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Abstract

Dementia and cognitive disorders are major aging-associated pathologies. The prevalence and severity of these conditions are influenced by 
both genetic and environmental factors. Reflecting this, epigenetic alterations have been associated with each of these processes, especially 
at the level of DNA methylation, and such changes may help explain the observed interindividual variability in the development of the 2 
pathologies. However, the importance of epigenetic alterations in explaining their etiology is unclear because little is known about the timing 
of when they appear. Here, using Illumina MethylationEPIC arrays, we have longitudinally analyzed the peripheral blood methylomes of 
cognitively healthy older adults (>70 year), some of whom went on to develop dementia while others stayed healthy. We have characterized 
34 individuals at the prediagnosis stage and at a 4-year follow-up in the postdiagnosis stage (total n = 68). Our results show multiple DNA 
methylation alterations linked to dementia status, particularly at the level of differentially methylated regions. These loci are associated 
with several dementia-related genes, including PON1, AP2A2, MAGI2, POT1, ITGAX, PACSIN1, SLC2A8, and EIF4E. We also provide 
validation of the previously reported epigenetic alteration of HOXB6 and PM20D1. Importantly, we show that most of these regions are 
already altered in the prediagnosis stage of individuals who go on to develop dementia. In conclusion, our observations suggest that dementia-
associated epigenetic patterns that have specific biological features are already present before diagnosis, and thus may be important in the 
design of epigenetic biomarkers for disease detection based on peripheral tissues.
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Background

Cognitive decline and dementia are complex diseases in which both 
genetic and environmental factors play a relevant role (1,2). The well-
known preclinical phenotypes of dementia (3) serve to demonstrate 
that these pathologies are defined by progressive changes whose 
timely detection is crucial in the management of the disease. Indeed, 
dementia is strongly associated with aging, although the causal re-
lationships between the overlap in cognitive decline symptoms ob-
served for the 2 processes remain to be clarified (4). Both aging and 
dementia have been associated with epigenetic alterations, and these 
molecular mechanisms may contribute to characterizing their rela-
tionship (5). During aging, both genetic factors and the accumula-
tion of external stimuli, such as those related to lifestyle, can trigger 
epigenetic changes which may help explain: (a) the variability in the 
trajectories of cognitive decline experienced by “healthy” aging indi-
viduals (6) and (b) the variability in the appearance of pathological 
states such as mild cognitive impairment or dementia (5).

Among the known epigenetic changes, DNA methylation alter-
ations have been found to be associated with dementia both in brain 
and in systemic tissues such as peripheral blood (7). In addition, the 
recently developed DNA methylation clocks, which are often altered 
in disease, can serve as proxies that encompass the complex factors 
(genetic, biological, and environmental) which lead to interindividual 
differences in phenotype and are thus of great interest in the defin-
ition of potential biomarkers of disease (8). Nonetheless, the ques-
tion still remains as to whether these epigenetic alterations arise 
prior to or as a consequence of dementia. If the former, they could 
serve as biological indicators and/or provide novel avenues for inter-
ventions to prevent these diseases. Within this scenario, longitudinal 
studies are of great value in tracing variables that contribute to ex-
plaining these phenotypes (9).

Method

Here, we have profiled the peripheral blood mononuclear cell 
epigenome of 68 samples at more than 770  000 CpG sites by 
employing Infinium MethylationEPIC BeadChips. We studied a 
longitudinal cohort of older adults consisting of 17 pairs of age-
matched, cognitively healthy individuals where in a 4-year follow-up 
assessment (SD = 0.35 year), one was still cognitively healthy, that is 
acted as control (CON), while the other had been diagnosed with de-
mentia (DEM, also referred to henceforth as “converter” individuals; 
Figure 1a, Table 1; Supplementary Table 1 for extended phenotypic 
data). Subjects are volunteer participants in an ongoing single-center 
longitudinal study known as “The Vallecas Project” where they 
annually undergo extensive neurological and neuropsychological 
assessment (10). We characterized the methylomes of these individ-
uals at an initial, prediagnosis time point, when all were cognitively 
healthy (time0; CON_time0, and DEM_time0 groups, n = 34) and 
at a longitudinal, postdiagnosis time point at which some had con-
verted to dementia (timeL; CON_timeL, and DEM_timeL groups, 

Figure 1. DNA methylation alterations at single-CpG sites in dementia. (A) 
Schematic of the study design. (B) Barplots depicting the proportion of hyper- 
and hypo-methylated DMPs (unadjusted p < .05) found in the time0, timeL, 
and longitudinal comparisons. (C) Boxplots comparing the DNA methylation 
measurements performed by the Infinium MethylationEPIC BeadChip and by 
bisulfite pyrosequencing for 2 CpGs (cg16593113, cg06937882) on a subset 
of 24 samples segregated by experimental group. (D) Barplots showing 

the relative distribution of hyper- and hypo-methylated DMPs in the time0, 
timeL, and longitudinal comparisons according to their CpG island location 
status (top) and gene location status (bottom). The rightmost bars reflect 
the background distribution of all the analyzed array probes. (E) On the left, 
the Venn diagram describes the numbers and intersections of the DMPs 
found for the time0, timeL, and longitudinal comparisons. On the right, the 
Venn diagram shows the specific intersections between hyper- and hypo-
methylated DMPs from the time0 to timeL comparisons. CON  =  control; 
DEM = dementia; DMPs = differentially methylated probes.

1744 Journals of Gerontology: BIOLOGICAL SCIENCES, 2022, Vol. 77, No. 9

Copyedited by:  

http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glac068#supplementary-data


n  =  34). This allowed us to examine: (a) DNA methylation alter-
ations predictive of the appearance of cognitive pathology (time0 
comparison), (b) DNA methylation alterations directly associated 
with cognitive pathology (timeL comparison), and (c) longitudinal 
DNA methylation alterations (the full methodology is detailed in 
Supplementary Methods).

Results

We used empirical Bayes modified t tests in a linear model frame-
work (11) to define differentially methylated probes of CpG sites 
(DMPs; false discovery rate [FDR] < 0.05) across the different 
comparisons. The models were adjusted to account for experi-
mental processing batch, blood cell-type composition, sex, and 
subject-specific effects, with cell-type composition being predicted 
from the DNA methylation data using the Houseman algorithm 
(12) (Supplementary Methods). We employed variance decompos-
ition methods to determine the potential effects of experimental 
or technical variables in our data. A  surrogate variable analysis 
(13) confirmed that the 2 main variables driving latent variation in 
our data were batch and cell-type composition (principally CD8-T 
cells; Supplementary Figure 1). After carrying out the differential 
analyses, we found no statistically significant DMPs between con-
trol and converter individuals at either time0 or at timeL, while we 
did detect 14 DMPs in the longitudinal comparison (described in 
Supplementary Table 2). However, because the longitudinal com-
parison involves all subjects (34 at time0 vs 34 at timeL) while 
the dementia comparisons only involve half of the cohort (17 vs 
17), the observed differences in detected DMPs could be due to 
an increase in statistical power. We performed subsampling of the 
cohort to retain only 17 individuals and repeated the longitudinal 
comparisons, finding no statistically significant DMPs across 5 it-
erations. These initial results suggest that, at the level of individual 
CpG sites, there are no marked DNA methylation alterations that 
are predictive of the development of dementia, or directly associ-
ated with this disease in the blood of older adults. We also found no 
evidence of an increase in DNA methylation differences between 
individuals after onset of symptoms in the DEM group as com-
pared to differences at the prediagnosis stage.

To expand the biological exploration of our data, we next fo-
cused on the top probes for each comparison (unadjusted p < .05). 
These corresponded to 30 492 loci, 28 457 loci, and 35 007 loci, 

respectively, for the time0, timeL, and longitudinal comparisons 
(Figure 1b). These borderline CpG sites may collectively carry bio-
logical insight and, moreover, we validated 2 sites with moderate 
(p < .001, cg16593113) and marginal (p ~ .06, cg06937882) sig-
nificance in the time0 and timeL comparisons by using bisulfite 
pyrosequencing in a subset of the samples (Figure 1c; Supplementary 
Table 3 for primer information), indicating that the array produced 
robust measurements. Indeed, the array and pyrosequencing meas-
urements were highly concordant across all observations (Pearson 
correlation coefficient = 0.98, Supplementary Figure 2).

The time0-, timeL-, and longitudinal-DMPs were each associ-
ated with specific distributions across CpG island and gene locations 
(Figure 1d), with parallel hyper- or hypomethylation-specific trends 
being observed for all 3 comparisons. We analyzed the intersections 
between the sets of DMPs (Figure 1e, left plot) and found a strong 
enrichment in shared time0- and timeL-DMPs (Fisher’s test p < .001, 
odds ratio [OR]  =  12). Moreover, the direction of the dementia-
associated alterations was maintained at both time points (Figure 1e, 
right plot). When looking specifically at the DMPs common to both 
time0 and timeL that had a concordant direction of change (7 834 out 
of 7 875), we found no evidence of an increase in the magnitude of 
change at postdiagnosis (timeL) with respect to prediagnosis (time0; 
Wilcoxon rank sum test p = .257; Supplementary Figure 3). These re-
sults suggest that blood dementia-associated DNA methylation pat-
terns are very similar at the prediagnosis stage and after the onset of 
dementia symptoms, and that these loci are different from those as-
sociated with longitudinal drift. We also performed Gene Ontology 
enrichment analyses on the sets of DMPs (Supplementary Table 4 
for full results). Looking at the specific pathways detected for each 
comparison, we observed common trends for the hypermethylation 
of neural development pathways associated with time0, timeL, and 
also longitudinal DMPs (Supplementary Figure 4), indicating that 
the discernible DNA methylation alterations occurring in dementia 
at the prediagnosis or diagnosis stage may be linked to specific, and 
similar, functional pathways.

Recent studies using larger cohorts (14,15) have failed to de-
tect single-CpG biomarkers at an adequate significance level, while 
nonetheless being able to define differentially methylated regions 
(DMRs). Indeed, it is probable that the subtle DNA methylation 
alterations associated with dementia and cognitive decline in per-
ipheral blood are better detected when looking at coordinated, 
region-level changes. Working along these lines, we performed 

Table 1. Summary of Clinical Information Related to the Subjects. Subjects at Time0 Are all Cognitively Healthy and Grouped Into Stable 
Controls (CON_time0) or Future Converters to Dementia (DEM_time0)

Time Point time0, n = 34  timeL, n = 34  

Group
Stable Control  
(CON_time0) 

Dementia Converter  
(DEM_time0) p Value

Stable Control  
(CON_timeL) 

Dementia Converter  
(DEM_timeL) p Value

Number of subjects 17 17  17 17  
Sex (M/F) 8/9 3/14 n.s. 8/9 3/14 n.s.
Age, mean yr (SD) 76.1 (2.8) 76.6 (4.1) n.s. 80.1 (2.8) 80.6 (4.2) n.s.
MMSE, mean (SD) 28.6 (1.5) 27.2 (2.4) n.s. 28.5 (2.0) 21.2 (4.5) ***
FAQ, mean (SD) 0.4 (0.5) 0.9 (1.1) n.s. 0.5 (0.8) 13.5 (8.5) ***
GDS, mean (SD) 1.2 (1.4) 1.8 (1.5) n.s. 1.4 (2.0) 2.9 (2.0) *
CDR, mean (SD) 0.0 (0.0) 0.0 (0.1) n.s. 0.0 (0.1) 1.1 (0.3) ***

Notes: CDR = Clinical Dementia Rating; FAQ = Functional Activities Questionnaire; GDS = Geriatric Depression Scale; MMSE = Mini-Mental State Examin-
ation; SD = Standard Deviation. The same subjects are evaluated at timeL, when stable controls remain cognitively healthy (CON_timeL) while converters manifest 
the disease (DEM_timeL).

n.s., p ≥ .05, *p < .05, ***p < .001 for Wilcoxon rank sum or chi-squared tests.
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a regional analysis to look for DMRs using the comb-p method 
(16) (Supplementary Methods). Interestingly, we detected 61 and 
65 significant DMRs (Sidak-corrected p < .05; Supplementary 
Table 5 for lists of DMRs) between DEM and CON individuals at 
time0 and timeL, respectively, while detecting no significant regions 
for the longitudinal comparison, in spite of the latter comparison 
involving more subjects. These significant DMRs were dominated 
by hypomethylation changes (Figure 2a), and the CpGs involved 
were notably enriched at CpG islands and transcription start sites 
(TSS; Figure 2b; Fisher’s tests all p < .001, ORs = 2.4–3.6 for island 
and 1.5–4.5 for TSS enrichments, except for timeL hyper-DMRs 
which had a p value of .09 for TSS enrichment), indicating that 
they might have more defined roles as regards biological regula-
tion. The majority of these regions (42) overlapped in time0 and 
timeL (Figure 2c), and all DMRs were altered in the same direction, 
indicating that the dementia-associated DMRs were already present 
in time0 individuals prior to the detection of overt cognitive decline 
symptoms. Indeed, the methylation status of the regions perfectly 
distinguished CON subjects from DEM subjects at both time points 
(Figure 2d). We did not, however, observe an increase in the magni-
tude of the alterations at these regions at timeL as opposed to time0 
(Supplementary Figure 5).

In addition, because there is a gradient of cognitive scores 
within the dementia timeL subjects (Table 1; Supplementary Figure 
6), the methylation levels at these regions could be subtly associ-
ated with the degree of cognitive decline. To explore this, we cor-
related neurological scores with mean DNA methylation values at 
the 42 overlapping DMRs by using linear models within the DEM 
timeL subgroup (Supplementary Methods), but no relationships 
were found to be significant after multiple-testing adjustment (FDR 
< 0.05).

A considerable proportion of the DMRs detected were mapped 
to genes functionally linked to Alzheimer’s or related pathologies 
via different mechanisms (Figure 2e; Supplementary Table 5) such 
as: (a) genes associated with polymorphisms related to Alzheimer’s 
disease risk—PON1 (17), AP2A2 (18), or SH3PXD2A (19) (al-
though the latter is cohort-dependent (20))—or those associated 
with polymorphisms linked to Aβ-related neurodegeneration—
MAGI2 (21)—or polymorphisms related to cerebrospinal fluid 
tau phosphorylation levels—POT1 (22); (b) genes with functional 
roles in dementia disease models—ALOX5AP (23), PLK2 (24), 
or ITGAX (25); (c) tau protein-interacting genes—PACSIN1 (26); 
(d) genes with plasma protein levels associated with Alzheimer’s 
in ApoE4 carriers—CDH6 (27)—or upregulated in the peripheral 
blood of fast-progression subjects with early Alzheimer’s—SLC2A8 
(28); (e) genes associated with more general brain-pathology path-
ways—CBR1 (29).

We next looked for overlaps between our study DMRs and 
those reported using external cohorts. First, we examined the 
regions with blood DNA methylation alterations in pre and 
postdiagnosis Alzheimer’s subjects described by Fransquet et  al. 
(14) and found 13 intersections with our DMRs (overlapping 
or <1 000 bp in distance), 10 of which were altered in the same 
direction (Supplementary Table 6), including regions mapping to 
aforementioned genes such as ALOX5AP. We also found up to 18 
intersections with the Alzheimer’s and MCI-associated blood altered 
regions reported by Wang et al. (30), 6 having the same direction 
of change (Supplementary Table 6), including, for example, a timeL 
DMR mapped to the EIF4E gene, a gene which has been recently 
reported as specifically detected in the lacrimal fluid of Alzheimer’s 
patients (31). Lastly, despite the fact that most of our regions were 

hypomethylated, and although it did not reach statistical signifi-
cance in the DMR calling, we also confirmed in our cohort the re-
cently reported hypermethylation of the HOXB6 gene in the blood 
of Alzheimer’s patients (15). Interestingly, as is the case for most 
of our regions, we observed that the DNA methylation alterations 
were already present in our prediagnosis time0 samples. Taken to-
gether, these results highlight the importance of describing cohort-
independent DNA methylation alterations. To further pursue this, 
we made use of the raw data shared by Roubroeks et al. (15) and 
performed a DMR analysis by integrating their data set with our 
own measurements (Supplementary Methods). With this strategy, 
we discovered 8 cohort-independent DMRs (Supplementary Table 
7; Figure 2f), which included genes such as HOXB6, mentioned 
earlier, and also PM20D1, which has been recently described as 
hypomethylated in the peripheral blood of early Alzheimer’s (30) 
and is a quantitative trait locus in this disease (32).

Finally, we screened various epigenetic clocks in order to look 
for more general epigenomic alterations. We estimated DNAm ages 
using the “Hannum” blood DNAm clock (33), the “Horvath” uni-
versal DNAm clock (34), the “PhenoAge” DNAm clock (35), the 
“GrimAge” DNAm clock (36), and the “Telomere” DNAm clock 
(37). We computed DNAm age acceleration values by extracting the 
residuals from the regression of DNAm age on chronological age, 
with GrimAge also being adjusted for sex after we observed a sig-
nificant association with this variable (Supplementary Methods). We 
found no significant differences in DNAm age acceleration or DNAm 
telomere length acceleration across the groups (Supplementary 
Figure 7). DNAm age acceleration has been repeatedly associated 
with Alzheimer phenotypes in brain tissue (35,38,39), while mixed 
results have been obtained in blood, with DNAm age acceleration 
having been linked to cognitive fitness, but not to its longitudinal de-
cline (40), associated with longitudinal cognitive decline (41) or not 
associated with any differences whatsoever (42). In the case of our 
cohort, there did not appear to be noticeable differences in epigenetic 
age acceleration between the groups studied. To take into account 
the distribution of cognitive scores within the dementia timeL 
subjects (Table 1; Supplementary Figure 6), we also correlated the 
acceleration with neurological score values by using linear models 
across all subjects and also within the dementia timeL subgroup. We 
again found little evidence of a robust increase in epigenetic age ac-
celeration linked to cognitive decline across the 5 different epigenetic 
clocks, and no significant association was observed after adjustment 
for multiple testing (Supplementary Figures 8 and 9).

Discussion

In summary, our work describes DNA methylation alterations in 
the peripheral blood mononuclear cells of cognitively healthy older 
adults who in the medium-term (at 4-year follow-up) either develop 
dementia or remain cognitively healthy. Importantly, most of the 
observed alterations are present at both the prediagnosis and the 
postdiagnosis stage, suggesting that DNA methylation alterations 
associated with dementia have already accumulated in peripheral 
tissues such as blood prior to clinical symptoms being observed, thus 
indicating its value for the development of epigenetic biomarkers 
of disease. Even so, these observations could perhaps also be ex-
plained by the presence of preexisting individual genetic traits. While 
it is true that DNA methylation alterations are better detected when 
looking at coordinated, regional changes, the exploration of the 
DNA methylation patterns at the single-CpG level also reveals dis-
tinctive signatures associated with biological features.
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Our study provides valuable epigenetic profiling, using Illumina 
MethylationEPIC arrays, of a well-characterized longitudinal cohort 
with comprehensive cognitive measurements separated by a 4-year 

span. This design allowed for comparisons to be made at 2-time 
points and also longitudinally. On the other hand, the main limi-
tations of the investigation were: (a) the sample size, which likely 

Figure 2. Regional DNA methylation alterations in dementia. (A) Barplots showing the numbers of hyper- and hypo-methylated dementia-associated DMRs 
(Sidak-adjusted p < .05) found in the time0 and timeL comparisons. (B) Barplots indicating the relative distribution of CpGs belonging to hyper- and hypo-
methylated DMRs in the time0 and timeL comparisons, according to their CpG island location status (left) and gene location status (right). (C) Venn diagram 
showing the number of DMRs overlapping between the time0 and timeL comparisons. (D) Scatter plots describing the principal component analysis (PCA) of 
the study subjects according to their mean methylation values for the time0 or timeL DMRs. (E) Boxplots showing the measured DNA methylation values of 
the individuals, according to their experimental group, at the CpG sites belonging to DMRs associated with the ITGAX, POT1, and AP2A2 genes. (F) Boxplots 
showing the measured DNA methylation values of the individuals, according to their experimental group, at the CpG sites belonging to 2 DMRs discovered in 
the integrative analysis associated with the HOXB6 and PM20D1 genes. CON = control; DEM = dementia; DMRs = differentially methylated regions.
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limited the power to detect more subtle alterations; (b) the use of a 
general diagnosis of dementia without differentiating specific sub-
types, so that the alterations described here could be related to other 
pathologies such as vascular dementia; (c) the short time span in 
terms of detecting robust aging alterations; and (d) the lack of ana-
lyses of lifestyle variables which could reveal additional insights on 
the biological processes involved.

The DMRs described in this study are related to many 
Alzheimer’s-associated genes, and also overlap with regions re-
ported in other studies, indicating that epigenetic changes reflect the 
underlying biological processes at play in the development of this 
disease. Nonetheless, the numbers and extent of dementia-associated 
DNA methylation alterations are limited, and as such, there is a 
need for high-powered studies which facilitate the detection of more 
subtle, poly-epigenetic traits. In this sense, the public availability of 
epigenetic profiling data sets is of great value for the integration and 
validation of future studies.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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