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Abstract: A green, convenient and tandem procedure for the efficient synthesis of highly substituted
indeno[1,2-b]pyrrole and acenaphtho[1,2-b]pyrrole derivatives by domino three-component reaction
of tryptamine/benzylamine, 1,3-dicarbonyl compounds and ninhydrin/ acenaphthenequinone is
described. The significant features of this procedure were characterized by mild reaction conditions,
high yields, operational simplicity and it being environmentally benign.

Keywords: multi-component reactions; indeno[1,2-b]pyrroles; acenaphtho[1,2-b]pyrroles

1. Introduction

Polysubstituted pyrroles are widely employed as versatile building blocks in synthetic organic
chemistry [1–4] because of their presence in numerous natural products and drug molecules, and
because they exhibit different pharmacological applications including anti-tuberculosis, anti-oxidation,
antibacterial, anti-inflammatory, and antitumor properties, among others [5–7]. Among them,
indeno[1,2-b]pyrroles (Figure 1A,B) are heterocycles of great importance because they can be used as
antiviral agents, insecticides, herbicides and human protein kinase CK2 inhibitors [8–10]. Moreover,
acenaphtho[1,2-b]pyrroles (Figure 1C), as important polycyclic fused compounds, can also be employed
as potent and selective inhibitors of fibroblast growth factor receptor 1 (FGFR-1), novel Bcl-2 inhibitors,
and as a valuable Mcl-1 inhibitor [11–14].
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The development of the design and synthesis of diverse heterocyclic compounds with valuable
medicinal and biological applications is highly desirable in current organic and medicinal chemistry
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research [15–18]. Multi-component reactions (MCRs), which involve the rapid combination of three
or more simple reactants in a one-pot sequential process and produce the final product containing a
substructure of all starting materials, play an important role in the synthesis of complex and diverse
molecules [19–21]. MCRs have attracted much attention for the construction of bioactive heterocyclic
compounds, due to their high productivity, facile execution, convergence, low costs, minimal waste
production and structural diversity [22–28].

Considering the importance of indeno[1,2-b]pyrrole and acenaphtho[1,2-b]pyrrole derivatives
and in continuation of our research on multi-component reactions [29–32], herein we report
a three-component reaction of ninhydrin/acenaphthenequinone, 1,3-dicarbonyl compounds and
tryptamine/benzylamine, which is an efficient and straightforward protocol for the synthesis of a
serial of highly substituted indeno[1,2-b]pyrrole and acenaphtho[1,2-b]pyrrole derivatives.

2. Results and Discussion

Initially, we carried out the one-pot, three-component reaction of ninhydrin 1, methyl acetoacetate
2, and tryptamine 3 as a model reaction to establish the feasibility of the strategy and optimize reaction
conditions (Scheme 1). The reaction was examined in different solvents including methanol, ethanol,
chloroform, acetonitrile, toluene and water. As shown in Table 1, using ethanol as the solvent provided
the highest yield (Table 1, Entry 7). Furthermore, the reaction was carried out at different temperatures,
ranging from room temperature to refluxing. It can be seen from Table 1 that temperature had no
remarkable effect on this reaction. Therefore, using ethanol as the solvent, and carrying out the reaction
at room temperature, were chosen as optimal conditions for all further reactions.
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Table 1. Optimizing the reaction solvent for the synthesis of 4a.

Entry Solvent Temp (◦C) Time (h) Yield (%) a

1 Methanol r.t. 3 57
2 Chloroform r.t. 3 40
3 Acetonitrile r.t. 3 45
4 Toluene r.t. 3 35
5 Water r.t. 3 31
7 Ethanol r.t. 3 85
8 Ethanol 40 3 83
9 Ethanol reflux 3 84

a Isolated yield.

With optimum conditions determined, we explored the model reaction using different
1,3-dicarbonyl compounds with ninhydrin and tryptamine (Scheme 2). As shown in Table 2, the
reaction performed smoothly in 2.5–3.5 h, with excellent yields of 84–94%. In order to expand the scope
of this protocol, ninhydrin was replaced by acenaphthenequinone to react with different 1,3-dicarbonyl
compounds and tryptamine (Scheme 3). To our delight, a new series of acenaphtho[1,2-b]pyrrole
derivatives were obtained easily with satisfactory yields (Table 3).
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Table 4. The synthesis of compounds 8.

Entry Product Structure Time (h) Yield (%) a m.p./(◦C)
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A reasonable mechanism of the reaction is given in Scheme 5. Initially, the reaction between
acetoacetate 2 and tryptamine 3 is to give intermediate enamine 9, which further undergoes
the nucleophilic addition with the carbonyl in ninhydrin 1 to afford the intermediate 10. After
isomerization of 10 to the aminol intermediate 11, the subsequent intermolecular N-cyclization afforded
the target product 4.

To verify this conversion, we carried out the model reaction with three reactants mixed
simultaneously in ethanol solvent at room temperature. The target product was also formed, although
only a 53% yield of 4a was obtained. When acetoacetate 2 and tryptamine 3 were pre-stirred and
ninhydrin 1 was added subsequently under one-pot reaction conditions without any separation, the
purpose product was obtained with a satisfactory yield of 85%. Therefore, this three-component
reaction might be accomplished by a tandem sequential procedure, which the first condensation
of 1,3-dicarbonyl compound and amine to afford intermediate enamine may facilitate to achieve
better results.
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3. Materials and Methods

3.1. General Information

Melting points were recorded on an Electrothermal digital melting point apparatus (Donghua,
Shanghai, China) and were uncorrected. IR Spectra were recorded on a Nicolet FT-IR500
spectrophotometer (Madison, WI, USA) using KBr optics. 1H-NMR and 13C-NMR spectra were
recorded on a JMTC-400/54/SS spectrometer (JEOL Ltd., Tokyo, Japan) using DMSO-d6 as solvent and
TMS as internal standard. HRMS analyses were conducted on a Bruker micro-TOF-Q-MS analyzer
(Bruker Daltonics, Bremen, Germany). X-Ray diffraction data were made on a Rigaku Mercury CCD
area detector with graphite monochromated Mo-Ka radiation (Rigaku, Tokyo, Japan).

3.2. General Procedure for the Synthesis of Compounds 4, 6 and 8

A mixture of an equimolar amount of 1,3-dicarbonyl compound 2 (0.5 mmol) and tryptamine 3
(0.5 mmol) or benzylamine 7 (0.5 mmol) were stirred in ethanol at room temperature for 1 h. Ninhydrin
1 (0.5 mmol) or Acenaphthenequinone 5 (0.5 mmol) was then added to the solution and stirred at
room temperature for 1.5–2 h. Completion of the reaction was monitored with TLC. The mixture was
poured into cold water. The precipitate was filtered and washed with EtOH (95%). The precipitate was
purified by recrystallization from EtOH to give the products 4, 6 and 8, respectively.

Methyl 1-(2-(1H-indol-3-yl)ethyl)-3a,8b-dihydroxy-2-methyl-4-oxo-1,3a,4,8b-tetrahydroindeno[1,2-b]pyrrole-3-
carboxylate (4a), yellow soild; m.p. 149–151 ◦C; IR (cm−1): 744, 1194, 1356, 1437, 1551, 1655, 1717, 3410;
1H-NMR (400 MHz, DMSO-d6; δ, ppm): 2.22 (s, 3H, CH3), 2.92–3.00 (m, 1H, CH), 3.14–3.21 (m, 1H,
CH), 3.55 (s, 3H, OCH3), 3.72–3.80 (m, 1H, CH), 3.98–4.06 (m, 1H, CH), 5.67 (s, 1H, OH), 6.77 (s, 1H,
OH), 7.02 (t, J = 8.0 Hz, 1H, ArH), 7.10 (t, J = 8.0 Hz, 1H, ArH), 7.29 (s, 1H, ArH), 7.37 (d, J = 8.0 Hz,
1H, ArH), 7.56 (t, J = 8.0 Hz, 1H, ArH), 7.63 (d, J = 8.0 Hz, 1H, ArH), 7.70–7.77 (m, 2H, ArH), 7.89 (d,
J = 8.0 Hz, 1H, ArH), 10.92 (s, 1H, NH); 13C-NMR (100 MHz, DMSO-d6; δ, ppm): 13.16, 27.45, 43.10,
50.15, 84.97, 94.74, 95.15, 111.74, 111.99, 118.86, 118.97, 121.56, 123.50, 123.72, 124.96, 127.62, 130.64,
135.51, 136.01, 136.73, 148.68, 160.53, 166.27, 198.83. HRMS calcd. for C24H22N2O5 [M + H]+: 418.1529,
found: 418.1545.

Methyl 7-(2-(1H-indol-3-yl)ethyl)-6b,9a-dihydroxy-8-methyl-6b,9a-dihydro-7H-acenaphtho-[1,2-b]pyrrole-9-
carboxylate (6a), white soild; m.p. 161–163 ◦C; IR (cm−1): 746, 787, 833, 1003, 1080, 1198, 1383, 1439,
1560, 1637, 3421; 1H-NMR (400 MHz, DMSO-d6; δ, ppm): 2.19 (s, 3H, CH3), 2.84–2.91 (m, 1H, CH),
3.06–3.13 (m, 1H, CH), 3.66 (s, 3H, CH3), 3.70–3.76 (m, 2H, CH2), 5.51 (s, 1H, OH), 6.49 (s, 1H, OH),
6.99 (t, J = 8.0 Hz, 1H, ArH), 7.07 (t, J = 8.0 Hz, 1H, ArH), 7.25 (s, 1H, ArH), 7.34 (d, J = 8.0 Hz, 1H,
ArH), 7.52–7.62 (m, 4H, ArH), 7.70 (d, J = 8.0 Hz, 1H, ArH), 7.76–7.82 (m, 2H, ArH), 10.90 (s, 1H,
NH); 13C-NMR (100 MHz, DMSO-d6; δ, ppm): 13.05, 19.11, 27.00, 43.19, 50.08, 56.58, 87.65, 99.60,
100.90, 111.96, 112.03, 118.75, 118.86, 119.60, 121.57, 123.58, 123.85, 125.27, 127.62, 128.27, 129.10, 131.30,
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136.45, 136.75, 142.28, 145.98, 160.48, 166.46. HRMS calcd. for C27H24N2O4 [M + H]+: 440.1736, found:
440.1745.

Methyl 1-benzyl-3a,8b-dihydroxy-2-methyl-4-oxo-1,3a,4,8b-tetrahydroindeno [1,2-b]pyrrole-3-carboxylate (8a),
white soild; m.p. 154–156 ◦C; IR (cm−1): 784, 823, 1101, 1296, 1427, 1562, 1635, 1721, 3398; 1H-NMR
(400 MHz, DMSO-d6; δ, ppm): 1.93 (s, 3H, CH3), 3.50 (s, 3H, CH3), 4.75 (d, J = 16.0 Hz, 1H, CH), 5.12 (d,
J = 16.0 Hz, 1H, CH), 5.70 (s, 1H, OH), 6.79 (s, 1H, OH), 7.19–7.29 (m, 5H, ArH), 7.53 (t, J = 8.0 Hz, 1H,
ArH), 7.65–7.70(m, 2H, ArH), 7.77 (d, J = 8.0 Hz, 1H, ArH); 13C-NMR (100 MHz, DMSO-d6; δ, ppm):
13.65, 45.38, 50.20, 85.04, 94.63, 95.59, 123.46, 125.27, 127.23, 127.37, 128.84, 130.65, 135.49, 135.86, 139.40,
148.54, 160.86, 166.19, 198.81. HRMS calcd. for C21H19NO5 [M + H]+: 365.1263, found: 365.1279.

4. Conclusions

In summary, we have developed a convenient three-component reaction for the preparation of
some highly substituted indeno[1,2-b]pyrrole and acenaphtho[1,2-b]pyrrole derivatives in high yields.
This protocol offers several advantages such as easy work-up, mild reaction times, as well as readily
available starting materials, which makes it a useful and attractive process for the synthesis of the
biologically important polysubstituted pyrroles.

Supplementary Materials: Supplementary data associated with this article are available online.
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