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Chemokines are a family of cytokines, first described to play a role in the immune system.
However, neurons and glial cells also express chemokines and their receptors. In the
central nervous system, chemokines are involved in several neural functions, in particular
in the control of cell communications and neuronal activity. In pathological conditions,
chemokines participate in neuroinflammatory and neurodegenerative processes. In Alz-
heimer's disease (AD), chemokines play a role in the development of the two main lesions,
amyloid B plaques and neurofibrillary tangles. In addition, they contribute to the inflam-
matory response by recruiting T cells and controlling microglia/macrophages activation.
Actually, targeting inflammatory pathways seems a promising therapeutic approach for
the treatment of AD patients. This review summarizes our current knowledge on the roles
of chemokines in AD animal models and the underlying mechanisms in which they take
part. Better knowledge of the role of chemokines and their cellular receptors in AD could
open new therapeutic perspectives.

Alzheimer's disease

They might involve toxic oligomers of amyloid B (AB) peptides
and/or the formation of amyloid (senile) plaques composed of
extracellular aggregates of AB peptides, and/or rely on the

Alzheimer's disease (AD) is the most common form of de-
mentia, with an increasing prevalence due to an aging popu-
lation. AD is a fatal brain disease and currently, there is no
cure or treatment which delays or stops the progression of AD.
This neurodegenerative disease is characterized by two main
lesions: senile plaques and neurofibrillary tangles. The exact
processes that cause the disease are still poorly understood.

formation of neurofibrillary tangles composed of intra-
neuronal aggregates of hyperphosphorylated Tau protein. The
ApB peptides are generated by the sequential cleavage of APP by
two enzymes, the p-amyloid cleavage enzyme and the y sec-
retase complex composed of presenilin (PS), nicastrin, pre-
senilin enhancer 2 and anterior pharynx-defective 1. Less
than 1% of AD cases are caused by mutation in APP and PS
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genes. Mutations in the gene encoding Tau have not been
identified in AD cases. However, Tau mutations found in other
Tauopathies are co-expressed with APP and PS bearing AD
familial mutations to model both neurofibrillary tangles and
AB plaques in transgenic animals [1].

Alzheimer's disease and inflammation

Genetic studies have also identified polymorphisms, linked
to AD, in genes involved in the innate immune system [2—5].
In AD patients, many activated microglial cells and astro-
cytes have been shown to be associated with lesions and
inflammatory molecules. Microglial cells are the resident
immune cells of the central nervous system (CNS) and
derive from myeloid progenitors from the yolk sac before
embryonic day 8 and maintain in the brain by self-renewal
[6]. Microglia participate in the immune response in AD by
activating the complement cascade and producing inflam-
matory cytokines such as IL-1B, IL-6 and TNF-a [7]. Early
recruitment of microglia seems beneficial in AD by pro-
moting phagocytosis and clearance of Ap peptides. However,
as disease progresses, microglia are overwhelmed by the
excessive amount of Ap and become more pro-inflammatory
[8]. These chronic inflammatory processes lead to alteration
of microglial functions creating a vicious circle. Conse-
quently, microglia are unable to restrict the formation of AB
plaques [9]. Thus, several studies on inflammatory media-
tors and immune pathways revealed that inflammatory and
immunological processes are central to the progression of
AD [10,11].

Chemokines

Among pro-inflammatory molecules, chemokines are a sub-
family of chemotactic cytokines. Chemokines are a large
family of over 50 small proteins. Chemokines exert their
functions through chemokines receptors that belong to the
superfamily of G-protein-coupled receptors. Chemokines
were first named according to their biological functions. Since
2000, chemokines were classified in 4 subfamilies based on
their structural shapes related to the number and spacing of
conserved cysteine residues at the N-terminal domain (CXC,
CC, CX3C and C) [12]. Chemokines bind to different receptors
and several distinct chemokines share common receptor.
Chemokines were first described to contribute to numerous
aspects of immune function as recruitment of immune cells
but they have also important roles in the CNS such as brain
development, neuroinflammation and neuroendocrine func-
tions [13]. CNS cells constitutively express chemokine re-
ceptors while chemokines are mainly produced during diverse
pathological states [14]. In this review, we did not detail re-
sults on the expression of chemokines and chemokines re-
ceptor in AD patients and AD models. In general, most of them
were overexpressed during the pathology with the exception
of CX3CL1/CX3CR1 [15], for review see Refs. [14,16]. We
preferred to focus on the molecular mechanisms triggered by
chemokines receptors activation that contribute to the
development of the disease.

Chemokines and animal models of Alzheimer's
disease

CX3CR1

In the CNS, microglia constitutively express the receptor
CX3CR1 and neurons its unique ligand CX3CL1 as a trans-
membrane protein. The interaction between CX3CL1 (also
named fractalkine) and CX3CR1 is important in neuronal-
microglial communication, throughout the life span, allowing
neurons to regulate microglia activation [17]. Microglia control
synaptic pruning during development, survey neuronal dam-
ages as well as sensing the presence of danger signals. CX3CL1
can be cleaved by a disintegrin and metalloprotease (ADAM10,
17) or a cysteine protease cathepsin S and subsequently in-
duces the recruitment of leucocytes expressing CX3CR1 from
the periphery, such as monocytes. In the CNS, CX3CL1/CX3CR1
signalling controls the production of growth factor and cyto-
kines, in particular IL-1f [18], microglial phagocytic activity but
also proliferation and survival of neural progenitor cells [17].
Globally, neuron controls microglial functions through this
interaction. On the other hand, disruption of CX3CL1/CX3CR1
pathway in physiological conditions leads to impairment of
hippocampal neuronal functions (reduction of adult hippo-
campal neurogenesis, impairment in long-term potentiation
(LTP), and deficits in contextual fear conditioning and Morris
water maze tests) suggesting a role in cognitive deficits present
in AD [19—-21]. In AD model, CX3CR1 & CX3CL1 have opposite
roles on the AB and Tau pathologies. Deletion of CX3CR1 en-
hances Tau phosphorylation and aggregation of hyper-
phosphorylated Tau that increase behavioral impairments in
the humanized Tau transgenic mice. The authors propose a
model where CX3CR1-defiency induces an increase of IL-1B
release that binds to IL1 receptor on neurons and activates the
p38 MAPkinase leading to hyperphosphorylation of Tau [22].
This result was confirmed in another Tau model of AD i.e. the
Tg4510 mice which express the human Tau containing the
P301L mutation [23]. Overexpression of soluble CX3CL1 using
adeno-associated viral vector (AAV) reduces Tau phosphory-
lation, microglia activation and neuronal loss observed in this
model.

In AB models of AD, the results are more divergent and can
be explained by the different animal models used. Overall, the
data suggest a protective effect of CX3CR1 deficit on AB lesions.
These studies were performed in three different Ap models of
AD: (1) TgCRNDS8 which expresses the human APP containing
KM670/671NL and V717F mutations; (2) the double transgenic
model APP/PS1 expressing the human APP containing K670M/
N671L mutations and PS1 harboring the L166P mutation; (3) the
R1.40 transgenic line which contains a yeast artificial chro-
mosome (YAC) expressing the human APP containing K670M/
N671L mutations. In these models, the introduction of CX3CR1
deficiency was shown to increase phagocytosis and reduce A
lesions [24,25]. In these studies, the memory deficits were not
assessed, thus the overall beneficial vs. pathological role of
CX3CL1/CX3CR1 on cognitive functions were not determined.
In contrast, using the J20 transgenic mouse model in which the
human APP containing KM670/671NL and V717F mutations are
expressed under the control of the PDGF-B promoter, Cho et al.
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Fig. 1 Roles of chemokines in AD disease. Lack of CX3CR1/CX3CL1 interaction induces the release of IL-1p that binds to IL-1
receptor and leads to hyperphosphorylation of Tau but also to phagocytosis of AB peptides. Ap peptides induce CXCL10 release
from glial cells; its binding to CXCR3 may in turn inhibit microglial phagocytosis. CCR2-expressing perivascular macrophages
contribute to clearance/transport of Ap peptides outside the brain. CCR3 activation by CCL11 contributes to the formation of AD
lesions via Tau phosphorylation and production of Ap peptides. CXCR2 activation also mediates the release of Ap peptides.

CCR5/CCL3 overexpression induces the recruitment of peripheral T cells and participates to neuronal damages.

did not observe any effects on AB load but an increase in
memory deficits associated with higher levels of phospho-Tau
[15]. CX3CR1-deficiency in APP/PS1 mice also induces hyper-
phosphorylation of Tau, thus the beneficial effect of CX3CR1
on Tau pathology could be predominant compared to the
detrimental effect on AB deposits [26]. These effects on the
levels of AB peptides and phospho-Tau were also observed in
APP/PS1 mice by knocking-out the ligand CX3CL1, confirming
the role of CX3CL1/CX3CR1 in AD model [26]. In the APP/PS1
model, the authors also determined the role of membrane-
anchored and soluble forms of CX3CL1. They introduced a
bacterial artificial chromosome (BAC) transgene encoding
truncated/soluble CX3CL1 into CX3CL1 knock-out mice.
Expression of soluble CX3CL1 does not compensate for lack of
CX3CL1 expression suggesting that the effects of CX3CL1
deficiency are mediated by the membrane anchored form in
ABmodel. In a different AD model, obtained by crossing Tg2576
mouse line and the mutant PSIM146L transgenic line, Nash
et al. also found no effect of overexpression of soluble CX3CL1
using a CX3CL1 expressing AAV on A lesions but a reduced
Tau pathology in the Tau model Tg4510 [23]. The validation of
the precise role of each form requires further experiments,
using transgenic mice expressing CX3CL1 mutated at the
(ADAM10/17) cleavage site as proposed by Lee et al. [26].

In contrast with these studies, Fuhrmann et al., using two-
photon microscopy, reported that CX3CR1 deficiency prevents

neuronal loss without affecting AB levels and Tau phosphor-
ylation [27]. Their observations contrary to previous studies
may be explained by their use of a very aggressive model of AD
characterized by high amounts of intracellular AB peptides.
Their experimental model consists in triple transgenic mice
expressing PS1 bearing the M146V mutation, APP containing
K670M/N671L mutations and Tau with P301L mutation [27].

In summary, the lack of CX3CL1/CX3CR1 interaction could
lead mainly to microglia activation, interleukin 1 release and
subsequent hyperphosphorylation of Tau via p38 MAPkinase
[22] while triggering phagocytosis of AB peptides (Fig. 1 &
Table 1).

CXCR2

CXCL1 and IL-8 are the main ligands for CXCR2 and are
expressed by immune and non immune cells.

In the CNS, CXCR2 was shown to play a major role in
migration of oligodendrocyte precursors during the devel-
opment of the spinal cord [28]. CXCR2 is expressed in the CA1
region of the hippocampus, which is involved in learning and
memory functions. Treatment of rat hippocampal slice with
IL-8 was shown to inhibit LTP and this inhibition was
reversed by preincubation with CXCR2 antibody suggesting a
role for this receptor in cognitive functions [29]. In vitro
treatment of cell lines with CXCR2 agonist, SB225002, leads to
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Table 1 Roles of chemokine receptors in biological functions involved in AD.

Effects on Receptor Biological and molecular consequences Refs
ApB levels CX3CR1 Inhibition of microglial phagocytosis of AB peptides [24,25]
CXCR2 Production of AB peptides [30,31]
CXCR3 Inhibition of microglial phagocytosis of Ap peptides [33]
CCR2 Clearance of AB peptides [37,40,43,44]
CCR3 Production of AB peptides [47]
Tau phosphorylation CX3CR1 Inhibition of hyperphosphorylation of Tau [15,22,23,26]
CCR3 Hyperphosphorylation of Tau [47]
Synaptic function CX3CR1 Regulation of cognitive function, loss of neurons [19—21,27]
CXCR2 Impairment of long-term potentiation [29]
CXCR3 Impairment of long-term potentiation [34]
CCR3 Loss of dendritic spines [47]
CCR5 Impairment of memory and synaptic plasticity [48,52,53]
Neuroinflammatory CX3CR1 Control of microglial activation and IL-1 release [22]
response CCR3 Microglial activation [47]
Cellular chemotaxis CXCR2 Recruitment of T-lymphocytes in the brain [32]
CCR2 Recruitment of perivascular macrophages [40]
CCR5 Recruitment of T-lymphocytes in the brain [49,50]

AB release and increased expression of y-secretase compo-
nents [30]. These results were confirmed in PS/APP mice, in
this model, CXCR2-deficiency reduces AP levels associated
with a lower expression of the y-secretase components
including presenilin [31]. Furthermore, intracerebral injec-
tion of AB peptides in rat or mouse was used to study the
pathogenesis of AD. In this model, AB peptides injection in-
duces the recruitment of peripheral pathogenic T cells and
the treatment of Ap-injected rat with the specific CXCR2
antagonist SB332235-Z significantly decreases the number of
T cells in the brain [32].

Thus, CXCR2 seems to be involved in cognitive dysfunction
associated with AD, AP peptides release through increased
expression of y-secretase complex and also in the AB-induced
recruitment of T cells in the brain (Fig. 1 & Table 1).

CXCR3

Different ligands, CXCL9, CXCL11 and CXCL10, bind to the re-
ceptor CXCR3. CXCR3isinvolved in differentimmune functions
such as leukocyte trafficking but is also expressed in neuronal
and glial cells suggesting a role in the CNS. The role of CXCR3
was investigated in the AD animal model APPswe/PSEN1dE9
which expresses PS1 gene deleted of exon 9 and the chimeric
human/mouse APP containing K670M/N671L mutations [33].
CXCR3-deficiency rescues the cognitive deficits and decreases
ABplaques and neuroinflammation. The authors demonstrated
that the reduced level of AB peptides associated with CXCR3-
deficiency can be attributed to increased microglial AB uptake
rather than alteration in APP processing as shown in vitro in
primary glial cells culture and in vivo in AD mouse model.
Furthermore, AB stimulation of primary culture of astrocytes
and microglia induces the release of CXCL10. Thus, this pro-
duction of CXCR3 ligands by glial cells may in turn inhibits
microglial phagocytosis leading to A accumulation (Fig. 1 &
Table 1). Furthermore, exposure of brain slice of wild-type mice
to the ligand CXCL10 inhibited LTP while no change is observed
in slice from CXCR3-deficient mice exposed to CXCL10
[34].These results suggest a direct involvement of CXCR3 li-
gands in cognitive impairments observed in AD model (Table 1).

CCR2

CCR2is activated by several chemokines (CCL2, 7, 8, 12, 13, 16),
CCL2 being the most potent one. In the CNS, CCL2 is mostly
produced by microglia and astrocytes during pathological
conditions [13]. In the brain, CCR2 is expressed by neurons,
astrocytes and infiltrating leukocytes but not by resident
microglia [35,36]. The main described function of CCL2 in
neurological disease is the recruitment of peripheral inflam-
matory monocytes expressing CCR2 at lesion sites. In 2007, El
Khoury et al. demonstrated that lack of CCR2 in the AD mouse
model Tg2576 (expressing human APP containing K670M/
N671L “Swedish” double mutation) accelerates disease pro-
gression with increased AB load and mortality [37]. In this
model, CCR2-deficiency impaired mononuclear phagocytes
accumulation that may lead to a decrease of AB phagocytosis.
In vitro experiments on peritoneal macrophages demonstrate
that the lack of CCR2 affects their ability to migrate suggesting
that in this AD model peripheral recruitment of macrophages
contributes to Ap clearance as was shown in a study using
bone marrow chimeric mice [38]. However, additional later
works using alternative strategies to follow peripheral mac-
rophages, have demonstrated that peripheral macrophages
engraftment in the brain does not occur in absence of total-
body irradiation in healthy and intact animals [39], these ob-
servations were also confirmed in AD model [40].

On the other hand, in bone marrow chimeric mice, graft of
CCR2—/— vs. CCR2+/+ cells into APPswe/PSEN1(A246E) double
transgenic mice which express chimeric mouse/human APP
containing KM670/671NL mutations and PS1 harboring A246E
mutation have shown that parenchymal macrophages
recruitment was dependent on CCR2 expression [40]. Moreover,
the beneficial effects of the graft on memory capacities rely on
CCR2 expression while the effect on AB level was not clearly
established [40,41]. Thus, the effects observed in CCR2-deficient
mice could not be attributed to peripheral macrophages infil-
tration in AD mouse model. Two studies reported that in
Tg2576 mice deficient in CCR2, AB peptides are principally
located in and around blood vessels [37,40] suggesting a role for
perivascular macrophages. In addition, Mildner et al. observed
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an increased number of perivascular macrophages containing
AP peptides in Tg2576xCCR2—/— mice. In favor of this hypoth-
esis, depletion of perivascular macrophages was shown to in-
crease AP deposits in cortical blood vessels in the mouse model
TgCRND8 while stimulation of these macrophages reduced Ap
load [42]. Furthermore, using head protected chimeric mice (to
protect CNS from irradiation), the authors could assess the role
of CCR2 expression in peripheral macrophages without
monocyte derived macrophages infiltrating the brain [40].
Thus, Mildner et al. demonstrated that perivascular macro-
phages through CCR2 expression modulate AB clearance/
transport [40]. It is worth noticing that the survival of
Tg2576xCCR2—/— mice was decreased compared to Tg2576
mice in both studies [37,40]. This increased mortality rate can
be explained by intracerebral hemorrhages due to accumula-
tion of AB deposits in blood vessels that ultimately lead to death
of AD mice. The role of CCR2/CCL2 was also confirmed in
different AD models. Using the APPswe/PSEN1(A246E) double
transgenics, Naert et al. found that CCR2-deficiency accelerates
the memory deficits and aggravates cognitive impairment [43].
Furthermore, they analyzed by western-blot various A species
and observed an increase in soluble AB peptides [43]. These
results are in agreement with the work of Kiyota et al. showing
that CCL2-deficiency also increases ABload and in particular AB
soluble peptides and accelerates memory impairment in
Tg2576 AD mice model [44]. Soluble AB peptides were shown to
present toxic properties [45] and their higher level in APP mice
deficient in CCR2 or CCL2 could explain the increase in cogni-
tive deficits observed in these AD models.

Overall, these studies suggest that CCR2-expressing peri-
vascular macrophages contribute to the clearance of Ap pep-
tides out of the brain, thus reducing the levels of soluble toxic
ApB peptides (Fig. 1 & Table 1).

CCR3

CCR3 is expressed by astrocytes, neurons and microglia in the
CNS. This receptor binds to several chemokines CCL5, 7, 11, 13,
26 and was notably described as a co-receptor for HIV entry in
microglia [46]. The interaction CCR3/CCL11 was explored in the
AD animal model APPswe/PSEN1dE9 [47]. Knocking-down of
CCR3 in this model rescues neuronal impairments i.e. loss of
dendritic spines and spatial memory deficits and reduces also
Tau phosphorylation and Ap load. In vitro studies showed that
CCL11 stimulation of hippocampal neurons induced hyper-
phosphorylation of Tau, production of AB peptides and den-
dritic spine losses and these effects were reversed by
treatment with the CCR3-specific antagonist GW766994. These
results indicate that CCR3 expression on neurons may
contribute to the development of AD brain lesions that leads to
cognitive deficits. However, CCR3 was shown to play also a role
in microglia activation and CCR3-deficiency in AD model leads
to reduced microgliosis. Thus, CCR3 may also be involved in
the innate immune response in this disease (Fig. 1 & Table 1).

CCR5
CCRS is another co-receptor used by HIV to infect host cells.

CCRS ligands are the chemokines CCL3, CCL4 and CCL5.
Intracerebral injection of AP peptides in rodent induces

memory deficits and glial cell activation. In this AD model,
CCL3 or CCR5-deficiency rescues the Ap-induced cognitive
impairments and decreases the inflammatory response [48].
These results suggest that CCR5/CCL3 pathway contributes to
pathological processes in AD model. Moreover, anti-CCL3
treatment blocks the recruitment of T cells in the brain of
intra-hippocampal AB-injected rat [49]. In this AD model, the
authors demonstrated that AB peptides induce the expression
of CCR5 by brain microvascular endothelial cells via the acti-
vation of the receptor for advanced glycation end products
that allows the migration of T cells through the blood brain
barrier [S50]. In addition using the AD model THY-Tau22
transgenic line in which the human Tau harboring the
G272V and P301L mutations are expressed, the authors found
that T cell infiltration in the hippocampus of transgenic mice
developing neurofibrillary tangles, was associated with
increased level of CCL3 and neuronal damages [50]. These
studies suggest that CCL3/CCR5 may play a role in AD through
pathogenic T cells recruitment [51]. However, glial cells and
neurons also express CCR5 suggesting that this receptor could
also play a central role in the brain. Intracerebroventricular
injection of CCL3 in mice induces synaptic plasticity and
spatial memory impairments and these effects were reversed
by the CCR5 antagonist, maraviroc [52]. Furthermore, CCR5-
deficiency results in enhanced learning and memory perfor-
mances in different cognitive tasks without affecting other
behavioral tasks, while transgenic mice overexpressing CCR5
in excitatory neurons show deficits in cognitive tasks [53].
Overall, these data indicate that CCR5 may play a role in
synaptic plasticity and memory. Thus, CCR5/CCL3 interaction
may participate to neurodegenerative processes in AD. How-
ever, the signaling pathways involved in these pathological
processes still need to be explored (Fig. 1 & Table 1).

Conclusion

In this review, we have analyzed the scientific literature
showing that chemokines and their receptors play a major role
in AD with various functions in inflammatory and neurode-
generative processes. Several studies have highlighted the
involvement of chemokines in the regulation of cognitive
functions. A better understanding of underlying pathways
could help identify new pathogenic mechanisms involved in
AD. In addition, chemokines contribute to the development of
AB lesions by inducing the production of AB peptides (CXCR2,
CCR3) but also regulate Ap peptides clearance (CX3CR1, CXCR3,
CCR2) (Fig. 1 & Table 1). On the other hand, chemokines receptor
activationis involved in phosphorylation of Tau (CX3CR1, CCR3)
(Fig. 1 & Table 1). The spatiotemporal progression of Tau pa-
thology relies more on cognitive symptoms observed in AD than
AB lesions [54—56]. Given that chemokines can have opposite
effects on both lesions (CX3CR1), there is a crucial need to
determine the roles of chemokines on Tau phosphorylation to
identify chemokine receptors as important therapeutic targets
in AD. Validation of beneficial effects of chemokine inhibitors in
preclinical studies would be particularly useful because several
chemokine-targeted drugs, which have been developed already
to treat HIV infection [57], as well as inflammatory or autoim-
mune diseases, could be applied to AD.
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