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Abstract: Patients with bone metastases have poor prognoses. A bone scan is a commonly applied
diagnostic tool for this condition. However, its accuracy is limited by the nonspecific character of
radiopharmaceutical accumulation, which indicates all-cause bone remodeling. The current study
evaluated deep learning techniques to improve the efficacy of bone metastasis detection on bone
scans, retrospectively examining 19,041 patients aged 22 to 92 years who underwent bone scans
between May 2011 and December 2019. We developed several functional imaging binary classification
deep learning algorithms suitable for bone scans. The presence or absence of bone metastases as a
reference standard was determined through a review of image reports by nuclear medicine physicians.
Classification was conducted with convolutional neural network-based (CNN-based), residual neural
network (ResNet), and densely connected convolutional networks (DenseNet) models, with and
without contrastive learning. Each set of bone scans contained anterior and posterior images with
resolutions of 1024 × 256 pixels. A total of 37,427 image sets were analyzed. The overall performance
of all models improved with contrastive learning. The accuracy, precision, recall, F1 score, area under
the receiver operating characteristic curve, and negative predictive value (NPV) for the optimal
model were 0.961, 0.878, 0.599, 0.712, 0.92 and 0.965, respectively. In particular, the high NPV may
help physicians safely exclude bone metastases, decreasing physician workload, and improving
patient care.

Keywords: contrastive learning; convolutional neural network; bone scan; deep learning

1. Introduction

With increasing lifespans, cancers have become the leading cause of death and con-
stitute a crucial health-care issue globally. The key factor in terms of therapeutic outcome
and prognosis remains the stage of cancer at diagnosis. Advanced cancers are usually
accompanied by metastases to distant organs, most often in the lungs, liver, and bones [1,2].
Approximately 5% of all cancer patients have bone metastases at initial diagnosis [3–5].
Prognoses vary but are generally poor for patients with bone metastases. The longest
median survival time, approximately 2 years, is found with breast, prostate, and thyroid
cancers and the shortest median survival time, less than 3 months, is seen with many
cancers of the digestive system [3].

The current methods for diagnosing bone metastases are mainly based on noninvasive
diagnostic imaging, such as plain radiography, computed tomography (CT), magnetic
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resonance imaging (MRI), positron emission tomography (PET), and bone scan, with bone
scan being the most commonly used because of the routine whole-body scan procedure
and high sensitivity to bone lesions. However, the bone scan employs 99mTc-labeled
bisphosphonates (e.g., methylene diphosphonate [MDP]), which can accumulate at sites
with increased bone remodeling activity, but this accumulation is not sufficiently specific
to indicate malignant tumor cells. Therefore, the efficacy of bone scans for bone metastases
is compromised by its poor specificity [6–8]. Furthermore, bone scans usually include
only a planar scan, small unsuspected lesions that may appear in a three-dimensional (3D)
representation may be overlooked in such two-dimensional (2D) scans with overlapping
skeletal structures. However, advanced 3D diagnostic imaging, such as CT, MRI, PET, and
even additional single-photon emission CT of bone scan, is not always feasible because
of the high cost and long acquisition time and the logistics of acquiring positron-emitting
agents. However, emergent artificial intelligence techniques may provide another means
of overcoming the problem of planar scanning.

The bone scan, similar to other functional imaging techniques, usually has a lower
spatial resolution than structural imaging methods, such as plain radiography, CT, or MRI
and bone scans exhibit great variation in image quality because of individual physical and
metabolic differences [9]. To overcome these drawbacks, researchers have investigated
deep learning algorithms for medical image analysis [10–12], but such algorithms have
rarely been applied to functional images. Previous studies have employed deep learning
algorithms for the detection of bone metastases in prostate cancer [13,14]. For example,
Papandrianos et al. used convolutional neural network (CNN) algorithms to perform
functional bone scintillation image analysis [15]. Furthermore, Cook et al. explored the use
of a CNN to classify whole-body bone scans of prostate cancer metastases [8]. A simpler
and more effective CNN model was proposed and compared with well-known model
architectures such as ResNet50, VGG16, and Xception. The accuracy of the Cook et al. pro-
posed model on a test set was 89%. Taken together, the aforementioned results demonstrate
that deep learning algorithms can be effectively applied to functional imaging classifica-
tion [16]. Despite the success of CNN models in classifying bone metastases, such models
face many challenges: (1) despite the images being well contrasted (Figure 1A,B), they
lack accuracy in classifying tumors, infections, trauma, and arthritis; (2) CNN models are
mostly trained through supervised learning, leading to annotation problems; (3) residual
urine (low contrast, Figure 1C) or excessive drug intake (high contrast, Figure 1D) may
lead to poor image contrast, making classification difficult. Furthermore, current CNN
models still require experts to classify and label images.
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Figure 1. Examples of bone scans. (A) Normal bone scan; (B) multiple bone metastases present; (C) presenting residual
urine; (D) presenting with high drug intake.

Contrastive representation learning (CRL) has made considerable advances in feature
learning and pretraining for computer vision [1,17]. Chaitanya et al. used contrastive



J. Pers. Med. 2021, 11, 1248 3 of 13

learning to segment a small number of tagged medical images [18]. They proposed a new
contrast method for learning the local structural similarity of an image by using contrast
loss. High benchmark performance was achieved in a limited marker environment and in
combination with data enhancement techniques.

This paper introduces a contrastive learning approach that improves CNN model (1)
classification, (2) contrast, and (3) annotation for bone scans for binary classification (i.e.,
detection) of bone metastases. We compared the performance of various models using
well-known CNN architectures (including DenseNet121 and ResNet50) before and after
the introduction of CRL.

2. Materials and Methods
2.1. Literature Review
2.1.1. CNNs

Most of the CNN architecture consists of convolutional, fully connected, and pooling
layers. Its purpose is to extract features from input sources and superimpose more complex
features from low-level features to perform classification tasks. The architectures of the
CNN models used in this study are presented as follows.

2.1.2. Model I: CNN-based

The CNN-based model employs the architecture proposed by the University of Thes-
saly and Center for Research and Technology Hellas for bone scan classification [16]. It is
a deep network architecture consisting of one input layer, three convolutional and pool-
ing layers, one flat layer, two fully connected layers, and one output layer (see Figure 2
for details). Filters are used to extract image features for classification and the network
weights are updated through gradient descent and back propagation to allow the model
to converge. According to experimental results, this framework is effective in classifying
bone metastases.
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2.1.3. Model II: ResNet

The ResNet architecture was published by Ho et al. in 2015 [19]. ResNet networks
are based on the VGG19 network and use residual learning to solve the degradation
problem of deep learning networks by adding a residual unit to the shortcut connection.
In addition, the residual network facilitates network architecture optimization and can
improve the accuracy of deep networks. Using the ImageNet dataset, Ho et al. evaluated
a residual network with 8 times more (152) layers than VGG, but with fewer parameters.
This architecture achieved an error of 3.57% on the ImageNet test set, winning first place in
the 2015 ImageNet Large Scale Visual Recognition Challenge.

2.1.4. Model III: DenseNet

The DenseNet architecture was published in 2016 [20]. The authors proposed a radical
dense connection mechanism in which the feature maps of all the preceding layers are used
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as inputs to a particular layer and the feature maps of that layer are then used as inputs for
all subsequent layers. This improves the efficiency of weight transfer across the network,
with each layer obtaining a reduced gradient from the loss function (i.e., feature reuse) and
helps to reduce the effect of gradient disappearance on deep networks and the number of
parameters. DenseNet is considerably more effective at most tasks than other advanced
techniques are, requiring less computation to achieve high performance.

2.1.5. CRL

CRL is a novel approach to learning representation, allowing models to learn to dis-
tinguish similar or dissimilar images by effectively exploiting the semantic relationships
between groups of samples and mining higher-level information from input images [21].
Rather than learning one feature vector at a time from a single data sample, contrastive
learning involves comparing multiple samples, learning basic representations by simulta-
neously maximizing the consistency between different versions or views of the same image
and using contrastive learning to reduce the differences. When a comparison target is
used to update the parameters of the neural network, the representations of corresponding
views attract each other and the representations of noncorresponding views repel each
other. Thus, by contrasting positive and negative samples, the representations of the
positive samples are brought together and the representations of the negative samples
are distanced within a particular dimensional space (see Figure 3 for details). Contrastive
learning is a simple yet powerful means of supervised or self-supervised learning of feature
vectors. This study used the supervised contrastive (SupCon) learning method proposed
by Google Labs for training [22]. This method is one of the CRL techniques that extends
the self-supervised batch comparison method to a fully supervised environment, enabling
a model to make effective use of labeling information. Clusters within the same class are
attracted in the vector space and clusters from different classes are repelled. This approach
improves the accuracy and robustness of classifiers over that of conventional supervised
training. The method is easy to implement and enables stable training; it achieves higher
accuracy with many data sets and model architectures and is robust to image noise and
hyperparameter changes.
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Figure 3. Contrast representation learning (CRL) diagram; (A) original data distribution, (B) similar
distribution of data after study.

2.2. Research Materials and Methods
2.2.1. CRL

Contrastive learning is performed in two main phases (see Figure 4 for details). In
the first phase, the encoder is trained to learn the representation of an input image and the
loss function is learned through supervised comparison for the model to make effective
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use of the label information. In the second phase, the linear classifier is trained using the
conventional cross-entropy loss function. Therefore, in this study, three CNN encoders, the
CNN-based model, ResNet50, and DenseNet121, were used for training in the first phase of
contrastive learning and then compared with supervised learning methods. According to
the paper, the authors use a loss function (Equation (1)) for supervised learning that builds
on the contrastive self-supervised literature by leveraging label information. Normalized
embeddings from the same class are pulled closer together than embeddings from different
classes. Contrastive loss consists of two aspects. First of all, the positive pair are two
features obtained from the same training sample after data augmentation and the distance
between these two features will become closer after training. On the contrary, the negative
pair are the features from different training samples. After training, the distance between
these two features will be farther. Additionally, it allows for multiple positives per anchor,
thus adapting contrastive learning to the fully supervised setting.

Lsup
out = ∑

i∈I
Lsup

out, i = ∑
i∈I

−1
|P(i)| ∑

p∈P(i)
log

exp
(
zi·zp/τ

)
∑a∈A(i) exp(zi·za/τ)

(1)
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2.2.2. Experimental Data

This study retrospectively collected 37,427 sets of images of 19,041 patients (see
Figure 5) who underwent bone scans at China Medical University Hospital between May
2011 and December 2019. Routine whole-body scans were performed 2–4 h after intra-
venous administration of 20 mCi of 99mTc-labeled MDP with a scan speed of 14–17 cm/min
on either a Millennium MG, Infinia Hawkeye 4, or Discovery NM/CT 670 Pro scanner
(GE Healthcare). Each set of bone scans consisted of two images, an anterior view and
a posterior view, with resolutions of 1024 × 256 pixels. Of the collected images, 31,812
were used for training and 5615 were used for testing. We used DICOM raw values as
model input, instead of converting to other image formats. We used pydicom, a python
3.7.0 based package, to read the pixel values of the images in the dicom file. The image
shape was 1024 × 256 and had both front and back sides. We merged the two images into
a shape of 1024 × 512 to facilitate the model to do a comprehensive feature interpretation
of the same patient’s image. The same image was overlapped 3 times to make the shape
1024 × 512 × 3. Then, we used the average pixel value around the right thigh bone to
standardize the overall image. Finally, we reduced the image shape to 256 × 256 × 3. The
patients were aged between 22 and 92 years when they underwent scanning (Figure 5).
The predominant cancer type (Figure 6) was breast cancer (59%), followed by head and
neck cancer (9%), prostate cancer (7%), lung cancer (5%), liver cancer (3%), nasopharyngeal-
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carcinoma (3%), and other cancer (14%). The presence or absence of bone metastases
as a reference standard was determined after a review of image reports by experienced
nuclear medicine physicians and through correlation with relevant radiological studies or
follow-up bone scans.
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Pydicom was used for image loading and processing, Matplotlib was used for graph
visualization, and Numpy was used for all mathematics and array operations. In addition,
Python was used as the programming language, Keras was used for programming the
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models, and scikit-learn was used for data segmentation. The execution hardware was a
Nvidia V100 graphics processing unit. In the model, we set 256 slices images as inputs per
epoch and the overall training process ran 50 epochs with a learning rate of 0.001 by using
Adam optimizer, which is the popular choice for machine learning.

2.2.3. Assessment Methods

Various metrics were used to assess the performance of the classification model on the
test data. The validation metrics were accuracy (Equation (2)), sensitivity (Equation (3)), F1
score (Equation (4)), specificity (Equation (5)), precision (Equation (6)), recall (Equation (7)),
NPV (Equation (8)), and area under the receiver operating characteristic (ROC) curve. In
a binary classification problem, a prediction can be classified as true positive (TP), true
negative (TN), false positive (FP), or false negative (FN). In our case of bone metastasis
detection, a TP indicates that the label of the image is malignant and it is correctly classified.
FP means that the label of the image is benign, yet it is classified as malignant. TN means
that the label of the image is benign and it is classified as such. Similarly, FN means that
the label of the image is malignant, yet it is classified as benign.

Accuracy =
TP + TN

(TP + FP + TN + FN)
(2)

Sensitivity =
TP

TP + FN
(3)

F1− score = 2 ∗ Recall ∗ Precision
Recall + Precision

(4)

Speci f icity =
TN

FP + TN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

NPV =
TN

TN + FN
(8)

2.2.4. Visualization

To better understand the ability of contrastive learning to isolate different sample rep-
resentations, a multidimensional representation can be transformed and remapped to a 2D
space for observation through dimensionality reduction, essentially reprojecting data from
a higher dimensionality to a lower dimensionality. For visualization, we employed Uniform
Manifold Approximation and Projection (UMAP), a technique developed by McInnes et al.
in 2018 with the primary theoretical frameworks of Riemannian geometry and algebraic
topology [23]. The visualization proof preserves more of the full domain structure. In
Table 1, our dataset consists of 34,386 images without metastases and 3041 images with
metastases. Illustrate the distribution of training data and test data.

Table 1. Distribution of the image dataset of whole-body bone scan.

No Malignant Malignant Total

Train 29,227 2585 31,812
Test 5159 456 5615

3. Results

Table 2 and Figure 7 provide the evaluation metrics for different methods on the test
set. For our models, all five metrics were superior to those achieved with supervised
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learning. This study proposes that a contrastive learning approach can improve accuracy,
recall, and F1 score over conventional supervised learning. The accuracy of the CNN-based
model was 94.30%, but this was improved by 1.62% with the addition of SupCon. The
accuracy of the DenseNet121 model was 93.39% and improved by 2.6% with the addition
of SupCon and its F1 score of DenseNet121 increased by 33.41% with SupCon. In addition,
the precision of the CNN-based and DenseNet121 models increased by 27.41% and 33.33%,
respectively, after the addition of SupCon. These results demonstrate that contrastive
learning is effective in improving all aspects of deep learning classifiers. Table 3 presents
a comparison of stratified 6-fold validation evaluation metrics for different classifiers in
the test set. In this process, each of the six groups of data are selected a different subset for
testing until all folds were tested. The distribution of classes in each fold closely mirrors
the distribution of classes in the entire dataset.

Table 2. Comparison of evaluation indicators for different classifiers in the test set.

Model CNN DenseNet121 ResNet50V2 CNN DenseNet121 ResNet50V2

Method Supervised
Learning

Supervised
Learning

Supervised
Learning

Supervised
Contrastive

Learning

Supervised
Contrastive

Learning

Supervised
Contrastive

Learning

Accuracy 0.943 0.934 0.957 0.959 0.960 0.961
Sensitivity 0.322 0.230 0.533 0.596 0.564 0.599
Specificity 0.998 0.996 0.995 0.991 0.995 0.993
Prevalence 0.081 0.081 0.081 0.081 0.081 0.081
Precision 0.930 0.840 0.900 0.858 0.908 0.878

NPV 0.943 0.936 0.960 0.965 0.963 0.965
F1 Score 0.479 0.361 0.669 0.704 0.696 0.712

TP 147 105 243 272 257 273
FP 11 20 27 45 26 38
FN 309 351 213 184 199 183
TN 5148 5139 5132 5114 5133 5121

Table 3. Stratified 6-fold validation result on a dataset.

Model CNN DenseNet121 ResNet50V2 CNN DenseNet121 ResNet50V2

Method Supervised
Learning

Supervised
Learning

Supervised
Learning

Supervised
Contrastive

Learning

Supervised
Contrastive

Learning

Supervised
Contrastive

Learning

Accuracy 0.933 0.919 0.936 0.976 0.952 0.946
Sensitivity 0.179 0.561 0.272 0.774 0.469 0.417
Specificity 1.000 0.951 0.995 0.994 0.995 0.992
Prevalence 0.081 0.081 0.081 0.081 0.081 0.081
Precision 0.975 0.695 0.576 0.923 0.888 0.694

NPV 0.932 0.961 0.940 0.980 0.955 0.951
F1 Score 0.301 0.576 0.353 0.842 0.594 0.519

To facilitate understanding of contrastive learning, data visualization allows for an in-
tuitive view of the first phase of the SupCon method. In the experiment, the last layer of the
supervised contrastive learning model (including CNN-based, DenseNet121, ResNet50V2)
encoder was downscaled to two dimensions through UMAP and the data distribution was
presented after model training (Figure 8). As demonstrated in Figure 8, the contrastive
learning CNN-based approach clearly separated each class when clustering samples, sug-
gesting that this approach effectively extends the distance between the features of two
classes, making the boundaries between clusters more visible. This approach is easy to
implement and enables stable training, effectively improving the accuracy and robustness
of deep learning classifiers.
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4. Discussion

Functional medical images, such as bone scans, usually have lower spatial and contrast
resolution than structural images, such as those of CT and MRI. In addition, functional
images are inherently noisy and exhibited greater variation in image quality because of the
individual physical and metabolic differences. Furthermore, functional medical imaging is
far less common than structural medical imaging in most health-care systems. As a result,
deep learning algorithms have rarely been applied to functional imaging.
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Han et al. used two different CNN architectures to analyze 9113 bone scans of
patients with prostate cancer. There were 2991 scans (32.8% of all scans) positive for bone
metastases. The accuracy, sensitivity, specificity, PPV, NPV, and area under the receiver
operating characteristic curve (AUC) for their model with better performance were 96.0%,
82.8%, 93.5%, 86.1%, 91.8%, and 0.946, respectively [24]. Papandrianos et al. selected 408
bone scans of female breast patients for analysis with CNN models, of which 221 bone
scans (54.2% of all scans) were considered with bone metastases. The accuracy, sensitivity,
specificity, precision, and recall for their best model were 92.5%, 94%, 92%, 93%, and
94%, respectively [15]. Zhao et al. collected 12,222 bone scans from 40 cancer types (44%
of were lung cancer) and 5151 scans (42.1% of all) were regarded with bone metastases.
The accuracy, sensitivity, specificity, PPV, NPV, and AUC of their deep neural network
model were 93.38%, 92.64%, 93.92%, 91.75%, 94.59%, and 0.964, respectively [25]. However,
the percentage of bone scans with metastases in these above studies are unusually high
compared to real-world conditions. In a PET study consisting of consecutively 403 patients
with histologically-proven malignant disease for initial or post-therapeutic staging, there
were only 38 patients (9%) suggestive of bone metastases [26]. Another study with whole-
body MRI for metastatic workup of treatment-naïve prostate cancer according to the eligible
guideline of European Association of Urology, revealed the overall prevalence of bone
metastases was 7% (12 of all 161 cases) in the case of newly diagnosed intermediate- and
high-risk prostate cancer [27]. The prevalence of bone metastases in the above PET and
MRI studies are comparable to the historical observation with cancer patients at initial
diagnosis (5%) [3–5] and our current study (8%), which suggest that our current CNN
model may be more suitable to resolve the real-world task.

Few computer-assisted systems for automatically detecting metastases on bone scans
have been developed. The best known commercially available software is Bone Scan Index
(BSI) [28]. BSI was developed using artificial neural networks to detect bone metastases
in patients with prostate cancer through image segmentation, identifying bone areas
with increased radiopharmaceutical uptake, and classifying these areas as malignant or
benign lesions.

Despite its original purpose of efficiently and accurately detecting bone metastases,
BSI is now used in prognostic tests for patients with high-risk prostate cancer [29]. BSI’s
high FP rate limits its use in staging patients with newly diagnosed prostate cancer.

Petersen et al. used BSI to identify bone metastases in the bone scans (in Digital
Imaging and Communications in Medicine format) of 342 patients with initial diagnoses
of prostate cancer. They achieved a sensitivity of 93.3%, specificity of 89.3%, positive
predictive value (PPV) of 57.5%, and NPV of 98.9% [30]. Wuestemann et al. enrolled 951
patients, including 406 with breast cancers and 149 with prostate cancers. They discovered
that the overall efficacy in detecting bone metastases could be improved by adjusting the
BSI cutoff value after an ROC analysis. The optimal results were achieved with a BSI cutoff
value of 0.27%, that is, a sensitivity of 87.0%, specificity of 98.6%, PPV of 98.5%, and NPV
of 87.7% [31].

This study provides a contrastive learning approach for diagnosing bone metastases
on whole-body bone scans and conducted a pre- and post-importation comparison using a
CNN-based model and the well-known architectures, DenseNet121 and ResNet50. The
results demonstrate that contrastive learning is applicable to medical functional images
and is effective in improving the accuracy of deep learning models. In addition, the method
can be generalized to patients with other age distributions and provides high robustness
to noisy images. Although the accuracy of each model increased with the addition of
contrastive learning, some noisy image data were observed in various clusters. In future
research, other deep learning architectures can be tested and greater image interpretability
should be provided, with similar or higher accuracy.

Our results are comparable with those of previous BSI studies, despite the slightly
lower prevalence of bone metastases in our patients. However, this did not compromise the
PPV of our models, especially when contrastive learning was used. We provide a feasible
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technique for analyzing a large volume of images without the need to heavily preprocess
individual scans for segmentation and annotation. Contrastive learning improved the
overall performance of all the models tested in this study. In particular, the excellent
NPV can help physicians confidently and safely rule out bone metastases. Facilitating
the identification of bone scans without metastases might lessen the workload of nuclear
medicine physicians and improve the overall quality of patient care.

Our study has several limitations. First, we included patients from only a single
tertiary academic medical center. Multicenter studies may be needed to confirm the
generalizability of our method. Second, the bone scans were performed with different
scanners; however, the modality-related effect on individual images might be minimal
because these scanners used similar scintillator technology and were obtained from the
same manufacturer. Third, our analysis involved pooling patients with various types of
cancers. Although this reflects real-world conditions, studies that analyze the performance
of bone metastasis detection within cancer types are warranted to explore the efficacy and
best practices of applying deep learning algorithms to such diagnosis. Fourth, the absence
or presence of bone metastasis was determined by an expert’s interpretation of the bone
scans rather than histological evidence. However, pathological confirmation is not always
practical and may cause unnecessary harm to patients. In addition, only a few patients had
bone lesions that could be differentiated by other advanced radiological modalities, such
as CT or MRI. Therefore, it has been generally accepted to diagnose bone metastases by an
expert’s interpretation, especially when there are multiple lesions in the axial bones that
are deemed a pathognomonic feature of bone metastases.

5. Conclusions

Our study demonstrates that deep learning algorithms with additional contrastive
learning can achieve excellent performance in detecting bone metastases Their high NPV
may help physicians safely exclude bone metastases, decreasing physician workload and
improving the quality of patient care.
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