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Abstract

Background

Sepsis is defined as a life-threatening condition, resulting from a dysregulated and harmful

response of the hosts’ immune system to infection. Apart from this, the (over-)compensating

mechanisms counterbalancing the inflammatory response have been proven to render the

host susceptible to further infections and increase delayed mortality. Our study aimed to

unravel the heterogeneity of immune response in early sepsis and to explain the biology

behind it.

Methods

A systematic search of public repositories yielded 949 microarray samples from patients

with sepsis of different infectious origin and early after clinical manifestation. These were

merged into a meta-expression set, and after applying sequential conservative bioinformat-

ics filtering, an in-deep analysis of transcriptional heterogeneity, as well as a comparison to

samples of healthy controls was performed.

Results

We can identify two distinct clusters of patients (cluster 1: 655 subjects, cluster 2: 294 sub-

jects) according to their global blood transcriptome. While both clusters exhibit only moder-

ate differences in direct comparison, a comparison of both clusters individually to healthy

controls yielded strong expression changes of genes involved in immune responses. Both

comparisons found similar regulated genes, with a stronger dysregulation occurring in the

larger patient cluster and implicating a loss of monocyte and T cell function, co-occurring

with an activation of neutrophil granulocytes.

Conclusion

We propose a consistent—but in its extent varying—presence of immunosuppression,

occurring as early in sepsis as its clinical manifestation and irrespective of the infectious
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origin. While certain cell types possess contradictory activation states, our finding underlines

the urgent need for an early host-directed therapy of sepsis side-by-side with antibiotics.

Introduction

Critically ill patients on intensive care units (ICU) are affected by complex and frequently

interwoven medical conditions. Above others, sepsis continues to challenge worldwide mod-

ern intensive care medicine as the main contributor to mortality and critical illness on ICU.

[1,2]

Recently, the syndrome sepsis has been defined as a dysregulated host response to infection

associated with a life-threatening organ dysfunction.[3] While organ dysfunction is a new

aspect, the combination of infection with a dysregulated immune reaction of the host is a con-

stant throughout the development of clinical definition. [4,5] Besides this, early attempts have

been undertaken to frame the central immune response into a simplified pathophysiological

concept. After leaving the incomplete concept of sepsis as a sole pro-inflammatory syndrome,

a dynamic shift from an initial pro-inflammatory response, named systemic inflammatory

response syndrome (SIRS), to a delayed and counteracting compensatory anti-inflammatory

response syndrome (CARS) was hypothesized.[6] Due to the co-occurrence of pro- and anti-

inflammatory mediators in the blood of patients with sepsis, the idea of a sequential staging of

the syndrome has been abolished and replaced by a model anticipating that both SIRS and

CARS occur at the same time in a so-called mixed antagonist response syndrome (MARS).

However, the concept does not consider pathophysiological subtypes of the syndrome result-

ing from the individual predisposition of the host as well as the attributes of the microbiolog-

ical insult.[7] As a consequence, more than hundred clinical trials targeting pro-inflammatory

processes in a “one-size-fits-all” approach failed [8,9], apparently pointing towards the urgent

need for a better understanding of the complex and interwoven pathophysiology.[10]

Several studies approached the pathophysiological complexity of sepsis by measuring the

meta-transcriptome of circulating immune cells using microarrays. Predominantly, the results

further foster the idea of sepsis as a continuum of states rather than a binary condition merely

switching between pro- and anti-inflammation.[11] Nevertheless, the studies largely varied in

their design, especially regarding patient characteristics, time of sampling and analyzed cell

types, impeding a direct comparison and extraction of a universal conclusion.

In our study, we investigate the early whole blood transcriptome of adult patients with sep-

sis irrespective of the underlying focus of infection. In total, we merged 949 individual micro-

array samples from patients with sepsis available from public repositories into a meta-

expression set to facilitate data-level analysis of heterogeneity of the group of patients. Based

on the global gene expression, we found two distinct clusters of sepsis patients and comparing

them to samples of healthy subjects drives evidence for highly divergent states of immune cell

activation as early as sepsis is clinically apparent.

Methods

Microarray data selection

We screened two public repositories for global gene expression data series (NCBI Gene

Expression Omnibus (GEO, National Centre for Biotechnology Information) and EMBL-EBI

ArrayExpress). Using the search term “sepsis [AND] homo sapiens”, we retrieved 135 GEO-

and 75 ArrayExpress results (date of retrieval: 12/31/2016). Three researchers independently
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reviewed these results concerning in- and exclusion criteria. Included data series had to be

obtained (i) via microarray-technique from (ii) whole blood samples of (iii) adult patients with

(iv) sepsis that has been diagnosed based on international consensus definitions (v) immedi-

ately after admission to ICU. Samples from patients with sepsis triggered by a viral infection

(e.g. H1N1 influenza) were excluded. Also, replicate results in both screened repositories were

excluded, leading to a collection of raw microarray expression data from ten studies selected

from the GEO database (GSE prefix). Two additional studies, each including two discrete data

series were obtained from ArrayExpress archive (E-MTAB prefix) (S1 Table). The resulting 14

data series included 1456 patients with sepsis and 218 healthy subjects. After excluding techni-

cal replicates, subjects not fulfilling QC criteria (see supplementary methods S1 File for details)

and healthy controls undergoing treatment, the final numbers decreased to 949 septic patients

and 135 healthy controls (Fig 1 and Table 1). The source repository, unique ID as well as analy-

sis platform used for the initial studies are given in S1 Table.

Fig 1. Flowchart of microarray data selection. Data series collected from GEO and ArrayExpress were subjected to a selection process resulting in 14 data series from

12 studies. Samples of patients with sepsis and healthy controls were further assessed to meet various standards for analysis.

https://doi.org/10.1371/journal.pone.0198555.g001

Meta-transcriptome of early sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0198555 June 19, 2018 3 / 19

https://doi.org/10.1371/journal.pone.0198555.g001
https://doi.org/10.1371/journal.pone.0198555


Bioinformatics and statistical analyses

The detailed analysis pipeline and workflow is given in the supplementary material (S1 File).

The meta-datasets used in this study are freely available to download from the Synapse reposi-

tory (www.synapse.org) under the project ID doi:10.7303/syn11932743.

Results

Molecular heterogeneity in early sepsis

By applying hierarchical clustering to the remaining 949 sepsis samples (containing the 5,000

most variable genes), we can readily identify two distinct transcriptional signatures (Fig 2A and

2B): 655 samples grouped into Cluster 1 (highlighted in gray), while the remaining 294 samples

grouped into Cluster 2 (highlighted in cyan). The latter exhibits lower intra-cluster heterogene-

ity compared to Cluster 1, observable by the larger distance to first branching (Fig 2A). The

majority of included studies fed samples into both clusters; thereby a systematic bias introduced

by inter-study effects can be precluded (S2 Table). Also, cluster affiliation of samples based on

their appropriate microarray chip type can be ruled out (S3 Table). Comparison of gene expres-

sion between the clusters revealed 33 genes to be differentially regulated (absolute log2FC� 1,

adjusted p-value< 0.05), with 30 up- and 3 down-regulated genes (Fig 2C and 2D, Table 2, S2

File). A subsequent analysis of implicated biological processes revealed no significant overrepre-

sentation of a certain process. Nevertheless, when approaching the differentially regulated genes

by network analysis, the activation of several cell signaling pathways seems reasonable (S5 Fig).

Genes belonging to the Interleukin receptor family (e.g. IL18R, IL18RAP, IL1R2), as well as

acute phase response genes (e.g. haptoglobin (HP) and its corresponding scavenger receptor

CD163), are dysregulated amongst others (for full list, see S2 File). Moreover, genes indicative of

metabolic differences are also up-regulated in Cluster 1, e.g. ARG1 and HDPG.

In summary, despite a clear distinction is possible between the clusters based on their global

gene expression, only a small number of genes are pointing out in direct comparison.

The biological identity of the clusters

To extract functional differences of the two clusters, which might have been blurred by the ini-

tial inter-cluster comparison, we conducted in the next step a comparison of each cluster indi-

vidually to the samples of healthy controls (n = 135).

Table 1. Overview of included studies with indication of available metadata and number of samples (both retrievable and published). BS: Bloodstream, CAP: com-

munity-acquired pneumonia, FP: fecal peritonitis.

Metadata Published samples Retrievable samples

First author Year Focus Mortality Age Sepsis Healthy Sepsis Healthy

Pankla [12] 2009 BS - + 31 8 13 5

Howrylak [13] 2009 Various - - 42 0 34 0

Sutherland [14] 2011 Various - - 10 20 10 20

Dolinay [15] 2012 Various - - 122 0 48 0

Parnell [16] 2013 Various + + 35 18 35 0

Ahn [17] 2013 BS - + 51 43 51 43

Cazalis [18] 2014 Various - + 28 25 28 25

McHugh [19] 2015 Various - - 74 0 74 0

Scicluna [20] 2015 CAP - + 171 0 108 42

Kangelaris [21] 2015 Various - + 57 0 57 0

Davenport [22] 2016 CAP + + 384 0 367 0

Burnham [23] 2017 CAP, FP + + 335 0 124 0

https://doi.org/10.1371/journal.pone.0198555.t001
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Cluster 1 was found to exhibit 368 differentially regulated genes, with 232 up- and 136

down-regulated genes (logFC� 1, adj. p-value< 0.05) (Fig 3, S2 Table, S3 Table). GO term

analyses proved many genes belonging to immune system-related biological functions to be

regulated in both directions, with “innate immune response” (GO:0002226) being the top up-

regulated function and “T cell receptor signaling pathway” (GO:0050852) the top down-regu-

lated one. Both T-cells as well as antigen-presenting cells seem to experience an early loss of

core function, with reduced expression of a variety of genes necessary for T cell receptor sig-

naling or co-stimulation (e.g. CD3D,CD3E,CD3G,TRBC1,CD8A,CD247) respectively antigen

presentation (e.g. CD74,HLA-DMA/-DMB/-DPA1/-DPB1/-DRB1/-DRB3/-DRB5). Surpris-

ingly, the classical pro-inflammatory cytokines often postulated as important drivers of sepsis,

e.g. IL-6, are not regulated in any manner. The only cytokine genes found regulated include

the calgranulin S100A12, anti-inflammatory IL10, and inflammasome-dependent IL18. To

facilitate the processing of the last one, two integral components of the inflammasome, AIM2
and CASP5 are also up-regulated. In addition, the observed up-regulation of (counter-) recep-

tors of interleukin-1 and -18 (IL1R2, IL18R, IL18RAP), still holds true when comparing

patients with sepsis to healthy controls. Nevertheless, as not less than 4 of the 5 most up-regu-

lated genes (CD177,MMP8, HP, RETN) in the Cluster 1 signature (as well as Cluster 2 signa-

ture) can be allocated to activated neutrophils, a pro-inflammatory activation of these cells

seems obvious (Table 2, S3 File).

A comparison of samples belonging to Cluster 2 with healthy controls revealed a similar

result regarding functional implications with a total of 69 genes found differentially regulated

(49 up- and 20 down-regulated genes) (Fig 4, S4 File). In fact, with the exception of 6 genes

exclusively up-regulated in Cluster 2, there is a consensual dysregulation of genes in both

Fig 2. Hierarchical cluster analysis of microarray expression data provided for the 5,000 most-variable gene symbols in 949 patients

of the septic group. (A) Dendrogram illustrating the arrangement of the clusters produced: Cluster 1 (gray) comprises 655 subjects,

while cluster 2 (cyan) includes 294 individuals. (B) Scatterplot showing the amount of data variance explained by the first three principal

components. Subjects are colored according to their respective cluster assignment. (C) Volcano plot showing the gene symbols

differentially expressed (solid black color highlights results with absolute logFC� 1, adjusted p-value< 0.05). Resulting number of

significant genes above the defined absolute logFC threshold are indicated by numbers (orange: up-regulated, blue: down-regulated). (D)

Heatmap depicting processed expression values of the 33 differentially regulated genes for all cluster-assigned individuals.

https://doi.org/10.1371/journal.pone.0198555.g002

Table 2. Top five up- and down-regulated genes according to the different comparisons. Log2FC: Log2 fold change; adj.: adjusted; HPGD: 15-hydroxyprostaglandin

dehydrogenase; IL18R1: Interleukin-18 Receptor I; OLAH: Oleoyl-ACP Hydrolase; CD: Cluster of Differentiation; MMP8: Matrix metalloproteinase 8; GZMH: Granzyme

H; GZMK: Granzyme K; HP: Haptoglobin; RETN: Resistin; GNLY: Granulysin; IL7R: Interleukin-7 Receptor; IL2RB: Interleukin 2 Receptor Subunit Beta; HLA-DRB1:

Human Leucocyte Antigen DRB1; IFI27: Interferon Alpha Inducible Protein 27; CHI3L1: Chitinase 3-Like 1; TRBC1: T Cell Receptor Beta Constant 1; CCR3: C-C Motif

Chemokine Receptor 3; TRDV2: T Cell Receptor Delta Variable 2.

C1 vs. C2 C1 vs. Healthy C2 vs. Healthy

Gene Log2FC adj.

p-value

Gene Log2FC adj.

p-value

Gene Log2FC adj.

p-value

HPGD 2,02 7,1E-70 CD177 3,86 3,9E-127 CD177 2,27 2,7E-44 ➔

IL18R1 1,75 7,4E-80 MMP8 3,49 7,7E-60 MMP8 1,99 2,8E-18

OLAH 1,73 4,9E-52 HP 3,16 2,3E-104 HP 1,99 1,2E-39

CD177 1,58 1,0E-45 RETN 2,78 2,0E-76 IFI27 1,96 2,4E-18

MMP8 1,50 2,8E-20 OLAH 2,72 2,8E-77 RETN 1,85 3,1E-31

GNLY -1,91 3,9E-65 CHI3L1 -1,35 3,6E-19 ➔

IL7R -1,94 1,5E-76 TRBC1 -1,44 1,0E-168

CD27 -1,05 2,5E-48 CD27 -1,96 4,0E-93 HLA-DRB1 -1,45 8,1E-21

GZMH -1,10 3,0E-25 IL2RB -1,98 7,6E-101 CCR3 -1,49 2,8E-53

GZMK -1,14 8,1E-37 HLA-DRB1 -2,12 5,5E-50 TRDV2 -1,52 4,8E-167

https://doi.org/10.1371/journal.pone.0198555.t002
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clusters with a more pronounced up- or down-regulation in Cluster 1 patients, also observable

in a graphical representation of the top networks (Fig 5A–5D, S5 Fig).

To verify these results the combined dataset consisting of 949 septic subjects and 135

healthy controls was re-clustered. 839 subjects are assigned to new cluster 1 (Fig 6; highlighted

in blue) and the residual 245 samples to new cluster 2 (highlighted in green). When comparing

sample identity of original cluster 1 and new cluster 1, 651 of 655 samples (99.4%) retain their

original cluster identity, while 4 samples (0.6%) are now re-assigned to new cluster 2. Original

cluster 2 holds 294 samples. 111 of these subjects (37.8%) are still attributed to new cluster 2,

while 183 samples (62.2%) are now belonging to new cluster 1. The majority of controls 130 of

135 (96.3%) are assigned to new cluster 2, while just 5 samples (3.7%) are matched to new

Fig 3. Differential expression analysis between “Cluster 1” and individuals from the healthy control group. (A) Heatmap of processed expression values for 368

dysregulated genes showing absolute logFC� 1 (adj. p-value< 0.05). (B) Volcano plot of differentially expressed genes (solid black color indicates absolute logFC� 1.0,

adj. p-value< 0.05; numbers indicate up- (orange) or down-regulated (blue) genes). Results of GO-term analysis for enriched biological processes separately for up-

regulated (top panel) and down-regulated genes (bottom panel) above defined threshold.

https://doi.org/10.1371/journal.pone.0198555.g003
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https://doi.org/10.1371/journal.pone.0198555.g004
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cluster 1. This result supports the original sample assignments (Fig 2A). Furthermore, a sys-

tematic bias in regard to sample origin by relationship to originating study (S4 Table) or

microarray chip type does not emerge (S5 Table).

To identify the cell types, which contribute to the observed gene expression, we conducted

a data deconvolution using the exploratory ImmQuant tool [24]. The results further supported

our gene expression analysis, with a pronunciation of signals deriving from monocytes and

granulocytes together with a robust underrepresentation of all T cell subsets (Fig 5E). Interest-

ingly, our analysis also provides evidence that immature immune cells are involved in the early

response, including e.g. granulocyte and monocyte progenitors besides hematopoietic stem

cells.

Fig 5. Networks of differentially expressed genes between defined clusters and healthy controls. (A) Top network of differentially regulated genes between

patients of “Cluster 1” and healthy individuals. (B) Manually selected network consisting of differentially regulated immune-related genes. Nodes showing an orange

color implicate up-regulation for the conditions in contrast, while blue elements represent down-regulation. (C) and D) Overlays of the respective expression data

for “Cluster 2” subjects in comparison to individuals from control group. (E) Heatmap showing the results of data deconvolution to identify cell origin of signals.

Orange color represents an up-regulated “cell abundance”, representing more signals deriving from this cell type compared to healthy controls, blue color vice versa.

Only informative cell types were visualized. Mega: megakaryocyte; Ery: erythroid; HSC: hematopoetic stem cell.

https://doi.org/10.1371/journal.pone.0198555.g005
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Fig 6. Hierarchical cluster analysis of microarray expression data provided for the 5,000 most-variable gene symbols in the full dataset of 1084 subjects.

Dendrogram and color track (origin) illustrate the sample re-arrangement of the clusters produced: New cluster 1 (blue) consists of 839 subjects, while 245 individuals

are attributed to cluster 2 (green). In comparison to Fig 2A, new cluster 1 identity is unchanged in most cases (99.4% retention rate), while adding new subjects from

original cluster 2. The 245 individuals assigned to new cluster 2 cover both original cluster 2 samples as well as the vast majority of healthy controls (96.3% assignment

rate).

https://doi.org/10.1371/journal.pone.0198555.g006
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In summary, our findings provide evidence for a quantitative difference of gene expression

levels between the clusters rather than a qualitative contrast based on distinctly regulated gene

sets. Moreover, activation states of different immune cells might vary.

Extraction of gene sets for diagnosis and cluster stratification

Ten differentially regulated genes (IL1R2, CD177,HPGD, MMP8, HP, ARG1, OLFM4,

HLA-DRB1, IL7R, AZU1) were manually selected according to their degree of expressional

dysregulation compared to controls, functional context, as well as the potential cell of signal

origin. The biological rationale was to cover the main immune cell types proposed to be

involved in sepsis pathophysiology, including T cells, monocytes, and granulocytes.

Expression levels of single genes exhibit already a high diagnostic AUC, with CD177
(0�955), HP (0�935) and IL7R (0�921) being the most prominent ones (S6 Fig). Before further

analysis, the dataset was randomly split into a derivation and a validation set (60:40). Binary

logistic regression for sepsis (both clusters) vs. healthy controls extracted a diagnostic panel of

five genes (CD177,HLA-DRB1, HP, IL7R, AZU1) and subsequent ROC analysis of combined

probability revealed an AUC of 0�977 (CI: 0�967–0�987; derivation set) respectively 0.985 (CI:

0.974–0.996; validation set) (S7A Fig). Using the same approach for cluster stratification, we

found six genes (IL1R2, HPGD, ARG1, HP, IL7R, AZU1) enabling cluster stratification with an

AUC of 0�893 (0�866–0�920; derivation set) respectively 0.897 (CI: 0.865–0.930; validation set)

(S7B Fig). Altogether, we can extract a panel of eight genes (three of them shared for the

approaches) capable to distinguish between the sepsis clusters as well as between sepsis and

healthy controls.

Discussion

Since the birth of microarray technology around the end of the last millennium, an enormous

number of microarray experiments have been performed on uncountable cell types, condi-

tions, and diseases. Earlier (meta-)analysis of sepsis microarrays were often performed in a

narrative approach or by the re-analysis of individual studies. Contrasting, our study systemat-

ically searched, extracted and merged samples of 949 patients with sepsis and generated to our

knowledge the largest meta-expression set available.

We identified two distinct clusters, whose expression mainly differed in the quantitative

dimension of gene expression rather than in the actual genes regulated. Comparing the clusters

to a group of healthy samples, we were able to further underline the qualitative similarity of

both clusters, placing patients from Cluster 2 on an intermediate state between healthy and

Cluster 1 patients. The samples included in our study were derived from 12 studies performed

with different intentions; the majority of studies aimed to identify biomarker signatures for

diagnostic purpose. McHugh and colleagues generated the 4-gene SeptiCyte Lab classifier to

discriminate between sepsis and sterile inflammation. [14,19] By first comparing the groups of

patients with and without CAP to healthy controls and secondly the results against each other,

Scicluna et al. yielded similar dysregulated genes as our study did (e.g. MMP8, CD177, and

HP).[20] Especially the gene encoding for the acute phase protein haptoglobin is standing out

as well in our study with the signal most likely derived from activated granulocytes. Haptoglo-

bin has been shown earlier to be of potential usefulness for the diagnosis of sepsis in preterm

and term newborns.[25] Importantly, in our results HP, as well as the corresponding receptor

for haptoglobin-hemoglobin-complexes CD163, are positively co-regulated, implicating an

important role of iron homeostasis in early sepsis. Haptoglobin has been proposed as an anti-

inflammatory compound acting on immune cells in a receptor-mediated manner, and through

scavenging of free hemoglobin thereby reducing oxidative stress and draining substrate from
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pathogens. [26,27] Recently, the receptor CD163 has been shown to exert anti-inflammatory

effects after binding to High Mobility Group Box 1 (HMGB1) protein-hemoglobin complexes.

[28] HMGB1 itself is a well-known damage-associated molecular pattern (DAMP), also bind-

ing to Toll-like receptor 4 (TLR4) and the Receptor for Advanced Glycation Endproducts
(RAGE) and is under debate as a therapeutic target.[29]

The study conducted by Howrylak et al. aimed to identify genes associated with acute respi-

ratory distress syndrome (ARDS) and therefore compared septic patients with and without

ARDS.[13] They found an eight-gene panel able to discriminate between both states. A second

study conducted years after the initial study and using the same design with an extended num-

ber of patients found different dysregulated genes, most likely deriving from activated neutro-

phils, with MMP8, OLFM4, and HP again belonging to the most up-regulated ones.[21]

Deriving from our meta-analysis, we are able to identify a novel 5-gene diagnostic classifier as

well as a 6-gene cluster classifier, both with high sensitivity and specificity. However, prospec-

tive validation using a PCR-based methodology has yet to be performed. Interestingly, three of

the five diagnostic genes are cell surface markers (CD177, HLA-DRB1, IL7R) of neutrophils,

monocytes and T cells, respectively, raising the potential for rapid assessment by flow cytome-

try. The HLA-DRB1 gene encodes for the beta chain of the heterodimeric Major Histocompati-
bility Complex (MHC) Class II, responsible for antigen-presentation on monocytes and B cells.

Reduced abundance of MHC-II (as found in our results) has been extensively proven as a valid

surrogate marker of (innate) immune dysfunction in sepsis and trauma.[30] Contradictory,

CD177 is a surface marker of neutrophil activation and has been discovered as the most dysre-

gulated marker in isolated neutrophils of septic patients.[31] Together with the prospective

results of our data deconvolution, this hints towards the hallmark of emergency myelopoiesis

and immature progenitor cells in the circulation taking place in early sepsis.[32,33] The recep-

tor for IL-7 is expressed in T cells and reduced expression indicating an “exhausted” pheno-

type has been shown earlier in prolonged and fatal sepsis.[34,35]

In a comparable meta-approach like ours, the group of Khatri used samples of patients with

trauma or SIRS in comparison to patients with sepsis to extract both a diagnostic gene signa-

ture (the 11-gene Sepsis MetaScore [36]) as well as an additional 7-gene set to discriminate

viral from bacterial infections.[37] Remarkably, although they used a fundamentally different

control group compared to our analysis, several genes were comparably changed. This finding

questions the often-proposed rationale of using patients with a sterile SIRS as a comparator to

distill the proportion of host response attributable to infection. Especially the idea of generally

using patients after surgery per se as patients with sterile SIRS is faulty, as only a minor fraction

of these patients clinically impose with a SIRS. Interestingly, the group utilized samples from

adult as well as pediatric patients in both studies. The immune system, especially of neonates,

is immature in several aspects with e.g. a not fully developed adaptive branch regarding mem-

ory B and T cells.[38,39] Given that, we did not use such samples in our analysis to reduce het-

erogeneity by study design.

Dolinay et al. focused on inflammasome-regulated cytokines during ARDS and found an

up-regulation of the inflammasome component ASC as well as IL1B gene, the latter together

with IL-18 also found in the plasma of enrolled patients.[15] In our analysis, we can confirm

the robust up-regulation of several genes belonging to the IL1/18 axis, e.g. the decoy receptor

IL1R2 together with IL18R. IL1-R2 is counteracting inflammation by binding IL-1beta without

intracellular signaling transduction, and its gene expression has been reported earlier to be of

high diagnostic usefulness for sepsis, also after trauma.[40,41] Similar results have been shown

for inflammatory IL-18 and blocking it together with IL-1β protected animals against inflam-

mation and shock.[42]
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Two further studies enrolled small numbers of patients with sepsis respectively septic shock

and found genes associated with disturbed immune function already early in the course of the

disease. [16,18] Both studies compared patients with sepsis to healthy controls; Cazalis et al.

found no correlation of the gene signature with SAPSII score, while Parnell et al. found a pro-

nounced dysregulation of identified genes in non-surviving patients compared to survivors. In

line with our findings, pathways involving T cell receptor and CD28 signaling as well as anti-

gen presentations where massively down-regulated already early after sepsis onset. In a large-

scale prospective cohort, Davenport et al. evaluated the heterogeneity of CAP sepsis and identi-

fied two transcriptome signatures, with the smaller one being associated with immunosuppres-

sive alterations and a reduced 14-day survival, most likely due to the occurrence of secondary

infections.[22] While their cluster comparison yielded a large number of differentially regu-

lated genes, this was not the case with our results. We observed only subtle changes in gene

expression between our clusters as well as among patients in Cluster 2 and healthy controls,

leading us to the conclusion that patients in our “Cluster 2” possess a transitory signature half

the way to full immunosuppression. In a second study, the group examined patients with

abdominal sepsis due to a fecal peritonitis and found again two signatures with different mor-

tality and gene expression.[23] Remarkably, when comparing patients with fecal peritonitis to

CAP patients, the genomic signatures showed large overlaps. As no comparison of the two

clusters to healthy subjects has been performed in both studies, the absolute biological function

of each clusters seems illusive and it is unclear, if immunosuppression as proposed in the initial

study is not also present in the cluster used as a comparator, yet in a lower extent.

Our study has some limitations, not least based on the use of foreign data. First, due to the

nature of a meta-analysis and the algorithms used to conduct the analysis, our study should be

anticipated as exploratory and hypothesis-generating rather than confirmatory. Second, clini-

cal meta-data of patients included in our analysis is only sparsely available, hampering an in-

deep correlation of observed signatures with clinical characteristics. Third, by applying the

strict filter steps of our pipeline, we might have excluded informative genes due to a lack of

representation in all studies, respectively samples. Last, with the lack of hematological data, an

observed reduction or increase in gene expression might be either based on changes in cell

abundance or the actual change in transcription. Nevertheless, the resulting implication

remains the same: a loss or gain of function in the compartment blood based on the derived

signal.

The concept of early sepsis as a solely pro-inflammatory syndrome should be finally dis-

carded and replaced by a multi-dimensional concept, taking into consideration different cell

types, their opposing polarization and activation states as well as the ideas of cellular immune

memory and tolerance (Fig 7). When sepsis becomes clinically apparent, the initial reaction of

the immune system has been mounted hours ago and might already be counter-regulated in

certain cell types, rendering them refractory to further stimuli. This concept has been well

described for monocytes, which enter a state of “endotoxin tolerance” upon an initial stimulus

by e.g. LPS, mediated and sustained by epigenetic mechanisms.[43,44] On the other hand, cel-

lular functions can be regulated independent of each other, and a loss of cytokine production

must not necessarily run along a decreased phagocytic activity. The “sepsis blindspot” of treat-

able pro-inflammation occurs early and outside the clinical scope, but its immunological echo

can be misleadingly measured at later times due to the half-time of plasma cytokines. There-

fore, the window to take clinical action in terms of anti-inflammatory therapies is gone.

Extrapolating from our data we generate a model of early and robust counter-regulation of

immune cell activation as early as sepsis is clinically apparent. The signals can be allocated to T

cells, monocytes and neutrophils, with a transient post-activation gene signature (“Cluster 2”),

which drifts further into deep immunosuppression (“Cluster 1”). Overall, there is a rising need
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for a system’s approach for biomarker-guided and personalized adjunctive therapy of sepsis,

moving away from the estimate of a system direction towards a cell-type individual response.

Although removed from the recent definition for clinical diagnosis, sepsis stays an immunopa-

thology with a central hub of a systemic response to infection taking place in the blood com-

partment, rendering it a highly important claim for pathophysiological data-mining in the

future.

Conclusion

We need to reframe our perspectives on sepsis syndrome: Highly individual predisposition

and the qualitative and quantitative characteristic of the insult mount a response, which can be

“late sepsis” from start or “early sepsis” for days, with divergent activation states of different

immune cells. Based on this concept, we need to identify the pathological phenotypes of the

cells and the corresponding host-directed therapies. Several of which might be already avail-

able from oncology, but if they project into a reduction of antibiotic use, survival and quality

of life of the patients has yet to be proven.

Supporting information

S1 Fig. Flowchart of microarray data (pre-)processing (1.) and annotation to official human

gene symbols (2.). The process of expression set combination was repeated until the final
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Fig 7. Pathophysiological model of sepsis genomic response. The early blindspot of sepsis (blue box) spans the highly individual

timeframe from infection to clinical manifestation of symptoms. The quantitative and qualitative kinetic of response depends on both host

and pathogen attributes. Our results originating from samples of patients early after ICU admission for sepsis prove the presence of (at

least) two molecular signatures of sepsis (Cluster 1 and Cluster 2), with Cluster 1 implicating a higher degree of dysregulation towards

immunosuppression than Cluster 2. Within the clusters, different cell types are likely to have contradictory or even ambivalent activation

states, e.g. monocytes (Mo) with impaired cytokine production but with maintained migratory function. Neut: neutrophilic granulocytes;

NK: natural killer cells; T: T cells.

https://doi.org/10.1371/journal.pone.0198555.g007
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meta-expression set was created (3.). Data from septic patients (n = 949) were separated from

the complete expression set of 1,084 individuals for further analysis (4.).

(EPS)

S2 Fig. Schema of combination of the meta-expression set. Generic Biobase expression set

objects are based on a single matrix of processed expression values which is extended by two

attributing metadata matrices containing feature and phenotype data. To combine two expres-

sion sets with differing identifiers, expression values of fully comparable identifiers are merged

(step 1). Data relating to identifiers unique to the first expression set is appended, while respec-

tive data fields reserved for the second expression set are left unchanged (step 2). The former

process is repeated to include identifiers and data values exclusively present to the second

expression set (step 3). Feature data matrices are combined with the same strategy as described

for expression data. Phenotype data from both expression sets are concatenated.

(EPS)

S3 Fig. Flowchart of the meta-expression set filtering, imputation and normalization

strategy. Top workflow: The meta-expression set is duplicated. Expression data for septic

patients is separated from the full dataset. The matrix of expression values is limited to gene

symbols available in at least four originating data series. Missing expression values per gene

symbol are imputed based on expression data of the 10 closest subjects with sepsis. Expression

values are normalized between cohorts. To reduce the number of non-informative genes,

requirements regarding minimal expression values for single gene symbols are applied for fur-

ther consideration. The top-5000 candidates of the remaining gene set are selected for subse-

quent unsupervised hierarchical cluster analysis. Lower workflow: To prepare healthy control

data, expression values in the full dataset are replaced by imputation. Data for subjects of the

sepsis and control sub-groups were processed separately. Batch effect adjustment is performed

on the full meta-expression set, normalizing healthy controls against septic patient data. To

enable comparison between clusters and controls, the top-5000 genes as defined for patients

with sepsis are selected from control subjects included in the full meta-expression set.

(EPS)

S4 Fig. Analysis of differentially expressed genes unified from comparisons between both

clusters against healthy controls. A) Heatmap of calculated logFC values for the respective

contrasts. B+C) Venn diagrams distinctively highlighting the total number of dys-regulated

genes shared or unique by both clusters according to their direction of regulation.

(EPS)

S5 Fig. Top network generated from an IPA analysis of the 33 differentially regulated

genes between the two clusters. Nodes showing an orange color implicate up-regulation of

gene in “Cluster 1”, while blue elements represent down-regulation. Grey nodes depict pre-

dicted active pathways contributing to observed gene expression.

(EPS)

S6 Fig. Receiver-operator-characteristic curve for the 10 individual genes selected for logistic

model generation regarding diagnostic performance (A). The corresponding areas under

curve are given in panel B. Values below 0�5 result from genes down-regulated in patients with

sepsis.

(EPS)

S7 Fig. Receiver-operator-characteristic curve plots for the identified gene panels to discrimi-

nate patients with sepsis from healthy controls (A) or patients with sepsis of the two clusters

(B). Upper plots depict results from model derivation analysis (60% of samples), bottom plots
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the results from validation using the remaining samples (40%). Corresponding sample size

used for each group and analysis is given in the plot heading. Number in plot gives Area-

under-curve and corresponding confidence interval (in brackets). Genes included in the

underlying signature are given between the ROC curves.

(EPS)

S1 Table. Overview of included studies with indication of microarray platform used for

data generation and repository ID of data series.

(DOCX)

S2 Table. Distribution of sepsis samples by data series ID among clusters.

(DOCX)

S3 Table. Distribution of sepsis samples by platform type among clusters.

(DOCX)

S4 Table. Distribution of combined samples by data series ID among clusters.
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S5 Table. Distribution of combined samples by platform type among clusters.
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S1 File. Supplementary methods.
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(XLS)

Author Contributions

Conceptualization: Dominik Schaack, Markus Alexander Weigand, Florian Uhle.

Data curation: Dominik Schaack, Benedikt Hermann Siegler, Sandra Tamulyte, Florian Uhle.

Formal analysis: Dominik Schaack, Sandra Tamulyte.

Investigation: Dominik Schaack, Benedikt Hermann Siegler, Sandra Tamulyte, Markus Alex-

ander Weigand, Florian Uhle.

Methodology: Dominik Schaack, Florian Uhle.

Project administration: Benedikt Hermann Siegler, Markus Alexander Weigand, Florian

Uhle.

Resources: Markus Alexander Weigand, Florian Uhle.

Supervision: Markus Alexander Weigand, Florian Uhle.

Validation: Benedikt Hermann Siegler.

Visualization: Dominik Schaack.

Meta-transcriptome of early sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0198555 June 19, 2018 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198555.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198555.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198555.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198555.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198555.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198555.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198555.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198555.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0198555.s016
https://doi.org/10.1371/journal.pone.0198555


Writing – original draft: Dominik Schaack, Benedikt Hermann Siegler, Sandra Tamulyte,

Markus Alexander Weigand, Florian Uhle.

Writing – review & editing: Dominik Schaack, Benedikt Hermann Siegler, Sandra Tamulyte,

Markus Alexander Weigand, Florian Uhle.

References
1. Vincent J- L, Marshall JC, Namendys-Silva SA, François B, Martı́n-Loeches I, Lipman J, et al. Assess-

ment of the worldwide burden of critical illness: the intensive care over nations (ICON) audit. Lancet

Respir Med. 2014; 2: 380–386. https://doi.org/10.1016/S2213-2600(14)70061-X PMID: 24740011

2. Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment

of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J

Respir Crit Care Med. 2016; 193: 259–272. https://doi.org/10.1164/rccm.201504-0781OC PMID:

26414292

3. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third Inter-

national Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315: 801–10.

https://doi.org/10.1001/jama.2016.0287 PMID: 26903338

4. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/

SIS International Sepsis Definitions Conference. Critical Care Medicine. 2003; 31: 1250–1256. https://

doi.org/10.1097/01.CCM.0000050454.01978.3B PMID: 12682500

5. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ

failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Con-

ference Committee. American College of Chest Physicians/Society of Critical Care Medicine. 1992. pp.

1644–1655. https://doi.org/10.1378/chest.101.6.1481

6. Bone RC, Grodzin CJ, Balk RA. Sepsis: A New Hypothesis for Pathogenesis of the Disease Process.

Chest. 1997; 112: 235–243. https://doi.org/10.1378/chest.112.1.235 PMID: 9228382

7. Marshall JC. The PIRO (predisposition, insult, response, organ dysfunction) model: toward a staging

system for acute illness. Virulence. 2014; 5: 27–35. https://doi.org/10.4161/viru.26908 PMID: 24184604

8. Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. 2014; 20: 195–203. https://doi.

org/10.1016/j.molmed.2014.01.007 PMID: 24581450

9. Cohen J, Vincent J- L, Adhikari NKJ, Machado FR, Angus DC, Calandra T, et al. Sepsis: a roadmap for

future research. Lancet Infect Dis. 2015; 15: 581–614. https://doi.org/10.1016/S1473-3099(15)70112-X

PMID: 25932591

10. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and

potential therapeutic targets. Nature Publishing Group. 2017; 17: 407–420. https://doi.org/10.1038/nri.

2017.36 PMID: 28436424

11. Tang BM, Huang SJ, McLean AS. Genome-wide transcription profiling of human sepsis: a systematic

review. Crit Care. BioMed Central; 2010; 14: R237. https://doi.org/10.1186/cc9392 PMID: 21190579

12. Pankla R, Buddhisa S, Berry M, Blankenship DM, Bancroft GJ, Banchereau J, et al. Genomic transcrip-

tional profiling identifies a candidate blood biomarker signature for the diagnosis of septicemic melioido-

sis. Genome Biol. BioMed Central; 2009; 10: R127. https://doi.org/10.1186/gb-2009-10-11-r127 PMID:

19903332

13. Howrylak JA, Dolinay T, Lucht L, Wang Z, Christiani DC, Sethi JM, et al. Discovery of the gene signature

for acute lung injury in patients with sepsis. Physiol Genomics. 2009; 37: 133–139. https://doi.org/10.

1152/physiolgenomics.90275.2008 PMID: 19174476

14. Sutherland A, Thomas M, Brandon RA, Brandon RB, Lipman J, Tang B, et al. Development and valida-

tion of a novel molecular biomarker diagnostic test for the early detection of sepsis. Crit Care. 2011; 15:

R149. https://doi.org/10.1186/cc10274 PMID: 21682927

15. Dolinay T, Kim YS, Howrylak J, Hunninghake GM, An CH, Fredenburgh L, et al. Inflammasome-regu-

lated cytokines are critical mediators of acute lung injury. Am J Respir Crit Care Med. 2012; 185: 1225–

1234. https://doi.org/10.1164/rccm.201201-0003OC PMID: 22461369

16. Parnell GP, Tang BM, Nalos M, Armstrong NJ, Huang SJ, Booth DR, et al. Identifying key regulatory

genes in the whole blood of septic patients to monitor underlying immune dysfunctions. Shock. 2013;

40: 166–174. https://doi.org/10.1097/SHK.0b013e31829ee604 PMID: 23807251

17. Ahn SH, Tsalik EL, Cyr DD, Zhang Y, van Velkinburgh JC, Langley RJ, et al. Gene expression-based

classifiers identify Staphylococcus aureus infection in mice and humans. PLoS ONE. 2013; 8: e48979.

https://doi.org/10.1371/journal.pone.0048979 PMID: 23326304

Meta-transcriptome of early sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0198555 June 19, 2018 17 / 19

https://doi.org/10.1016/S2213-2600(14)70061-X
http://www.ncbi.nlm.nih.gov/pubmed/24740011
https://doi.org/10.1164/rccm.201504-0781OC
http://www.ncbi.nlm.nih.gov/pubmed/26414292
https://doi.org/10.1001/jama.2016.0287
http://www.ncbi.nlm.nih.gov/pubmed/26903338
https://doi.org/10.1097/01.CCM.0000050454.01978.3B
https://doi.org/10.1097/01.CCM.0000050454.01978.3B
http://www.ncbi.nlm.nih.gov/pubmed/12682500
https://doi.org/10.1378/chest.101.6.1481
https://doi.org/10.1378/chest.112.1.235
http://www.ncbi.nlm.nih.gov/pubmed/9228382
https://doi.org/10.4161/viru.26908
http://www.ncbi.nlm.nih.gov/pubmed/24184604
https://doi.org/10.1016/j.molmed.2014.01.007
https://doi.org/10.1016/j.molmed.2014.01.007
http://www.ncbi.nlm.nih.gov/pubmed/24581450
https://doi.org/10.1016/S1473-3099(15)70112-X
http://www.ncbi.nlm.nih.gov/pubmed/25932591
https://doi.org/10.1038/nri.2017.36
https://doi.org/10.1038/nri.2017.36
http://www.ncbi.nlm.nih.gov/pubmed/28436424
https://doi.org/10.1186/cc9392
http://www.ncbi.nlm.nih.gov/pubmed/21190579
https://doi.org/10.1186/gb-2009-10-11-r127
http://www.ncbi.nlm.nih.gov/pubmed/19903332
https://doi.org/10.1152/physiolgenomics.90275.2008
https://doi.org/10.1152/physiolgenomics.90275.2008
http://www.ncbi.nlm.nih.gov/pubmed/19174476
https://doi.org/10.1186/cc10274
http://www.ncbi.nlm.nih.gov/pubmed/21682927
https://doi.org/10.1164/rccm.201201-0003OC
http://www.ncbi.nlm.nih.gov/pubmed/22461369
https://doi.org/10.1097/SHK.0b013e31829ee604
http://www.ncbi.nlm.nih.gov/pubmed/23807251
https://doi.org/10.1371/journal.pone.0048979
http://www.ncbi.nlm.nih.gov/pubmed/23326304
https://doi.org/10.1371/journal.pone.0198555


18. Cazalis M-A, Lepape A, Venet F, Frager F, Mougin B, Vallin H, et al. Early and dynamic changes in

gene expression in septic shock patients: a genome-wide approach. Intensive Care Medicine Experi-

mental. 2014; 2: 20. https://doi.org/10.1186/s40635-014-0020-3 PMID: 26215705

19. McHugh L, Seldon TA, Brandon RA, Kirk JT, Rapisarda A, Sutherland AJ, et al. A Molecular Host

Response Assay to Discriminate Between Sepsis and Infection-Negative Systemic Inflammation in Crit-

ically Ill Patients: Discovery and Validation in Independent Cohorts. PLoS Med. 2015; 12: e1001916.

https://doi.org/10.1371/journal.pmed.1001916 PMID: 26645559

20. Scicluna BP, Klein Klouwenberg PMC, van Vught LA, Wiewel MA, Ong DSY, Zwinderman AH, et al. A

molecular biomarker to diagnose community-acquired pneumonia on intensive care unit admission. Am J

Respir Crit Care Med. 2015; 192: 826–835. https://doi.org/10.1164/rccm.201502-0355OC PMID: 26121490

21. Kangelaris KN, Prakash A, Liu KD, Aouizerat B, Woodruff PG, Erle DJ, et al. Increased expression of

neutrophil-related genes in patients with early sepsis-induced ARDS. Am J Physiol Lung Cell Mol Phy-

siol. 2015; 308: L1102–13. https://doi.org/10.1152/ajplung.00380.2014 PMID: 25795726

22. Davenport EE, Burnham KL, Radhakrishnan J, Humburg P, Hutton P, Mills TC, et al. Genomic land-

scape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet

Respir Med. 2016; 4: 259–271. https://doi.org/10.1016/S2213-2600(16)00046-1 PMID: 26917434

23. Burnham KL, Davenport EE, Radhakrishnan J, Humburg P, Gordon AC, Hutton P, et al. Shared and

Distinct Aspects of the Sepsis Transcriptomic Response to Fecal Peritonitis and Pneumonia. Am J

Respir Crit Care Med. 2016. https://doi.org/10.1164/rccm.201608-1685OC PMID: 28036233

24. Frishberg A, Brodt A, Steuerman Y, Gat-Viks I. ImmQuant: a user-friendly tool for inferring immune cell-

type composition from gene-expression data. Bioinformatics. 2016; 32: 3842–3843. https://doi.org/10.

1093/bioinformatics/btw535 PMID: 27531105

25. Chavez-Bueno S, Beasley JA, Goldbeck JM, Bright BC, Morton DJ, Whitby PW, et al. ’Haptoglobin con-

centrations in preterm and term newborns’. J Perinatol. 2011; 31: 500–503. https://doi.org/10.1038/jp.

2010.197 PMID: 21252963

26. Huntoon KM, Wang Y, Eppolito CA, Barbour KW, Berger FG, Shrikant PA, et al. The acute phase pro-

tein haptoglobin regulates host immunity. J Leukoc Biol. 2008; 84: 170–181. https://doi.org/10.1189/jlb.

0208100 PMID: 18436583

27. Wang Y, Kinzie E, Berger FG, Lim SK, Baumann H. Haptoglobin, an inflammation-inducible plasma pro-

tein. Redox Rep. 2001; 6: 379–385. https://doi.org/10.1179/135100001101536580 PMID: 11865981

28. Yang H, Wang H, Levine YA, Gunasekaran MK, Wang Y, Addorisio M, et al. Identification of CD163 as

an antiinflammatory receptor for HMGB1-haptoglobin complexes. JCI Insight. 2016; 1. https://doi.org/

10.1172/jci.insight.85375 PMID: 27294203

29. Gentile LF, Moldawer LL. HMGB1 as a therapeutic target for sepsis: it’s all in the timing! Expert Opin

Ther Targets. 2014; 18: 243–245. https://doi.org/10.1517/14728222.2014.883380 PMID: 24479494

30. Monneret G, Venet F. Sepsis-induced immune alterations monitoring by flow cytometry as a promising

tool for individualized therapy. Cytometry B Clin Cytom. 2016; 90: 376–386. https://doi.org/10.1002/

cyto.b.21270 PMID: 26130241

31. Demaret J, Venet F, Plassais J, Cazalis M-A, Vallin H, Friggeri A, et al. Identification of CD177 as the

most dysregulated parameter in a microarray study of purified neutrophils from septic shock patients.

Immunol Lett. 2016; 178: 122–130. https://doi.org/10.1016/j.imlet.2016.08.011 PMID: 27568821

32. Manz MG, Boettcher S. Emergency granulopoiesis. Nature Publishing Group. 2014; 14: 302–314.

https://doi.org/10.1038/nri3660 PMID: 24751955

33. Stroncek DF, Caruccio L, Bettinotti M. CD177: A member of the Ly-6 gene superfamily involved with

neutrophil proliferation and polycythemia vera. J Transl Med. 2004; 2: 8. https://doi.org/10.1186/1479-

5876-2-8 PMID: 15050027

34. Boomer JS, Shuherk-Shaffer J, Hotchkiss RS, Green JM. A prospective analysis of lymphocyte pheno-

type and function over the course of acute sepsis. Crit Care. BioMed Central Ltd; 2012; 16: R112.

https://doi.org/10.1186/cc11404 PMID: 22742734

35. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, et al. Immunosuppression in patients

who die of sepsis and multiple organ failure. JAMA. American Medical Association; 2011; 306: 2594–

2605. https://doi.org/10.1001/jama.2011.1829 PMID: 22187279

36. Sweeney TE, Shidham A, Wong HR, Khatri P. A comprehensive time-course-based multicohort analy-

sis of sepsis and sterile inflammation reveals a robust diagnostic gene set. Sci Transl Med. American

Association for the Advancement of Science; 2015; 7: –287ra71. https://doi.org/10.1126/scitranslmed.

aaa5993 PMID: 25972003

37. Sweeney TE, Wong HR, Khatri P. Robust classification of bacterial and viral infections via integrated

host gene expression diagnostics. Sci Transl Med. 2016; 8: –346ra91. https://doi.org/10.1126/

scitranslmed.aaf7165 PMID: 27384347

Meta-transcriptome of early sepsis

PLOS ONE | https://doi.org/10.1371/journal.pone.0198555 June 19, 2018 18 / 19

https://doi.org/10.1186/s40635-014-0020-3
http://www.ncbi.nlm.nih.gov/pubmed/26215705
https://doi.org/10.1371/journal.pmed.1001916
http://www.ncbi.nlm.nih.gov/pubmed/26645559
https://doi.org/10.1164/rccm.201502-0355OC
http://www.ncbi.nlm.nih.gov/pubmed/26121490
https://doi.org/10.1152/ajplung.00380.2014
http://www.ncbi.nlm.nih.gov/pubmed/25795726
https://doi.org/10.1016/S2213-2600(16)00046-1
http://www.ncbi.nlm.nih.gov/pubmed/26917434
https://doi.org/10.1164/rccm.201608-1685OC
http://www.ncbi.nlm.nih.gov/pubmed/28036233
https://doi.org/10.1093/bioinformatics/btw535
https://doi.org/10.1093/bioinformatics/btw535
http://www.ncbi.nlm.nih.gov/pubmed/27531105
https://doi.org/10.1038/jp.2010.197
https://doi.org/10.1038/jp.2010.197
http://www.ncbi.nlm.nih.gov/pubmed/21252963
https://doi.org/10.1189/jlb.0208100
https://doi.org/10.1189/jlb.0208100
http://www.ncbi.nlm.nih.gov/pubmed/18436583
https://doi.org/10.1179/135100001101536580
http://www.ncbi.nlm.nih.gov/pubmed/11865981
https://doi.org/10.1172/jci.insight.85375
https://doi.org/10.1172/jci.insight.85375
http://www.ncbi.nlm.nih.gov/pubmed/27294203
https://doi.org/10.1517/14728222.2014.883380
http://www.ncbi.nlm.nih.gov/pubmed/24479494
https://doi.org/10.1002/cyto.b.21270
https://doi.org/10.1002/cyto.b.21270
http://www.ncbi.nlm.nih.gov/pubmed/26130241
https://doi.org/10.1016/j.imlet.2016.08.011
http://www.ncbi.nlm.nih.gov/pubmed/27568821
https://doi.org/10.1038/nri3660
http://www.ncbi.nlm.nih.gov/pubmed/24751955
https://doi.org/10.1186/1479-5876-2-8
https://doi.org/10.1186/1479-5876-2-8
http://www.ncbi.nlm.nih.gov/pubmed/15050027
https://doi.org/10.1186/cc11404
http://www.ncbi.nlm.nih.gov/pubmed/22742734
https://doi.org/10.1001/jama.2011.1829
http://www.ncbi.nlm.nih.gov/pubmed/22187279
https://doi.org/10.1126/scitranslmed.aaa5993
https://doi.org/10.1126/scitranslmed.aaa5993
http://www.ncbi.nlm.nih.gov/pubmed/25972003
https://doi.org/10.1126/scitranslmed.aaf7165
https://doi.org/10.1126/scitranslmed.aaf7165
http://www.ncbi.nlm.nih.gov/pubmed/27384347
https://doi.org/10.1371/journal.pone.0198555


38. Aneja RK, Carcillo JA. Differences between adult and pediatric septic shock. Minerva Anestesiol. 2011;

77: 986–992. PMID: 21952599

39. Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old

age. Proc Biol Sci. 2015; 282: 20143085. https://doi.org/10.1098/rspb.2014.3085 PMID: 26702035

40. Lang Y, Jiang Y, Gao M, Wang W, Wang N, Wang K, et al. Interleukin-1 Receptor 2: A New Biomarker

for Sepsis Diagnosis and Gram-Negative/Gram-Positive Bacterial Differentiation. Shock. 2017; 47:

119–124. https://doi.org/10.1097/SHK.0000000000000714 PMID: 27984536

41. Thompson CM, Park CH, Maier RV, O’Keefe GE. Traumatic injury, early gene expression, and gram-

negative bacteremia. Critical Care Medicine. 2014; 42: 1397–1405. https://doi.org/10.1097/CCM.

0000000000000218 PMID: 24561564

42. Vanden Berghe T, Demon D, Bogaert P, Vandendriessche B, Goethals A, Depuydt B, et al. Simulta-

neous targeting of IL-1 and IL-18 is required for protection against inflammatory and septic shock. Am J

Respir Crit Care Med. 2014; 189: 282–291. https://doi.org/10.1164/rccm.201308-1535OC PMID:

24456467
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