d,f, there is no significant difference in the SF values for these three
types of slips in the β phase. Thus, it is difficult to observe β phase regions’ slip strictly
along one single plane especially under a small strain.
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Figure 15. EBSD images of bimodal microstructure before stretching in situ; (a) inverse pole-figure
(IPF) map; (b) SF map of α for basal slip; (c) SF map of α for prismatic slip; (d) SF map of β for
{1−10}<111> slip; (e) SF map of β for {11−2}<111> slip; (f) SF map of β for {12−3}<111> slip.

In the bimodal microstructure, although a small number of SBs in the αp phase
can pass through the αp/β interface, most are restricted at the interface between β and
αp and confined to within a single αp phase grain. This will lead to an increased stress
concentration at theαp/β interface, therefore distorting the interface. As the strain increases
(Figure 13c), the αp phase is elongated slightly along the tensile direction (Figure 8).

β is softer than αp due to lower concentrations of solute Al in β [30], thus β should
bear more significant deformation than the αp phase at the same stress, while due to the
more numerous slip systems and greater deformation coordination in BCC β, parallel,
deep SBs may be less likely to form in the β phase when the strain is relatively small
(Figures 6 and 7). Caused by the different deformation behaviors between αp and β, stress
concentration at the interface gradually increases with increasing strain, finally generating
microcracks. Then, with the further increase in strain (Figure 13d), the number of SBs in
the αp phase increases slightly due to its more limited slip system, while that in the β
matrix increases to a much greater extent. This further aggravates the stress concentration
at the αp/β interface, making the microcrack propagate along the αp/β interface and into
the βmatrix. As the microcracks grow, they gradually come closer together, whereupon
they tend to interconnect to form a main crack. Additionally, as the main crack grows, it
is likely to bridge these microcracks formed at the αp/β interfaces. This finally leads to
the zig-zag crack path and rough fracture surface of the sample since the αp grains are
randomly distributed in the βmatrix (Figure 13d).

It should also be pointed out that, because of the connected distribution of the β phase
and isolated distribution of the αp phase in specimens with a bimodal microstructure,
localized deformation readily propagates into the surrounding area by way of the soft
β phase, with only a minor role played by the harder αp phase. This ensures relatively
uniform deformation, giving rise to the excellent ductility of the bimodal microstructure.
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4.2. Deformation Mechanisms and Microstructural Evolution of the Lamellar Microstructure

Figure 16 schematically presents the deformation mechanisms and microstructural
evolution of the lamellar microstructure based on the results of in situ SEM observation.
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(a) initial microstructure; (b) at a relatively low tensile displacement; (c) at a relatively high tensile
displacement; (d) schematic mechanism of the deformation of lamellar samples after fracture.

Differing from the bimodal microstructure, many long and coarse lamellar αL grains,
rather than globular αp regions, are seen in the lamellar microstructure: these are mainly
distributed at or near GBs (Figure 16a). Since these αL phase regions are much harder than
the β phase [31], they can exert a strong fencing effect and therefore separate each β grain
into a relatively isolated region between which dislocation cannot easily pass. This in turn
leads to a great stress concentration at the αL phase. Therefore, deep SBs are first observed
in the coarse αL phase at GBs under a relatively low tensile strain (Figure 16b). As shown
in Figure 17, these SBs correspond to prismatic slip behavior (SF > 4.2) and generally lie
along the plane at an angle of approximately 45◦ to the direction of the applied tension
(i.e., the direction of maximum shear stress).

Meanwhile, the deformation in the βmatrix is much smaller due to the strong fencing
effect of the αL (Figure 9). With increasing strain, the number of SBs in the large αL
phase increases while that in the β matrix remains low (Figure 10), suggesting that the
deformation in lamellar microstructures is non-uniform and mainly concentrated in the
large αL grains at GBs. As a result of this inhomogeneous deformation, microcracks
are readily initiated from, and propagate along, the SBs (Figure 16c). The formation of
microcracks in these αL regions in turn produces a greater stress concentration, releasing
stress accumulation in the βmatrix. This aggravates the inhomogeneity of the deformation
of specimens with a lamellar microstructure. Finally, the sample fractures along the large
αL grains at GBs, leading to the low plasticity of the lamellar microstructure (Figure 16d).
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5. Conclusions

In this study, the microstructural evolution and fracture mechanisms of a Ti–5Al–5Mo–
5V–1Cr–1Fe alloy with bimodal and lamellar microstructures were investigated through in
situ tensile SEM observation. The following conclusions can be obtained:

1. For the bimodal microstructure, parallel and deep SBs, at around 45◦ to the tensile
direction, are first observed in the αp phase due to the limited slip systems therein
and the stress concentration caused by its large size. These SBs mainly correspond to
prismatic or basal slip systems. With increasing strain, distortion at the αp/β interface
arises, leading to the evolution of microcracks: the interconnection of the microcracks
at the αp/β interface finally leads to the fracturing of the bimodal microstructure.

2. For the lamellar microstructure, parallel and deep SBs are first observed in coarse
αL phase grains or its interfaces at GBs, making an angle of around 45◦ to the tensile
direction. With increasing strain, these SBs grow along the length of the αL phase and
gradually interconnect, thus forming microcracks. The lamellar microstructure finally
fractures along the αL phase at GBs through the interconnection of those microcracks
in the αL phase.

3. Due to the connected distribution of β and isolated distribution of the αp phase in
the bimodal microstructure, the localized deformation readily propagates into the
surrounding area through β, which is softer and has a better ability to undergo plastic
deformation. This results in the more uniform deformation and higher ductility of
specimens with a bimodal microstructure.

4. The coarse αL phase at the GBs greatly restricts the deformation in the β matrix
during tensile loading, which in turn produces a significant stress concentration and
local deformation in the coarse αL phase. This finally leads to intergranular fracture
and contributes to the higher strength and lower ductility of those specimens with a
lamellar microstructure.
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