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Abstract
Introduction:	Autism	spectrum	disorder	 (ASD)	 is	mainly	characterized	by	 functional	
and communication impairments as well as restrictive and repetitive behavior. The 
leading hypothesis for the neural basis of autism postulates globally abnormal brain 
connectivity,	 which	 can	 be	 assessed	 using	 functional	 magnetic	 resonance	 imaging	
(fMRI).	Even	in	the	absence	of	a	task,	the	brain	exhibits	a	high	degree	of	functional	
connectivity,	known	as	intrinsic,	or	resting-	state,	connectivity.	Global	default	connec-
tivity	in	individuals	with	autism	versus	controls	is	not	well	characterized,	especially	for	
a	high-	functioning	young	population.	The	aim	of	this	study	 is	to	test	whether	high-	
functioning	 adolescents	with	ASD	 (HFA)	 have	 an	 abnormal	 resting-	state	 functional	
connectivity.
Materials and Methods:	We	performed	spatial	and	temporal	analyses	on	resting-	state	
networks	(RSNs)	in	13	HFA	adolescents	and	13	IQ-		and	age-	matched	controls.	For	the	
spatial	 analysis,	we	used	probabilistic	 independent	 component	 analysis	 (ICA)	 and	 a	
permutation	statistical	method	to	reveal	the	RSN	differences	between	the	groups.	For	
the	 temporal	 analysis,	we	applied	Granger	 causality	 to	 find	differences	 in	 temporal	
neurodynamics.
Results:	Controls	and	HFA	display	very	similar	patterns	and	strengths	of	resting-	state	
connectivity.	We	do	not	 find	 any	 significant	differences	between	HFA	adolescents	
and	controls	 in	 the	spatial	 resting-	state	connectivity.	However,	 in	 the	 temporal	dy-
namics	of	this	connectivity,	we	did	find	differences	in	the	causal	effect	properties	of	
RSNs	originating	in	temporal	and	prefrontal	cortices.
Conclusion:	The	results	show	a	difference	between	HFA	and	controls	in	the	temporal	
neurodynamics	from	the	ventral	attention	network	to	the	salience-	executive	network:	
a	pathway	involving	cognitive,	executive,	and	emotion-	related	cortices.	We	hypothe-
sized	 that	 this	weaker	 dynamic	 pathway	 is	 due	 to	 a	 subtle	 trigger	 challenging	 the	
 cognitive state prior to the resting state.
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1  | INTRODUCTION

Autism	 spectrum	 disorder	 (ASD)	 is	 a	 heterogeneous	 neurodevelop-
mental	 disorder,	which	 is	 characterized	 by	 persistent	 deficits	 in	 so-
cial	 communication	 and	 social	 interaction	 across	 multiple	 contexts	
and	 restricted,	 repetitive	 patterns	 of	 behavior,	 interest,	 or	 activities	
(DSM–V).	Although	 not	 part	 of	 the	 diagnostic	 classification	 and	 not	
formal	subcategories	of	ASD,	a	distinction	is	also	often	made	between	
low-	functioning	autism	(LFA)	and	high-	functioning	autism	(HFA).	No	
consensus	criteria	regarding	LFA	and	HFA	exist,	but	high-	functioning	
individuals	with	 autism	 tend	 to	have	a	 “normal”	 IQ	 (Barendse	et	al.,	
2013).	Recently,	increasing	interest	has	been	focused	on	abnormalities	
in	 (functional)organization	of	specific	brain	 regions,	or	networks,	 re-
lated	to	cognitive	functions	such	as	working	memory,	executive	func-
tion,	visual	attention,	and	language	processing	(Anderson	et	al.,	2011;	
Cherkassky,	Kana,	Keller,	&	Just,	2006).	Many	task-	based	fMRI	studies	
report	that	ASD	is	associated	with	either	weaker	or	stronger	connec-
tivity	 between	 various	 structures	 (Monk,	 Peltier,	Wiggins,	 &	Weng,	
2009).	However,	focusing	on	the	“resting-	state”	(i.e.,	task	free)	in	fMRI	
provides	a	different	domain	to	measure	cortical	synchronization	pat-
terns.	 Indeed,	 in	the	past	decade,	functional	connectivity	of	resting-	
state	fMRI	data	is	rapidly	emerging	as	a	highly	efficient	and	powerful	
tool	 for	 in	vivo	mapping	of	neural	circuitry	 in	 the	human	brain	 (Zuo	
et	al.,	2010).	Thus	far,	resting-	state	functional	connectivity	MRI	stud-
ies	in	autism	provide	inconsistent	results,	that	is,	showing	either	under-		
or	hyperconnectivity	in	similar	investigated	brain	regions	(Monk	et	al.,	
2009;	Müller	et	al.,	2011;	Rane	et	al.,	2015;	Uddin,	Supekar,	Menon,	
Hutchison,	 &	 Williams,	 2013).	 But	 those	 studies	 mainly	 assessed	
within-	network	connectivity,	 that	 is,	between	hubs/ROIs	connectiv-
ity.	And	evidence	shows	that	for	adolescents	and	adults,	the	impaired	
connectivity	 is	 to	be	 found	between,	 rather	 than	within,	 large-	scale	
networks	(Bos	et	al.,	2014;	Nomi	&	Uddin,	2015;	Redcay	et	al.,	2013;	
Tyszka,	Kennedy,	Paul,	&	Adolphs,	2014).	To	extract	those	large-	scale	
resting-	state	 networks	 and	 their	 associated	 time	 series,	 neuroimag-
ing researchers have adopted a multivariate signal processing method 
known	 as	 independent	 component	 analysis	 (ICA).	 This	 data-	driven	
method	needs	no	a	priori	on	the	measured	signals,	and	hence,	really	
suitable	for	resting-	state	analysis	(Beckmann,	DeLuca,	Devlin,	&	Smith,	
2005;	Thomas,	Harshman,	&	Menon,	2002).	Although	ICA	can	provide	
spatial and temporal information about anatomical regions that show 
similar	functional	connectivity,	it	does	not	reveal	causal	relationships	
between	 components,	 that	 is,	 the	 effectiveness—directionality	 and	
strength—of	the	connectivity	(Deshpande,	LaConte,	James,	Peltier,	&	
Hu,	2009;	Liao	et	al.,	2010).	And	recent	evidence	suggests	that	not	the	
topology	(structural	and	functional	maps),	but	rather	the	dynamics	of	
the	network	can	better	describe	the	disorder	(Chen,	Cai,	Ryali,	Supekar,	
&	Menon,	2016;	Deshpande,	Libero,	Sreenivasan,	Deshpande,	&	Kana,	

2013;	 Hanson,	 Hanson,	 Ramsey,	 &	 Glymour,	 2013;	 Kana,	 Uddin,	
Kenet,	Chugani,	&	Müller,	2014;	Wicker	et	al.,	2008).	Hence,	we	also	
extract	causality	measures,	which	we	call	“temporal	neurodynamics”	in	
this	paper,	to	represent	temporal	causal	effect	dependencies	between	
RSNs.	Temporal	neurodynamics	can	be	visualized	using	the	Wiener–
Granger	causality	test	(Bressler	&	Seth,	2011;	Granger,	1969)	and	its	
derived causality magnitude F	 upon	 two	 brain	 signals	 (time	 series).	
Here,	 the	 time	 series	 represent	 the	RSN	 low-	frequency	oscillations,	
extracted	from	ICA.	Therefore,	in	this	study,	we	focus	on	large-	scale	
networks,	their	shape	and	strength	(within-	network	spatial	connectiv-
ity),	and	their	effective	connectivity	with	other	 large-	scale	networks	
(between-	network	 neurodynamics).	 Regarding	 the	 potentially	 im-
paired	networks,	we	also	focus	only	on	networks	 involving	saliency,	
executive	function,	ventral	attention	network,	and	the	default	mode	
network,	as	those	well-	known	networks	have	shown	atypical	connec-
tivity	within	and	between	networks	(Anderson,	Ferguson,	&	Nielsen,	
2013;	Keown	et	al.,	2017;	Nomi	&	Uddin,	2015).

Finally,	we	also	test,	using	two	resting-	state	scans	(rs-	scan	1	and	2)	
and	a	1-	back	visual	task-	based	fMRI	in-	between,	the	hypothesis	that	
a	task-	based	fMRI	scan	prior	to	a	resting-	state	scan	session	influences	
the	post-	task	resting-	state	connectivity	(Barttfeld	et	al.,	2012;	Hassan	
Saleh,	2011).	Indeed	we	could	expect	a	change	in	neurodynamics,	and	
brain	flexibility,	after	a	cognitively	demanding	task	in	ASD,	while	con-
trols would recover faster and should show none or less significant 
between-	resting-	state	 scans	 changes.	Therefore,	 not	 only	 between-	
group	 difference	 is	 analyzed,	 but	 also	 the	 between-	scan	 (recovery)	
effects	(within	the	groups).

Differences	between	HFA	and	controls	may	be	present	in	the	com-
position	of	 the	 spatial	network	organization	 (connectivity)	 and/or	 in	
the	temporal	neurodynamics	(causal	effect).

2  | MATERIALS AND METHODS

2.1 | Participants

Thirteen	adolescents	with	ASD	and	13	age-		and	 IQ-	matched	con-
trols	 participated	 in	 this	 study.	 All	 participants	were	 between	 12	
and	 18	years	 old.	 Individuals	 with	 ASD	 were	 recruited	 from	 De	
Berkenschutse,	a	special	secondary	education	school	in	Heeze	(the	
Netherlands).	 All	 adolescents	 in	 the	 control	 group	were	 recruited	
through	an	advertisement	in	a	(local)	newspaper	and	visited	regular	
secondary	 schools	 in	 various	 regions	 of	 the	Netherlands.	Written	
informed	consent	was	also	obtained	from	the	next	of	kin,	caretak-
ers,	or	guardians	on	behalf	of	the	adolescents	enrolled	in	this	study.	
Inclusion	 criteria	 for	 the	 adolescents	 with	 HFA	 were	 established	
diagnostic criteria according to the DSM–IV,	as	well	as	 the	autism	
algorithm	cut-	offs	on	the	Autism	Diagnostic	Observation	Schedule	
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(ADOS)	 (Barendse	et	al.,	2013;	de	Bildt	et	al.,	2009).	 Inclusion	cri-
terion for the control group was no history of psychiatric illness. 
Adolescents	in	the	control	group	were	excluded	if	they	and/or	one	
of	 their	 siblings	 and/or	 parent(s)	 had	 a	 diagnosis	 of	ASD.	 Further	
exclusion	 criteria	 for	 both	 groups	 were	 a	 comorbid	 psychiatric	
disorder,	a	 significant	hearing	or	visual	 impairment,	an	 inability	 to	
speak/understand	 the	Dutch	 language,	 and/or	a	comorbid	central	
neurologic or other somatic disorder.

Table	1	shows	the	means	and	standard	deviations	(SD)	of	the	ages	
in	months	and	the	Wechsler	scores:	the	verbal	comprehension	index	
(VCI),	perceptual	organization	index	(POI),	freedom	from	distractibility	
index	(FDI),	and	full-	scale	intelligence	quotient	(FSIQ).	Using	the	anal-
ysis	of	variance	(ANOVA)	statistical	method,	we	assessed	the	differ-
ences	in	the	conditions	(intelligence	scores)	of	both	groups.

The	 study	 protocol	 was	 approved	 by	 the	 Medical	 Ethical	
Commission	of	the	Maastricht	University	Medical	Center.

2.2 | Image acquisitions

MRI	 was	 performed	 on	 a	 3.0-	Tesla	 unit	 (Philips	 Achieva)	 equipped	
with	 an	 8-	channel	 receiver-	only	 head	 coil.	 For	 anatomical	 reference,	
a	T1-	weighted	3D	fast	(spoiled)	gradient	echo	sequence	was	acquired	
with	 the	 following	 parameters:	 repetition	 time	 (TR)	 8.2	ms,	 echo	
time	(TE)	3.7	ms,	inversion	time	(TI)	1,022	ms,	flip	angle	8°,	voxel	size	
1 × 1 × 1 mm3,	 field	 of	 view	 (FOV)	 240	×	240	mm2,	 150	 transverse	
slices.	Then,	 resting-	state	 fMRI	 data	were	 acquired	 using	 the	whole-	
brain	single-	shot	multislice	BOLD	echoplanar	 imaging	 (EPI)	sequence,	
with	TR	2	s,	TE	35	ms,	flip	angle	90°,	voxel	size	2	×	2	×	4	mm3,	matrix	
128	×	128,	32	contiguous	 transverse	slices	per	volume,	and	210	vol-
umes	per	acquisition;	resulting	in	total	resting-	state	acquisition	of	7	min.

The	resting-	state	scans	were	performed	twice	with	an	8-	min	last-
ing	 1-	back	 test	 for	 working	 memory	 assessment	 in-	between.	 This	

1-	back	test	was	performed	to	assess	the	working	memory	processes.	
For	this	memory	task,	pictures	of	houses	or	faces	(neutral	and	smiling	
faces)	were	displayed	randomly	at	regular	intervals.	Then,	patients	and	
controls	were	asked	to	 indicate	when	the	current	stimulus	 (pictures)	
matched	the	previous	picture	(Koshino	et	al.,	2008);	for	more	details	
on	the	1-	back	task,	see	Supporting	Information	SI2.	For	both	resting-	
state	scans,	participants	were	instructed	to	lie	with	their	eyes	closed,	
and to think of nothing but not to fall asleep.

2.3 | Data preprocessing

Data	 analysis	 was	 carried	 out	 using	 FMRIB	 Software	 Library	 (FSL;	
www.fmrib.ox.ac.uk/fsl).	The	following	preprocessing	was	applied	(van	
der	Kruijs	et	al.,	2014):	discard	of	the	first	3	volumes	(=6	s)	allowing	
the	magnetization	to	reach	equilibrium;	rigid-	body	motion	correction	
(Jenkinson,	Bannister,	Brady,	&	Smith,	2002);	nonbrain	tissue	removal;	
slice-	timing	 correction;	 registration	 to	 the	 Montreal	 Neurological	
Institute	 (MNI)	 standard	 space	 (2	mm	 isotropic);	 spatial	 smooth-
ing	 using	 a	 Gaussian	 kernel	 of	 4.0	mm	 full	 width	 at	 half-	maximum	
(FWHM);	grand-	mean	intensity	normalization;	and	high-	pass	temporal	
filtering	at	100	s	(0.01	Hz).	After	these	preprocessing	steps,	one	autis-
tic subject and the second scan of a control participant were rejected 
because	 of	 a	 too	 large	 head	motion:	 absolute	 displacement	 (mean)	
>1	mm	with	a	maximal	relative	displacement	(between	two	consecu-
tive	slice)	>3	mm.	Also,	we	reported	the	average	framewise	displace-
ment	(FD)	in	mm	for	each	group	and	rs-	scan	in	Table	1.

2.4 | Group independent component analysis

A	 single	 group-	level	 ICA	was	 performed	 across	 all	 subjects	 and	 all	
scans	 from	 both	 HFA	 and	 control	 groups	 using	 probabilistic	 ICA	
as	 implemented	 in	 FSL	 multivariate	 exploratory	 linear	 optimized	

Measure
ASD 
M (SD)

Controls 
M (SD)

Difference 
F(1, 24) p*

Gender 12	male,	1	female 12	male,	1	female — —

Age	(years) 15.3	(1.2) 14.5	(1.3) 2.89 .102

Verbal	comprehension	index 117.1	(9.0) 117	(10.4) 0.00 .968

Perceptual	organization	
index

114.0	(5.8) 109.1	(7.8) 4.85 .038

Freedom	from	distractibility	
index

99.5	(14.5) 101.9	(14.6) 0.19 .670

Full-	scale	IQ 116.7	(5.0) 113.2	(7.8) 1.92 .179

Autism	Diagnostic	
Observation	Schedulea 
(number	of	patients)

2	(6) 
1	(5) 
0	(2)

0	(13) — —

Framewise	displacement	(mm)

Scan 1 0.089	(0.043) 0.092	(0.034) 0.063 .80

Scan 2 0.082	(0.034) 0.079	(0.033) 0.033 .86

a2	=	autistic	disorder,	1	=	ASD,	and	0	=	no	diagnosis	according	to	ADOS.
*A	p < 0.05	means	that	a	score	or	a	characteristic	(rows	of	the	table)	differs	significantly	between	the	
two cohorts.

TABLE  1 Demographic and descriptive 
data	of	ASD	and	control	adolescents

http://www.fmrib.ox.ac.uk/fsl
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decomposition	 into	 independent	components	 (MELODIC).	First,	 the	
previously preprocessed 4D dataset was temporally transformed 
by	concatenation	 into	a	single	 time	series.	This	new	4D	 image	was,	
then,	 separated	 into	 34	 independent	 components	 (ICs).	 The	 num-
ber of components was arbitrarily set to 34 as it seems to be a good 
trade-	off	to	get	a	sufficient	number	of	relevant	networks	(around	ten),	
without	 splitting	 them	 into	 subcomponents	 (Wang	 et	al.,	 2011).	 To	
obtain	the	components,	group	probabilistic	ICA	processing	steps	were	
applied to the temporally concatenated 4D image: masking out non-
brain	voxels,	voxel-	wise	demeaning	of	the	data,	and	normalization	of	
the	voxel-	wise	variance.	Subsequently,	 the	preprocessed	data	were	
projected	into	a	34-	dimensional	subspace	using	probabilistic	principal	
component analysis. Then these observations were decomposed into 
sets of vectors which describe signal variations across the temporal 
domain	 (time	 courses),	 the	 session/subject	 domain,	 and	 the	 spatial	
domain	(maps)	by	optimizing	for	non-	Gaussian	spatial	source	distribu-
tions	using	a	 fixed-	point	 iteration	 technique	 (Hyvärinen,	1999).	The	
resulting estimated component maps were divided by the standard 
deviation of the residual noise and threshold at a posteriori probability 
threshold of p > .5	(i.e.,	an	equal	loss	is	placed	on	false	positives	and	
false	 negatives)	 by	 fitting	 a	Gaussian/gamma	mixture	model	 to	 the	
histogram	of	intensity	values	(Beckmann	et	al.,	2005).

2.5 | Resting- state networks selection

The	most	relevant	group-	level	IC	maps	(of	34)	were	selected	according	
to	the	following	three	steps.	First,	group-	level	IC	maps	with	more	than	
33%	of	 the	 estimated	 spectral	 power	 in	 high	 frequencies	 (>0.1	Hz)	
were	excluded	to	keep	only	networks	within	the	low-	frequency	range	
of	0.1–0.01	Hz	(Lowe,	Mock,	&	Sorenson,	1998;	Tyszka	et	al.,	2014).	
Second,	Smith	et	al.	 (2009)	described	the	major	covarying	networks	
in	the	resting	brain	and	created	a	template	of	these	RSNs	widely	used	
in	 resting-	state	 fMRI	 studies.	With	 this	 template	and	our	 remaining	
group	 maps,	 a	 function,	 using	 the	 “goodness-	of-	fit”	 approach	 was	
created	 and	 applied	 (Greicius,	 Srivastava,	 Reiss,	 &	 Menon,	 2004;	
Vanhaudenhuyse	 et	al.,	 2010).	 Finally,	 the	 third	 step	 consisted	 in	 a	
visual inspection of each component spatial profile to verify the con-
sistency	and	ensure	the	effectiveness	of	the	two	previous	steps.	Plus,	
this	last	step	allows	us	to	select	other	known	and	well-	described	net-
works	that	are	not	in	Smith	and	colleagues’	template,	but	still	comply	
with first selection step.

2.6 | Spatial RSN analysis between groups

The	first	level	of	the	voxel-	wise	group	analysis	was	performed	using	
dual-	regression	(Beckmann,	Mackay,	Filippini,	&	Smith,	2009).	The	
aim	of	 this	process	 is	 to	obtain,	 from	the	group	 IC	maps,	 subject-	
specific	IC	maps.	Dual-	regression	involves	two	general	linear	mod-
els	(GLM).	First,	the	group	IC	maps	were	used	as	spatial	regressors	
against	 the	 preprocessed	 individual	 fMRI	 scans.	 This	 results	 in	
single-	subject	 time	courses	 for	each	component	 separately.	Then,	
these	 time	 courses	were	normalized	 to	unit	 variance	 to	 test	both	
the	“shape”	and	“amplitude”	of	the	RSN.	In	the	second	GLM,	these	

normalized	 individual	 time	courses	were	used	as	 temporal	 regres-
sors	 against	 the	 preprocessed	 individual	 fMRI	 images,	 leading	 to	
subject-	specific	IC	maps	for	each	subject’s	scan.	As	there	were	two	
subject-	specific	 spatial	 maps	 per	 IC	 for	 each	 individuals	 (one	 per	
scan),	before	running	final	group-	level	analysis,	we	merged	and	av-
eraged	these	two	IC	maps	per	subject.	We	also	compared	the	two	
groups	 for	each	 scan	 separately,	 that	 is,	without	 the	merging	and	
averaging	of	the	RSN	maps,	as	explained	below.

The second level of the group analysis consisted in getting the 
effects	of	within-	group	means	(control	group	average	>0;	HFA	group	
average>0)	 and	 between-	group	 differences	 (HFA	> control; con-
trol > HFA).	This	was	assessed	using	nonparametric	permutation	test-
ing	(5000	permutations),	with	FSL’s	randomize	tool	(Nichols	&	Holmes,	
2002).	For	each	RSN,	the	resulting	statistical	maps	were	threshold	at	
p < .05,	 family-	wise	 error	 (FWE)	 corrected	 with	 the	 threshold-	free	
cluster	 enhancer	 (TFCE)	 technique	 (Smith	&	Nichols,	 2009).	 Finally,	
nuisance	regressors	describing	age,	 IQ,	and	relative	gray	matter	vol-
ume	were	 added	 to	 the	model	 in	 a	 second	 experiment,	 to	 observe	
their	possible	effects	on	the	between-	group	contrast	maps.

2.7 | Temporal dynamics of RSNs

The	statistical	Granger	causality	(G-	causality)	allows	us	to	assess	cau-
sality	among	two	signals.	One	signal	Y	is	said	to	Granger	cause	another	
signal	X,	if	the	past	of	Y	and	X	can	better	predict	the	future	of	X	rather	
than	with	the	past	of	X	only	(Zaremba	&	Aste,	2014).	In	this	study,	we	
use	this	principle	to	evaluate	pairwise	multivariate	conditional	Granger	
causalities	 of	 our	 independent	 components	 (resting-	state	 networks).	
The	 assessment	 is	 performed	 on	 each	 pair	 of	 subject-	specific	 RSNs	
time	series	and	repeated	for	each	resting-	state	scan,	using	the	multi-
variate	Granger	causality	(MVGC)	toolbox	(Barnett	&	Seth,	2014).	This	
gives us estimates F	of	Granger	causality	magnitudes	for	each	network	
pairs,	 subject,	 and	 scan.	 Furthermore,	 with	 two-	sample	 two-	tailed	 
t-	tests	we	 compare	 these	G-	causality	magnitudes	 between	 the	 two	
groups	(HFA	vs.	controls)	to	determine	different	patterns	of	neuronal	
dynamics	of	the	resting	state	(effective	connectivity).	We	also	perform	
this	test	for	the	two	resting-	state	scan	sessions	to	assess	whether	or	
not	 a	 previous	 task-	based	 fMRI	 scan	 can	 trigger	 and/or	 change	 the	
dynamics	of	resting-	state	connectivity,	that	 is,	the	causality	between	
RSNs.	Finally,	we	assess	if	these	changes	differ	between	patients	and	
controls.	According	to	several	studies,	people	with	ASD	show	differ-
ences	mainly	in	frontal	and	temporal	cortices,	default	mode	parts,	and	
also	 within	 networks	 related	 to	 social	 interaction	 (Anderson	 et	al.,	
2013;	Hanson	et	al.,	2013;	Keown	et	al.,	2017;	Nomi	&	Uddin,	2015).	
Therefore,	we	selected	the	RSNs	located	mainly	in	frontotemporal	cor-
tices and/or consisting of sociocognitive brain parts. These networks 
are assessed and compared with the method described above.

3  | RESULTS

For	 each	 group,	 age,	 gender,	 intelligence	 scores,	 ADOS	 diagnostic	
score,	and	mean	framewise	displacement	(in	mm)	per	group	and	per	
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scan	are	displayed	in	Table	1.	Only	the	perceptual	organization	index	
(POI)	score	showed	a	significant	difference	between	the	adolescents	
with	ASD	and	the	controls	(p < .05,	Table	1).

3.1 | RSN selection and between- groups 
spatial analysis

We	extracted	 functionally	 relevant	group	 ICs	based	on	 the	 resting-	
state	template	from	Smith	et	al.	(2009).	After	visual	inspection,	we	also	
included	 the	widely	 described	 ventral	 attention	 network	 (Corbetta,	
Patel,	&	Shulman,	2008;	Farrant	&	Uddin,	2015;	Fox,	Corbetta,	Snyder,	
Vincent,	&	Raichle,	2006).	Finally	 for	 further	analysis,	we	described	
our	 executive	 control	 network	 as	 the	 salience-	executive	 network,	
since	it	involves,	not	only	prefrontal	and	posterior	cingulate	cortices	

(for	 executive	 function),	 but	 also	 the	 salient	 network	 compounded	
with	 the	 anterior	 insular	 and	 anterior	 cingulate	 cortices	 (Menon	 &	
Uddin,	2010;	Sala-	Llonch,	Bartrés-	Faz,	&	Junqué,	2015).	The	11	net-
works	that	we	finally	obtained	are	depicted	in	Figure	1.	Those	RSNs	
were	found	in	both	HFA	and	controls	by	testing	the	subject-	specific	
maps	of	these	networks	(after	the	dual	regression).	In	those	relevant	
networks,	the	group	effects	(group	mean	> 0)	are	present	and	strongly	
consistent	 with	 the	 whole-	group	 (ASD	+	Controls)	 networks	 (see	
Figure	S1).	Also,	after	a	nonparametric	permutation	test	 (5,000	per-
mutations)	threshold	at	p < .05,	TFCE	corrected	for	FEW,	no	voxels,	in	
any	components,	were	significant	in	the	second-	level	group	analysis	
for	the	ASD	> control and control > ASD	contrasts.	The	same	results	
occurred	when	comparing	the	groups	for	each	scan	separately.	In	the	
second	equivalent	 statistical	 analysis,	where	 age,	 IQ	 level,	 and	gray	

F IGURE  1 Relevant	components	extracted	from	the	group-	level	ICA.	Relevant	components	extracted	from	the	34	group	IC	maps	overlaid	in	
color	on	the	MNI	standard	brain	(2	×	2	×	2	mm).	Names	of	the	networks	are	in	the	right-	side	table.	The	colorbar	is	threshold	between	3	and	15	
(z-	score).	MNI	coordinates	are	in	mm.	The	left	hemisphere	corresponds	to	the	right	side	in	the	images	(radiological	convention)
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matter	density	were	added	as	covariates,	again,	no	voxels	in	any	com-
ponent	survived	at	the	same	threshold	(p <	.05,	FWE	corrected;	see	
Table	S1	for	more	details).	Hence,	statistically,	 the	strength	and	the	
extent	of	each	network	(functional	connectivity)	were	similar	in	both	
groups.

3.2 | Temporal dynamics of the RSNs

The causal analysis to detect temporal dynamics differences was 
made	 upon	 the	 four	 most	 relevant	 RSNs	 that	 involved	 frontopari-
etal	and	temporal	cortices,	and	networks	 related	to	social	cognition	
(Anderson	et	al.,	2013;	Hanson	et	al.,	2013;	Keown	et	al.,	2017;	Nomi	
&	Uddin,	2015).	Therefore,	we	selected	the	default	mode	network	(IC	
1,	Figure	1),	 the	salience-	executive	system	 (IC	3),	 the	ventral	atten-
tional	network	(IC	10),	and	the	auditory	system	(IC	6).	Pairwise	con-
ditional	Granger	causality	magnitudes,	in	average,	within	each	group	
for	 the	 first	and	second	 resting-	state	scan	sessions	were	significant	
(p	<	.05	FDR	corrected).	This	was	found	for	the	four	aforementioned	
selected	prefrontal	and	temporal	RSNs	and	for	both	groups.	Also,	the	
positivity	of	the	normality	test	(Kolmogorov–Smirnov)	for	the	distri-
bution	of	the	causalities	among	each	group	allowed	us	to	use	the	two-	
sample	 two-	tailed	 t-	test	 to	compare	HFA	adolescents’	G-	causalities	
with those of the control group.

In	the	first	resting-	state	scan,	none	of	the	pairwise	causalities	dif-
fered	significantly	between	ASD	and	controls.	We	also	found	no	sig-
nificant	differences	in	causality	within	the	control	group,	that	is,	when	
comparing	 first	 rs-	scan	and	second	 rs-	scan.	However,	dynamic	RSN	
patterns	did	differ	within	the	ASD	cohort	(first	rs-	scan	vs.	second	rs-	
scan)	and	significantly	diverged	from	control	adolescents	only	 in	the	
second	resting-	state	scan.	The	latter	result	shows	a	significant	lower	
value	of	Granger	causality	between	the	ventral	attention	and	salience-	
executive	networks	in	the	ASD	group	as	compared	with	control:	mean	
F	 (Granger	 causality	 value)	 for	 ASD	=	0.028	 (SD	=	0.015);	 mean	 F	
controls	=	0.058	(SD	=	0.031);	t(24)		=	3.17,	p-	value	=	.0042.	Figure	2	
shows this directed causal connection and displays in more detail the 
cortical regions involved in these two networks.

4  | DISCUSSION

In	 the	 present	 study	 of	 high-	functioning	 adolescents	 with	 autism,	
resting-	state	whole-	brain	 functional	 connectivity	was	examined.	No	
evidence was found for any significant difference in brain spatial 
connectivity	between	the	two	populations.	However,	our	results	did	
show	that	patterns	in	temporal	neurodynamics,	that	is,	causal	effects	
of	one	RSN	on	another,	differ	between	the	groups.	In	contrast	with	
controls,	 HFA	 display	 a	 significant	 difference	 in	 temporal	 neurody-
namics	between	resting-	state	fMRI	sessions	1	and	2.	Furthermore,	in	
contrast	with	the	first	resting-	state	scan,	temporal	neurodynamics	dif-
fer	significantly	between	HFA	and	controls	during	the	second	resting-	
state session. The primary findings of similar functional connectivity 
between the two cohorts challenge the theory that the autistic brain 
is	globally	underconnected	(Belmonte,	2004;	Uddin,	Supekar,	Menon,	

et	al.,	2013).	This	can	be	explained	by	differences	in	scan	protocols,	
in	postprocessing	methods	(ICA	vs.	seed	based)	and	mainly	because	
of	 the	 population	 (type	 of	 the	 ASD,	 number,	 and	 ages).	 However,	
our	findings	of	similar	functional	resting-	state	network,	that	is,	simi-
lar	within-	network	functional	connectivity	are	corroborated	by	other	
studies	on	adolescents	and	adults	with	high-	functioning	autism	(Bos	
et	al.,	2014;	Tyszka	et	al.,	2014;	Uddin,	Supekar,	Menon,	et	al.,	2013).	
More	recently,	Nomi	and	Uddin	(2015)	also	showed	that	adolescents	
with	ASD	do	not	have	altered	within-	network	functional	connectivity.	
But	interestingly,	by	means	of	correlation	between	the	RSNs	time	se-
ries,	they	obtained	evidence	of	impaired	between-	network	connectiv-
ity in the adolescents with autism. The pairwise temporal correlations 
used	in	their	study	can	be	seen	as	(undirected)	instantaneous	causal-
ity.	Hence,	their	results	of	between-	network	hypoconnectivity	in	ASD	
population	 is	partially	 (only	 instantaneous	causality)	 in	 line	with	our	
results	of	weaker	neurodynamics	in	autism,	which	are	discussed	in	the	
next	paragraph.

To go further and detect strength and directionality in causality 
between	RSNs,	we	used	Granger	causality	upon	four	relevant	socio-
cognitive	RSN	time	series.	The	two	RSNs	showing	differences	 in	ef-
fective	directed	connectivity	(neurodynamics)	are	the	ventral	attention	
network	and	the	salience-	executive	control	network.	The	ventral	at-
tention	contains	mainly	the	left	and	right	superior	temporal	sulci	(STS),	
the	temporal	poles,	the	ventrolateral	and	orbital	cortices,	and	lateral	
premotor	cortex.	This	pathway	is	known	to	code	for	visual	recognition	
and	identification,	and	for	emotional	processes.	The	temporal	pole	is	
known to play a role in functions that tend to be weak in autism: social 
and	emotional	processing,	including	face	recognition	and	the	theory	of	
mind	(Kana	et	al.,	2015;	Olson,	Plotzker,	&	Ezzyat,	2007).	Also,	the	STS	
has been postulated to be a critical component of the abnormal neu-
ral	circuitry	underlying	deficits	in	social	perception	in	autism	(Redcay,	
2008).	The	STS	projects	information	toward	prefrontal	cortices	(mainly	
the	medial	and	 lateral)	which	are	part	of	the	salience-	executive	net-
work.	This	 salience-	executive	 control	 network	 involves	 the	 anterior	
cingulate	gyrus	 (ACC),	 the	anterior	 insular	 cortex	 (AI)	 as	well	 as	 the	
dorsomedial	and	dorsolateral	prefrontal	cortices,	and	the	supplemen-
tary	motor	area	(SMA).	These	ROIs	are	involved	in	cognitive	processes	
such	as	working	memory,	reasoning,	task	flexibility,	problem	solving,	
planning,	 and	 execution	 (Chan,	 Shum,	Toulopoulou,	 &	 Chen,	 2008).	
The	AI	cortex	is	a	brain	structure	implicated	in	disparate	cognitive,	af-
fective,	and	 regulatory	 functions,	 including	 interoceptive	awareness,	
emotional	responses,	and	empathic	processes	(Menon	&	Uddin,	2010).	
More	specifically,	Dapretto	et	al.	(2006)	propose	a	mirror	neuron	sys-
tem	(MNS)	dysfunction	 in	children	with	ASD	(Dapretto	et	al.,	2006).	
Notably,	 they	affirm	that	 the	MNS	activity	 in	 the	pars	opercularis	 is	
consistently	present	during	 imitation,	action	observation,	and	 inten-
tion understanding; and this pars opercularis combined with the insula 
and	limbic	activity	(e.g.,	in	the	ACC)	may	mediate	the	understanding	of	
others’	emotional	states.	However,	the	absence	of	mirror	neuron	ac-
tivity	in	the	frontal	part	of	the	MSN	(pars	opercularis)	leads	this	emo-
tional	process	to	be	weaker	in	ASD.	This	weakened	“theory-	of-	mind”	
network	has	been	further	confirmed	in	children	and	adolescents	(Kana	
et	al.,	2015).
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The	 association	AI/ACC,	 also	 termed	 the	 salient	 network,	 plays	
a role in dynamic switching between brain networks in reaction to 
cognitively	demanding	tasks	(switch	default	mode	network/executive	
network;	Menon	&	Uddin,	2010;	Sridharan,	Levitin,	&	Menon,	2008).	
A	review	study	reports	 that	 this	critical	system	(salience	network)	 is	
impaired	in	ASD,	and	that	the	AI	region	has	demonstrated	hypoactivity	
in	individuals	with	ASD	across	a	wide	variety	of	social	cognitive	task	
paradigms	(Di	Martino,	Ross,	et	al.,	2009;	Uddin	&	Menon,	2009).	All	
these findings illustrate that activations in brain areas implicated in the 
ventral	attention	and	salience-	executive	RSNs	are	known	to	be	weaker	
in	the	ASD	population.	Also,	areas	in	the	salient	network	and	the	MNS,	
that	is,	the	causal	flow	“bridge”	area	(Figure	2),	are	critical	during	self-		
and	other-	related	social	and	affective	processes,	and	also	known	to	
be	underactivated	in	ASD	(Barttfeld	et	al.,	2012;	Kana	et	al.,	2015).	In	
line with the previously mentioned studies conducted with the help 
of	socioemotional	cognitive	task-	based	fMRI,	we	observed	the	same	
weaknesses	 in	whole-	brain	resting-	state	functional	connectivity,	but	

only	when	analyzing	temporal	dynamics.	The	extracted	RSNs	do	not	
have	 the	 same	 pattern	 of	 temporal	 dynamics,	 that	 is,	 the	 influence	
of	one	RSN	on	another	varies	between	 the	 two	cohorts:	 the	causal	
connectivity	 between	 the	 salience-	executive	 and	 ventral	 attention	
networks	(in	the	direction	of	ventral	attention	→	salience-	executive)	is	
significantly	weaker	in	the	HFA	population,	but	only	in	their	post-	task	
resting state. This impaired temporal neurodynamics suggests failing 
bridging of the emotional states regulated in the ventral attentional 
to	 the	 decision-	making-	oriented	 salience-	executive	 control	 system.	
This may therefore be described as a more rigid system in terms of 
the	emotional-	executive	bridge,	which	can	be	seen	as	an	endogenous	
to	 exogenous	 (self	 to	 other)	 dynamic	 process	 failure	 as	 suggest	 by	
the	 literature	 (Di	Martino,	Shehzad,	et	al.,	2009;	Ebisch	et	al.,	2011;	
Menon	&	Uddin,	2010;	Uddin,	Supekar,	Ryali,	&	Menon,	2011;	Uddin,	
Supekar,	Lynch,	et	al.,	2013).	Finally,	 in	our	study,	 the	differences	 in	
temporal	neurodynamics	were	only	found	in	the	second	resting-	state	
session.	An	1-	back	working	memory	task-	based	scan	was	performed	

F IGURE  2 Visualization	of	the	weaker	neurodynamic	pattern	in	adolescent	with	HFA	(in	the	post-	task	resting	state).	Visualization	of	the	two	
RSNs,	salience	executive	in	blue	and	ventral	attention	in	orange,	where	the	causal	dynamics	is	weaker	in	HFA	for	the	second	(post-	task)	resting-	
state	scan,	in	the	direction	from	ventral	attention	to	salience	executive.	The	scheme	above	shows	the	different	cortices	involved	in	these	two	
networks	and	the	overlapping	areas.	Solid	lines	and	dashed	lines	describe	direct	cortico-	cortical	physical	link	and	indirect	connections	(through	
white	matter	and/or	basal	ganglia),	respectively.	The	pars	opercularis	is	a	part	of	the	ventrolateral	PFC	which	is	shown	with	the	double	line.	On	
the	bottom	part,	anatomical	visualization	of	the	two	abovementioned	RSNs	(from	group	IC	contrast	maps)	are	displayed	(threshold	at	z	>	2.6,	 
i.e.,	p	<	.01).	BA,	Brodmann	area;	PFC,	prefrontal	cortex
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in	 between	 the	 two	 resting-	state	 scan	 sessions.	 We	 therefore	 hy-
pothesize	 that	 abnormal	 temporal	 neurodynamic	 patterns	 in	 HFA	
were	triggered	by	the	working	memory	task,	involving	not	only	work-
ing	memory,	but	also	attentional	and	emotional	(in	terms	of	face	and	
emotion	recognition)	processes.	This	could	be	explained	by	a	reduced	
cognitive	 flexibility	 (or	 more	 rigidity)	 in	 the	 post-	task	 resting-	state	
connectivity	in	ASD,	reducing	the	between-	networks	dynamics,	show-
ing a more brain state dependency of connectivity pattern in autism 
compared	to	controls,	as	shown	recently	in	literature	(Barttfeld	et	al.,	
2012;	Chen	et	al.,	2016;	Douw,	Wakeman,	Tanaka,	Liu,	&	Stufflebeam,	
2016;	Uddin	et	al.,	2015).

4.1 | Limitations

One	of	 the	main	 challenges	 in	 applying	G-	causality	upon	 fMRI	BOLD	
signals	 is	 the	 problem	 of	 the	 hemodynamic	 response	 function	 (HRF)	
changes.	 Inter-	regional	 HRF	 variation	 has	 been	 argued	 to	 affect	 G-	
causality	analysis	(David	et	al.,	2008).	But	the	Granger	causality	method	
implemented	in	MVGC	software,	used	in	our	study,	has	been	proven	to	
be	robust	to	changes	in	HRF	properties	(Seth,	Chorley,	&	Barnett,	2013).	
A	second	limitation	with	our	technique	is	the	relatively	long	sample	in-
tervals	 (TR)	of	classic	 fMRI	protocols	 (usually	 ranging	 from	1	s	 to	3	s).	
Indeed,	our	TR	of	2	s	is	substantially	longer	than	typical	interneuron	de-
lays.	However,	since	we	examine	changes	(of	differences)	in	G-	causality	
rather	 than	attempting	to	 find	a	ground	truth	G-	causality	pattern	that	
limitation	is	not	significant	(Barnett	&	Seth,	2014).

Finally,	even	though	our	statistical	analyses	are	properly	controlled	
for	multiple	comparisons	and	for	type	I	error	(false	positive),	cautious	
interpretation	of	the	results	is	in	order.	Especially	misses	(type	II	error,	
or	false	negative)	could	have	occurred	for	the	results	of	similar	spatial	
network	connectivity	(miss	of	spatial	differences).

4.2 | Methodological recommendations

For	 future	 application,	 we	 state	 that	 neurodynamics	 provide	 alterna-
tive	strategies	when	ICA	analysis	does	not	yield	differences	for	a	cross-	
sectional	analysis.	Also,	conversely,	where	ICA	does	show	differences	in	
functional	connectivity	between	two	populations	 (or	more),	we	advise	
not	to	use	Granger	causality	analysis	on	temporal	trends	of	ICs,	but	rather	
on	raw	ROI	signals	(with	same	ROI	location	for	both	groups).	Finally,	our	
findings	show	that	tasks	prior	to	resting-	state	acquisition	scan	can	have	
an effect on the results of an effective connectivity analysis.

5  | CONCLUSION

We	 find	 no	 significant	 differences	 in	 resting-	state	 brain	 connectivity	
between	high-	functioning	adolescents	with	ASD	and	the	control	group	
at	the	whole-		brain	level.	However,	the	extracted	RSNs	do	not	have	the	
same	pattern	of	temporal	dynamics,	that	is,	the	influence	of	one	RSN	on	
another	is	different	between	the	two	cohorts.	In	particular,	the	causal	
connectivity	between	the	salience-	executive	and	the	ventral	attention	
networks	(in	the	direction	of	ventral	attention	→	salience-	executive)	is	

significantly	weaker	in	the	HFA	population	in	the	second	resting-	state	
scan,	after	challenging	sensitive	functions	for	HFA	adolescents.	These	
two networks link cortices coding for face/object recognition and emo-
tional	processing	with	cortices	of	executive	cognitive	functions	(atten-
tion,	control,	working	memory,	behavior).	We	hypothesize	that	changes	
in	neurodynamics	at	rest	in	HFA	are	subtly	triggered	by	challenging	the	
cognitive	state	prior	to	the	resting	state.	And	these	changes	seem	to	
appear in the dynamic connectivity between the networks functionally 
related to the previous cognitive task.

NOTES

Sample	 sizes	 for	 the	 groups	 have	 been	 calculated	 using	 previous	
fMRI	 studies	 on	 ASD	 with	 significant	 results	 of	 lower	 functional	
connectivity	in	working	memory	network,	and	ToM	network	in	the	
autism	cohorts	(Kana	et	al.,	2015;	Koshino	et	al.,	2008).	Those	stud-
ies	 had	13	TDC/13	ASD	and	11	TDC/11	ASD,	 respectively.	 Post	
hoc power analyses using the significant results from the two pa-
pers	 lead	 to	a	power	of	90%	and	83%,	 respectively.	Hence,	using	
13/13 patients/controls is sufficient and powerful enough for find-
ing	similar	effect	sizes.

Inclusion	 criteria	were	predetermined.	 For	 further	 analysis	 (such	
as	group	comparison)	we	had	post	hoc	exclusion	criteria	such	as	a	too	
large framewise displacement and/or bad registration to the standard 
brain	(quality	check	after	preprocessing	the	data).

Data	were	not	anonymized	and	no	blinding	was	performed	during	
the analysis.

Finally,	no	 informed	consent	 for	personal	data	 sharing	has	been	
collected	 in	 this	 study.	 Therefore,	 the	 fMRI	 data	 are	 not	 publicly	
available.
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