
Nitric Oxide Signaling and Neural Stem Cell
Differentiation in Peripheral Nerve Regeneration

Jessica Tao Li, PhD,a Chandra Somasundaram, PhD,b Ka Bian, MD, PhD,a

Weijun Xiong, MS,b Faiz Mahmooduddin, MD,b Rahul K. Nath, MD,b

and Ferid Murad, MD, PhDa

aBrown Foundation, Institute of Molecular Medicine, Houston, TX 77030; and bTexas Nerve &
Paralysis Institute, 6400 Fannin St, Houston, TX 77030

Correspondence: Ferid.Murad@uth.tmc.edu or drnath@drnathmedical.com
Published June 14, 2010

Objective: The objective was to examine whether nitric oxide signaling plays a role
in human embryonic stem cell differentiation into neural cells. This article reviews
current literature on nitric oxide signaling and neural stem cell differentiation for poten-
tial therapeutic application to peripheral nerve regeneration. Methods: Human embry-
onic H9-stem cells were grown, maintained on mitomycin C–treated mouse embryonic
fibroblast feeder layer, cultured on Matrigel to be feeder-free, and used for all the ex-
periments. Fluorescent dual-immunolabeling and confocal image analysis were used to
detect the presence of the neural precursor cell markers nestin and nitric oxide synthase-1.
Fluorescence-activated cell sorting analysis was used to determine the percentage of ex-
pression. Results: We have shown the confocal image of stage 1 human embryonic stem
cells coexpressing nestin and nitric oxide synthase-1. Fluorescence-activated cell sorting
analysis indicated 24.3% positive labeling of nitric oxide synthase-1. Adding retinoic
acid (10−6 M) to the culture medium increased the percent of nitric oxide synthase-1
positive cells to 33.9%. Combining retinoic acid (10−6 M) with 8-brom cyclic guanosine
monophosphate (10−5 M), the fluorescence-activated cell sorting analysis demonstrated
a further increase of nitric oxide synthase-1 positive cells to 45.4%. Our current re-
sults demonstrate a prodifferentiation potency of nitric oxide synthase-1, stimulated
by retinoic acid with and without cyclic guanosine monophosphate. Conclusion: We
demonstrated for the first time how nitric oxide/cyclic guanosine monophosphate signal-
ing contributes to the development of neural precursors derived from human embryonic
stem cells and enhances the differentiation of precursors toward functional neurons for
peripheral nerve regeneration.
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PERIPHERAL NERVE INJURY

Peripheral nerve injury is a common and devastating clinical problem. Traumatic events
due to accidents or violence cause peripheral nerve damage in 2.8% of these patients.1

Obstetric nerve injury due to breech delivery affects 0.38 to 2.6 out of every 1000 births,2

leading to considerable long-term disability.3 Traumatic nerve injuries are often associated
with life-threatening injuries, which must be treated primarily with great care. Injury to
peripheral nerves may result in demyelination or axonal degeneration and, eventually, loss
of motor and/or sensory function.1,4-7 Recovery of function occurs with remyelination, ax-
onal regeneration, and reinnervation of the sensory receptors and/or muscle end plates.7,8

The relatively slow rate of peripheral nerve regeneration presents a challenge to the recov-
ery of nerve function.9 Complete recovery is fairly infrequent, misdirected, or associated
with debilitating neuropathic pain.5 Satisfactory results occur following relatively minor
injuries such as neurapraxia or axonotmesis.10,11 The outcome remains relatively poor fol-
lowing severe (fifth degree) nerve injury, or neurotmesis,10,11 which describes a rupture
or avulsion of the nerve.12 The extent of the injury has been classified and described by
Seddon,10 Sunderland,12 and Mackinnon and Dellon.13 Effective treatments of degenerative
and traumatic diseases of the peripheral nervous system are not currently available.

ALTERNATIVE REPAIR STRATEGIES

The use, advantages, and disadvantages of both autologous nerve grafts (autografts) and
synthetic nerve guide conduits in nerve repair strategies have been discussed in detail.14-17

Although autografts offer the best results in nerve reconstruction, their disadvantages
include donor site morbidity, sacrifice of a functional nerve, formation of potential painful
neuromas, structural differences between donor and recipient grafts, and insufficient graft
material.18,19 The advantages of artificial nerve guide conduits include their availability and
ease of fabrication. However, clinical outcomes associated with the use of artificial nerve
conduits are often inferior to that of autografts, particularly over long lesion gaps.15 The
disadvantages of both methods have been described.17

In 2009 and 2010, Radtke et al20-23 have described a number of cells derived from
adult peripheral tissues, including Schwann cells (SCs) from peripheral nerve, olfactory
ensheathing cells (OECs), and adipose tissue–derived mesenchymal stem cells (MSCs), all
being actively investigated for cell therapies targeting peripheral nerve regeneration. They
have demonstrated that transplanting peripheral myelin–forming cells (SCs and OECs) into
the site of microsurgical nerve repair leads to improved regeneration and functional outcome
by providing a structural scaffold for regeneration and secreting neurotrophic factors such
as nerve growth factor.23 Committed cells such as OECs and SCs that are manipulated
minimally and expanded in culture may pose less risk of tumorogenecity but have the
disadvantage of limited cell harvest yields. In selecting cells for therapeutic intervention of
peripheral nerve repair, this balance between in vitro transformation of expanded cell lines
and the limitation of cell harvest yields must be considered.

Walsh and Midha17 summarized the work of several studies that focused on the
use of stem and precursor cells from different sources (bone marrow,24,25 skin,17,26,27

hair follicles,28,29 adipose tissue,30,31 human amniotic fluid MSC,32 and embryos33,34) as
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alternative and adjunct candidates to repair injured nerve. The transplanted stem cells
have been shown to promote functional recovery of peripheral nerve injuries in animal
models.17,35

Cho et al24 demonstrated the use of neural-induced MSCs in peripheral nerve (facial
nerve) regeneration after transection in an animal model. The advantages of bone marrow
stromal cells are their apparent plasticity and ease of harvest. These MSCs can be harvested
from long bones and have shown promise when used in combination with other proposed
methods of nerve repair, including artificial conduits and acellular grafts. However, the
ability of bone marrow stromal cells to produce a bona fide myelinating cell in vivo has
been questioned.36

Amoh et al28 demonstrated the use of human hair follicle pluripotent stem cells
in promoting regeneration of peripheral nerve injury. Induced pluripotent stem cells are
pluripotent stem cells that have been produced from skin cells by either viral-, plasmid-, or
transposon-mediated gene transfer. In addition to the risks of viral-mediated transfers, the
other disadvantages of induced pluripotent stem cells include a possible malignant potential
and inefficient production.

Amoh et al28 also discussed how embryonic stem cells (ESCs) have shown promise
for pluripotency. In addition, Kubo et al33 demonstrated how ESC-derived motor neurons
form neuromuscular junctions in vitro and enhance motor functional recovery in vivo.
Although embryos are considered the best source of stem cells, ethical issues were the major
challenge in the use of human ESCs (hESCs) for both research and clinical applications.
Therefore, considerable interest focused on adult stem cells. However, most adult stem cells
are relatively sparse and in indeterminate locations and growth states.37 Although Walsh
and Midha17 reported a list of ongoing studies using stem cells from various sources for
peripheral nerve repair, none of them use hESCs. Some studies have shown that hESCs38-41

are a potential source for cell therapy in regenerative neurology, although they did not
specifically evaluate for peripheral nerve repair. The lift of the ban on using hESCs provided
an opportunity to use them now for research and therapeutic applications. We initiated an
effort to derive neural stem cells (NSCs) from hESCs for potential therapeutic application
toward peripheral nerve regeneration.

THE ROLE OF NEURAL STEM CELLS IN NERVE REGENERATION

Neural stem cells are defined as immature, uncommitted cells that are widely distributed in
the embryonic, fetal, and adult nervous systems. NSCs can produce homologous new cells
after nerve tissue injury and can continuously be transplanted. They have the ability of self-
renewal and potentiality to differentiate into neurons upon delivery of appropriate signals.42

This plasticity of NSCs could potentially be used to promote neurogenesis following injury
and disease. NSC transplantation has been shown to be a promising tool for restoring the
nervous system in a variety of neurodegenerative disorders.35,42,43

Studies by Gu et al43 in 2010 demonstrated that NSCs transplanted into peripheral
nerve can differentiate into neurons. They have shown that fetal NSCs transplanted into
peripheral nerves could differentiate into neurons and form functional neuromuscular junc-
tions with denervated muscle, which may be beneficial for the treatment of peripheral nerve
injury.43
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In the relatively restricted space of a peripheral nerve injury, continuously self-
renewing NSCs can replenish the transplanted ones, and their multipotent differentiation
capacity can induce differentiation into neurons and other neural cells. The self-renewal
potential of NSCs makes them suitable for peripheral nerve transplantation. In addition,
the transplanted NSCs can alter the local microenvironment, presumably by secreting neu-
rotrophic factors that would promote axon regeneration.44

It has now been also confirmed that NSCs that are implanted into the nervous system
can promote axonal regeneration to form SC-like peripheral myelin.45,46 Schwann cells not
only form the main structure but also are the functioning cells of peripheral nerves. They
also play an important role in nerve regeneration and functional recovery after peripheral
nerve injury.20-23,47,48

Grafted NSCs have been shown to potentially replace cells lost after surgical pro-
cedures such as peripheral nerve rerouting in spinal cord injury, which affects significant
motor and sensory function. Since spinal cord nerves have less regenerative potential than
peripheral nerves, the grafted stem cells could improve the regenerative potential of periph-
eral nerves and thereby establish new neuronal connections in degenerative and traumatic
diseases of the nervous system.49,50

In a study conducted by Guo et al42 in 2009, NSCs were implanted into collagen
protein sponge containing growth factors to construct tissue-engineered artificial nerve,
repairing 10-mm facial nerve defects. The regenerative nerve grew over anastomotic stoma
of the distal end 12 weeks after operation. Compared with a nerve autograft group, the
regenerative medullated nerve fibers, fiber diameter, myelin sheath thickness, and latency
period and amplitude of neuromuscular action potentials had no significant differences.
However, compared to a group without NSCs, significant differences were noted, indicating
that NSCs indeed do play a certain promotive role in nerve regeneration.42

In this same study, immunohistochemical staining results showed that there was a
large group of BrdU (5′-bromouracil, a marker) positive cells in bridge grafting and also
present in 1 mm of the distal end of regenerative nerve. This demonstrated that not only can
NSCs survive and migrate, but they have a high division growth in nerve-bridge grafting
as well. At the same time, it was also found that the S100 marker, SC-like phenotype, was
positive in partial positive BrdU cells. This led to speculation that the transplanted NSCs
differentiated into SCs and formed a Büngner zonal structure to guide axon growth, secrete
a variety of nerve growth factors, and express a variety of cell-adhesion molecules, which
further facilitate nerve regeneration.42,51

THE ROLE OF NO/cGMP SIGNALING IN NEURAL CELL DIFFERENTIATION

This review focuses on the role of nitric oxide (NO)/cyclic guanosine monophosphate
(cGMP) signaling in hESC-derived neural cell differentiation, which allows us to further
understanding the relationship of stage-specific stem cell markers with NO/cGMP signal-
ing molecules during neural cell differentiation. Nitric oxide, a diffusible messenger of
many forms of intercellular communication and intracellular signaling, regulates crucial
physiological processes in the nervous system such as learning, memory, and neuronal
survival and differentiation. Cyclic guanosine monophosphate is a cyclic nucleotide de-
rived from guanosine triphosphate. Cyclic guanosine monophosphate acts as a second
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messenger much like cyclic adenosine monophosphate (cAMP), most notably by activating
intracellular protein kinases in response to the binding of membrane-impermeable peptide
hormones or NO to the external cell surface.52 Cyclic guanosine monophosphate synthe-
sis is catalyzed by guanylate cyclase (GC), which converts GTP to cGMP. Soluble GC is
typically activated by NO to stimulate cGMP synthesis.

Figure 1. Nitric oxide signaling pathway. NO indicates nitric oxide; sGC, soluble guanylate
cyclase; GTP, Guanine triphosphate; cGMP, cyclic Guanine monophosphate; PDE, phosphodi-
esterase; PKG, protein kinase G.

NO regulates synapse formation and patterning, thus playing a role in embryonic and
adult neurogenesis and development. Research efforts have shown that NO is a modula-
tor of axon outgrowth and guidance, synaptic plasticity, neuronal precursor proliferation,
and neuronal survival.53 NO plays a vital role in the self-renewal of NSCs. In addition,
NO mediates communication between presynaptic and postsynaptic structures, which are
required for normal sensorimotor function and development in adult mammals. NO also
modulates the transmission of autonomic neural activity to target organs by actions within
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the spinal cord, ganglia, and neuromuscular junctions. The resultant complex interaction of
NO with autonomic functions implies that pathophysiological changes in the synthesis and
metabolism of NO may have direct consequences for neural control. It has been shown that
NO regulates NSC (nestin+) proliferation and, possibly, differentiation into neurons. As NO
is an important regulator of nervous system function, substantial changes in NO and cGMP
synthesis may lead to nervous system degeneration. Regulation of NO and cGMP formation
in the nervous system has been the subject of extensive studies for many years.54-56

NO SIGNALING COMPONENTS

NO signaling is one of the most studied and significant signaling pathways (Fig 1) in many
cells and tissues, including cardiac and neural systems. Soluble guanylyl cyclase (sGC) is
a heme-containing, heterodimeric NO receptor that synthesizes cGMP. Soluble guanylyl
cyclase consists of 2 subunits, α and β, which make up the active enzyme. The sGC α and
β subunits exist in a 1:1 stoichiometry. Soluble guanylyl cyclase can be activated by NO,
which can bind up to 400-fold.56 Recently, we have demonstrated the differential expres-
sion of NO signaling components including NO synthase (NOS-1, -2, -3), their receptors
(sGC α1 and β1), and protein kinase G in murine ESCs, ESC-derived cardiomyocytes, and
for the first time in hESCs.56 We have previously demonstrated the role of the NO–cGMP
signaling pathway in differentiation of human and mouse ESCs into myocardial cells by
regulating the expression of the NO receptor, sGC.53,55,56

THE EXPRESSION PATTERNS OF sGC SUBUNITS IN hESC
DIFFERENTIATION

We have reported in our earlier studies56 the differential expression of NO signaling compo-
nents in differentiation of mouse ESCs55 and have shown differential expression of various
genes in undifferentiated and differentiated murine stem cells. In another study, we exam-
ined the role of NO signaling in hESCs by looking at different subunits of sGC, proteins,
and other markers in undifferentiated cells and during various stages of differentiation using
hESCs (H-9). Our studies indicated that there was a significant increase in the expression
of sGC α1, α2, and β1 during different stages of ESC differentiation at the mRNA and
protein levels. These results clearly correlated with our earlier study55 for sGC α1 and β1
expression at the mRNA and protein levels in mouse ESCs. However, as the cells progressed
toward differentiation, mRNA expression of sGC β2 declined slowly at the day-8 embryoid
body stage and was completely undetectable at days 15 to 25 postdifferentiation. The β2
subunit that is predominantly expressed in the kidney has been shown to have activity in
the absence of other subunits.57 In addition, upregulation of this subunit has been shown in
gastric carcinoma tissues.58 Therefore, it is possible that this subunit may have some role
in pluripotency of ESCs.

In addition to mRNA levels of different subunits, there was a concomitant increase
in protein levels of sGC α1 and β1 during different stages of hESC differentiation to
cardiomyocytes. Our previous55 report provided the evidence that ESC-derived cardiomy-
ocytes express a functional sGC enzyme that can be activated upon NO stimulation to
produce cGMP.
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In summary, it was shown that there is a marked and time-dependent increase in the
mRNA expression of both sGC subunits in differentiated cells relative to undifferentiated
hESCs. On the basis of the data of our previous study with mouse ESCs and this report
using hESCs, along with studies of other investigators with mouse ESCs, we believe that
NO may play a significant role in the differentiation of stem cells.56

CORRELATION OF hESC DIFFERENTIATION AND STAGE MARKERS WITH
THE NO SIGNALING MOLECULE

Although other researchers have demonstrated that hESC could be efficiently induced
to differentiate into neural cells, we demonstrate the role of NO signaling molecules in
hESC differentiation into neural cells for the first time. Figure 2A shows the confocal
image of stage 1 hESCs coexpressing the neural precursor cell markers nestin-PE (red) and
NOS-1 fluorescein isothiocyanate (FITC) (green). NOS-1–expressing cells accumulated
in the center, while nestin-expressing cells diffused throughout the entire area. Cells co-
staining for both the markers are present throughout the field (Fig 2B). Further study with
fluorescence-activated cell sorting (FACS) analysis revealed that 97.5% of cells coexpressed
CD-133 and NOS-1 as shown in Figures 2E and 2F. Coexpression of CD-133 and nestin
also were detected in stage 1–differentiated hESCs (data not shown).

EFFECT OF NO SIGNALING ON DIFFERENTIATION OF hESC
TO NEURAL CELLS

We hypothesize that NO/cGMP signaling molecules regulate neural lineage commitment
and govern neural precursor differentiation. The methodology and data presented later
provide valuable insight into the effect of NO signaling on the differentiation of hESCs to
neural cells.

To prepare the cell, H-9 cells (WA-09 or hESCs) were purchased from Wi Cell
Institute (Madison, Wis). The cells were grown on 80% Dulbecco’s Modified Eagle Medium
with F12, 20% knockout serum replacer, L-glutamine (1 mmol/L), α-mercaptoethanol
(0.1 mmol/L), and nonessential amino acids (1 mmol/L) supplemented with basic fibroblast
growth factor (4 ng/mL). All of the reagents that were used for maintenance of the hESC
were purchased from Invitrogen Corporation. H-9 cells were initially grown, and routinely
maintained on a mitomycin C–treated mouse embryonic fibroblast (MEF) feeder layer, and
subsequently cultured on Matrigel (BD Biosciences) for feeder-free culture with MEF-
conditioned media supplemented with 4 ng/mL of basic fibroblast growth factor. The cells
were routinely passed after every 5 to 6 days. To remove MEF, the cells were passed on to
Matrigel and then used for differentiation for all the experiments.

Figure 2B shows the coexpression of nestin and NOS-1 in the differentiation medium
of the hESC culture. FACS analysis indicated a 24.3% positive labeling of NOS-1. Adding
retinoic acid (10−6 M) to the culture medium59 (Fig 2C) increased the percentage of NOS-1
positive cells to 33.9%. Combining retinoic acid (10−6 M)55 with 8-brom cGMP(10−5

M),60 the FACS analysis demonstrated a further increase of NOS-1 positive cells to 45.4%
(Fig 2D). Our current results demonstrate a prodifferentiation potency of NOS-1, stimulated
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by retinoic acid with and without cGMP. Both retinoic acid and cGMP are known for their
positive effects on hESC differentiation.

Figure 2. Immunofluorescence labeling of human embry-
onic stem cell (hESC)–derived neural stem cells (NSCs)
showing coexpression of neural stem cell marker, nestin, and
nitric oxide synthase (NOS)-1 in stage 1 hESC. Nestin-PE
(red) and NOS-1 FITC (green) expression in stage 1 hESC-
5x (A). Nestin and NOS-1 expression in hESC derived NSCs
in differentiation medium-20x (B). Nestin and NOS-1 ex-
pression in hESCs treated with retinoic acid (10−6M) (C).
Combined treatment of retinoic acid (10−6 M) and 8-brom-
cGMP (10−5 M) (D). Fluorescence activated cell sorter anal-
ysis of stage 1–differentiated hESCs for CD-133 and NOS-1
(E-F). Right panel (E) showing 97.5% of cells coexpressing
CD-133 and NOS-1 (darker color). Left panel (F) was the
result of negative control.
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CONCLUSION

Although significant progress has been made by us and others, the mechanism of NO/cGMP
signaling in NSC differentiation and peripheral nerve regeneration has still not yet been com-
pletely defined. An important finding described in this article, however, is that NO/cGMP
signaling contributes to neural precursors derived from hESC and enhances the differ-
entiation of precursors toward functional neurons. Therefore, hESCs can potentially be
used in repairing peripheral nerve injury by differentiating into functional neurons and
regenerating injured peripheral nerves. This opens the door for therapeutic application
toward healing and curing degenerative, traumatic, and other nervous system disorders.
Further studies to elucidate more details of NO/cGMP signaling involvement in NSC dif-
ferentiation and peripheral nerve regeneration are encouraged. Future clinical applications
may include development of pharmacological protocols targeting the components of the
NO/cGMP pathway (NOS, sGC, cGMP-dependent protein kinases, phosphodiesterases),
as well as activation/inhibition to influence neural fate, neural precursor proliferation and
differentiation, and peripheral nerve regeneration.
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