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Abstract

Background

In comparison to the non-pregnant state, the first trimester of pregnancy is characterized by

systemic adaptation of the mother. The extent to which these adaptive processes are

reflected in the maternal blood metabolome is not well characterized.

Objective

To determine the differences between the plasma metabolome of non-pregnant and preg-

nant women before 16 weeks gestation.

Study design

This study included plasma samples from 21 non-pregnant women and 50 women with a

normal pregnancy (8–16 weeks of gestation). Combined measurements by ultrahigh perfor-

mance liquid chromatography/tandem mass spectrometry and by gas chromatography/

mass spectrometry generated molecular abundance measurements for each sample.

Molecular species detected in at least 10 samples were included in the analysis. Differential
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abundance was inferred based on false discovery adjusted p-values (FDR) from Mann-

Whitney-Wilcoxon U tests <0.1 and a minimum median abundance ratio (fold change) of

1.5. Alternatively, metabolic data were quantile normalized to remove sample-to-sample dif-

ferences in the overall metabolite abundance (adjusted analysis).

Results

Overall, 637 small molecules met the inclusion criteria and were tested for association with

pregnancy; 44% (281/637) of small molecules had significantly different abundance, of

which 81% (229/281) were less abundant in pregnant than in non-pregnant women. Eight

percent (14/169) of the metabolites that remained significant in the adjusted analysis also

changed as a function of gestational age. A pathway analysis revealed enrichment in steroid

metabolites related to sex hormones, caffeine metabolites, lysolipids, dipeptides, and poly-

peptide bradykinin derivatives (all, FDR < 0.1).

Conclusions

This high-throughput mass spectrometry study identified: 1) differences between pregnant

vs. non-pregnant women in the abundance of 44% of the profiled plasma metabolites,

including known and novel molecules and pathways; and 2) specific metabolites that

changed with gestational age.

Introduction

Conception is followed by substantial adaptive maternal physiological challenges, including

immune semi-allograft tolerance of the placenta [1, 2], changes in the maternal metabolism to

supply nourishment and oxygen to the growing fetus [3, 4], endocrine adjustment to the pres-

ence of human chorionic gonadotropin (hCG) [5], and hCG’s effect on the maternal endocrine

glands (especially the thyroid). Therefore, pregnancy is a maternal stress test, and evolution

has produced maternal physiological adjustments generally sufficient to sustain pregnancy [6]

and for healthy delivery at term [7–9], i.e., changes in the blood volume [10, 11], cardiovascu-

lar system [12], glomerular filtration rate [10, 13], coagulation [14–16], and maternal-fetal

immune tolerance [17, 18].

To better understand the multi-system maternal physiological changes associated with

pregnancy [19], high-dimensional biology approaches [20], especially appropriate in obstetrics

[21, 22], may be required. In this report, metabolomics [23, 24], targeting small molecules, is

used to gain a systems-level view of pregnancy-specific metabolic changes. Metabolomics has

previously been used to study differences between normal [25–32] and complicated pregnan-

cies [33, 34], preeclampsia [35–45], preterm labor or preterm delivery [22, 46–52], intrauterine

growth restriction [53–58], and other outcomes [59–65].

However, the comparison between the pregnant and non-pregnant states has been less

studied. Wang et al. [66] reported mainly Nuclear Magnetic Resonance (NMR) measurements

of 87 metabolic indicators as well as cytokines (e.g. IL-18, IL-12) in pregnant and non-preg-

nant women. Pinto et al. [67] also utilized an NMR platform and measured chemical shifts in

both urine and blood samples collected from pregnant and non-pregnant women and reported

differences in small-molecule concentrations, i.e., branched chain amino acids and citrulline

as well as macromolecules that include the same metabolic indicators as Wang et al. Currently,
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the high-throughput mass-spectrometry platform, which identifies a greater number of metab-

olites at lower abundances than NMR [68], has not been used to compare pregnant and non-

pregnant women. Therefore, we conducted a study of metabolomes from pregnant (8–16

weeks of gestation) and non-pregnant women, using high-throughput ultrahigh performance

mass-spectrometry.

Materials and methods

A retrospective study included 21 non-pregnant women and 50 pregnant women. Plasma sam-

ples were collected from pregnant women between 8 and 16 weeks of gestation and from non-

pregnant women at recruitment. All 50 pregnant women were recruited into research proto-

cols of the Perinatology Research Branch, an intramural division of the Eunice Kennedy Shriver
National Institute of Child Health and Human Development (NICHD), National Institutes of

Health (NIH), U.S. Department of Health and Human Services (DHHS) (Bethesda, Maryland,

and Detroit, Michigan) and Wayne State University (Detroit, Michigan) from the patient

population at Hutzel Women’s Hospital of the Detroit Medical Center (Detroit, Michigan),

described elsewhere [69, 70]. Written informed consent was obtained from all women prior to

sample collection. The protocols were approved by the Human Investigation Committee of

Wayne State University (IRB No. 110605MP4F) and by the Institutional Review Board of

NICHD (Protocol No. OH 97-CH-N067).

All pregnant patients had a singleton gestation delivered at term (37–42 weeks of gestation),

an appropriate-for-gestational-age neonate (birthweight between the 10th and 90th percentiles

[71]), and a normal pregnancy outcome. The samples for this study were stored (immediately

after collection [72]) in the Bank of Biological Materials of Wayne State University, the Detroit

Medical Center, and the Perinatology Research Branch. Smoking status, age, and race were

obtained by self-report. Hyperemesis gravidarum was ascertained by expert chart review.

Clinical and demographic characteristics of the study population were summarized as

median and interquartile ranges (IQR) or as percentages.

Specimen collection and storage

Blood samples were collected into tubes containing EDTA during routine care. Samples were

then spun down at 1,300g and separated from packed red blood cells. Aliquots were stored

below −70˚C.

Metabolomics technique

The metabolic profiling approach combined four platforms: ultrahigh performance liquid

chromatography/tandem mass spectrometry (UHPLC/MS/MS) optimized for basic species,

UHPLC/MS/MS optimized for acidic species, UHPLC/MS/MS optimized for uncharged polar

species, and gas chromatography/mass spectrometry (GC/MS) most suitable for volatile

organic molecules such as sugars. S2 Table gives the platform used to detect each compound in

the PLATFORM column. Samples from pregnant women and non-pregnant women were ran-

domized across platform run days.

Samples were processed according to previously described protocols [73, 74]; for each sam-

ple, a total of 100μL of plasma was analyzed. Using an automated liquid handler (Hamilton

LabStar, Salt Lake City, UT), protein was precipitated with methanol that contained standards

to report on extraction efficiency. The resulting supernatant was split into five aliquots for

analysis on the four platforms, with one aliquot retained as a spare. Aliquots, dried under

nitrogen and vacuum-desiccated, were subsequently reconstituted in 50μL of 0.1% formic acid

in water (acidic conditions) or in 50μL of 6.5mM ammonium bicarbonate in water, under pH
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8 (basic) conditions for the UHPLC/MS/MS analysis or derivatized to a final volume of 50μL

for GC/MS analysis using equal parts of bistrimethyl-silyl-trifluoroacetamide and a solvent

mixture of acetonitrile:dichloromethane:cyclohexane (5:4:1) with 5% triethylamine at 60˚C for

one hour. In addition, three types of controls were analyzed in concert with the experimental

samples: aliquots of a “client matrix,” formed by pooling a small amount of each sample,

served as technical replicates throughout the data set; extracted water samples served as pro-

cess blanks; and a mixture of standards was spiked into every analyzed sample.

For UHPLC/MS/MS analysis, aliquots were separated using a Waters Acquity UPLC

(Waters, Millford, MA) and analyzed using a Q-Exactive high resolution/accurate mass spec-

trometer (Thermo Fisher Scientific, Inc., Waltham, MA), which consisted of an electrospray

ionization (ESI) source and an Orbitrap mass analyzer. Derivatized samples for GC/MS were

separated on a 5% phenyldimethyl silicone column with helium as the carrier gas and a tem-

perature ramp from 60˚C to 340˚C and then analyzed on a Thermo-Finnigan Trace DSQ MS

(Thermo Fisher Scientific, Inc.) operated at unit mass resolving power with electron impact

ionization and a 50–750 atomic mass unit scan range.

Metabolites were identified by automated comparison of the ion features in the experimen-

tal samples to a reference library of chemical standard entries that included retention time,

molecular weight (m/z), preferred adducts, and in-source fragments as well as associated MS

spectra; these were curated by visual inspection for quality control using software developed at

Metabolon (Metabolon Inc., Research Triangle Park, NC, USA) [75]. Total ion count data,

across the sampling interval of each metabolite (corresponding to area under the peak in

HPLC alone), were used as a surrogate for metabolite abundance.

Data processing

Analyte abundance on each run day was scaled so that the median total ion count, for each

metabolite, would be equal across all run days. Analytes were excluded from the data set if

detected in fewer than 10 samples (50% of the number of samples in the smaller group, non-

pregnant). When an analyte was not detected in a given sample, this was interpreted as an

abundance below the limit of detection, and the missing analyte abundance was imputed to

99% of the minimum detected total ion counts [76]; this imputation was carried out after scal-

ing to the common median. These data are referred to as “abundance” throughout this report.

Using data from a set of reference samples profiled by Metabolon, Inc., the association

between sample storage time and each metabolite’s abundance was evaluated by the Spear-

man’s correlation test. Metabolites found to change with storage time (p<0.05) were adjusted

log-linearly (consistent with exponential decay of the compound) based on the rate of decay

observed in the reference samples. Further, data were quantile-normalized [77], a procedure

originally developed for microarray data processing, to transform the distribution of metabo-

lite abundance so that it is the same across all samples. This transformation accounts for possi-

ble systematic dilution of metabolites. Quantile normalization was performed using the R

package preprocessCore available from Bioconductor [78]. These data are referred to as

“adjusted abundance.”

Quality assurance and quality control

Metabolomics studies depend crucially on quality assurance and control[79]. Metabolon QC

practices are described extensively elsewhere[80] and involves specialized software[81]. Several

types of controls were analyzed in concert with the experimental samples: a pooled matrix

sample generated by taking a small volume of each experimental sample served as a technical

replicate; extracted water samples served as process blanks; and a cocktail of QC standards that
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were carefully chosen not to interfere with the measurement of endogenous compounds were

spiked into every analyzed sample to monitor instrument performance and aid with chro-

matographic alignment. Instrument variability was determined by calculating the median rela-

tive standard deviation (RSD) for the standards that were added to each sample prior to

injection into the mass spectrometers. Overall process variability was determined by calculat-

ing the median RSD for all endogenous metabolites (i.e., non-instrument standards) present

in 100% of the pooled matrix samples. Experimental samples were randomized across the plat-

form run with QC samples spaced evenly among the injections.

Intra-assay reproducibility

To assess the reproducibility of the ion count measurements, an intra-assay coefficient of vari-

ation was calculated based on five replicates of one particular maternal plasma sample. The

experimenters were blinded to these replicates. Only metabolites detected (i.e., not imputed)

in 4/5 of the replicates were included in this analysis.

Unsupervised data analysis and visualization

Principal component analysis was applied to log (base 2) transformed abundance data or to

likewise-transformed adjusted abundance data. This allowed visualization of the relationship

among samples in two dimensions via the first two principal components.

Differential abundance analysis

Differences in metabolite abundance between pregnant and non-pregnant women were evalu-

ated using Mann-Whitney-Wilcoxon U tests. The magnitude of differences was expressed as a

fold change between the median abundance in the two groups. Metabolites were considered to

change significantly with pregnancy given that 1) the magnitude of change was >1.5 fold, and

2) the FDR was <0.1. We customarily use an FDR threshold of 0.1 combined with a minimum

effects size cut-off, which has shown improved cross-study reproducibility [43, 82]. Compari-

son between groups of women were performed 1) on the abundances, 2) on the adjusted abun-

dances, and 3) as a sensitivity analysis on abundances in a reduced set of women (excluding

five of the older, white, non-pregnant women) to decrease the chance that the results would be

confounded by the women’s age and race (Table 1).

Pathway analysis

Metabolite-pathway assignments were drawn from a combination of expert review (supplied

by Metabolon Inc.), KEGG [83], HMDB [84], and HumanCyc [85] databases. Enrichment of

Table 1. Characteristics of the study population.

Pregnant (n = 50) Non-pregnant (n = 21) p-value

African-American ethnicity 90% 52% <4 × 10−5a

Age 23 [21–26] 29 [24–32] <0.002b

Smoking status (self-report) 20% 4% <0.16a

Gestational age at sample 12w4d [11w1d– 14w5d] n/a n/a

Values are given as % of total or as median [interquartile range]. Note that interquartile range differs from the full range in the study.
a Fisher’s exact test
b Mann-Whitney-Wilcoxon U test

https://doi.org/10.1371/journal.pone.0224682.t001
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predefined pathways in metabolites associated with pregnancy status was tested using Fisher’s

exact test followed by controlling the FDR at 10%.

Clustering of metabolites

Spearman correlation coefficients among metabolites were determined, based on the adjusted

abundance data of pregnant women, to identify groups of metabolites with a related biological

role. Hierarchical clustering of metabolites using these Spearman correlation coefficients and

the cutree method [86] were used to select 25 clusters of metabolites. Furthermore, Spearman

correlations were used to generate networks of all metabolites in significantly overrepresented

pathways. In these networks, connections between metabolites (edges) represent an absolute

Spearman coefficient above 0.5. For each node in the networks, we determined the degree,

defined as the number of edges connecting to the node.

Additionally, correlations among metabolites were compared to previous reports when

potentially relevant to the interpretation of these results.

Sensitivity analysis

To determine the effect of possible confounding variables between pregnant and non-pregnant

women we have conducted two sub-analyses. In the first, the five oldest of the white non-preg-

nant participants were excluded to diminish differences in age and race between the two

groups. In the second analysis, all self-reported smokers are removed, since smoking was prev-

alent among pregnant women. For further information, see S1 Supporting Information.

Statistical testing

Unless otherwise specified, testing for association between metabolite abundance and covari-

ates was performed using Spearman’s correlation.

All data analyses were conducted using the statistical programming language and environ-

ment R [75].

Results

Characteristics of the study population

The non-pregnant women included in this study were older (median age 29 vs 23), smoked

less frequently (4% vs 20%), and represented a lower proportion of African-American ethnicity

(52% vs 90%) compared to pregnant women (Table 1).

Summary of differential metabolite abundance

A total of 637 metabolites were detected in 10 or more of the 71 blood samples analyzed. All

637 metabolites, along with intra-assay coefficients of variation (CV), fold changes, and signifi-

cance p-values from Mann-Whitney-Wilcoxon U tests are given in S1 Table. Based on internal

standards, the median instrument variability was below 5%; and, based on day to day variation

in the client matrix abundance for endogenous compounds, the median total process variabil-

ity was below 10%. Based on the blinded replicates provided, the median CV of detected

metabolites was 12.7%; but, among metabolites changed by pregnancy, the highest CV was

9.4%. This reflects both a limited power to detect differences when metabolites are quantified

with higher technical variability and the increased variation of metabolites affected by

pregnancy.

Pregnant and non-pregnant women differed in 281 of 637 (44%) of the metabolites profiled

(FDR< 0.1 and fold change > 1.5). Were an FDR of 0.05 used without a fold-change cutoff,
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368 (instead of 281) metabolites would show a significant change associated with pregnancy.

In this study, the FDR threshold of 0.1 corresponded to a nominal p-value threshold of 0.05.

Assuming a normal distribution of abundances in pregnant and non-pregnant women, this

study is 80% powered to detect a metabolite difference between the two groups at a Cohen’s d

(ratio of difference between groups to standard deviation) of 0.75 or greater at an unadjusted

alpha (p-value) of 0.05. Principal components derived from the 637 metabolites showed a clear

separation between the two groups of women, based on either raw abundance or adjusted

metabolite abundance (Fig 1). Based on the raw abundance, 82% of significant metabolites

were less abundant in pregnant than in non-pregnant women—this proportion being unlikely

by chance based on a binomial test (p< 5 × 10−28). Both the large differences in small-molecule

Fig 1. Principal component analysis of metabolic profiles of pregnant and non-pregnant women. Principal components (PC1,

PC2) are derived from abundance of 637 metabolites measured in plasma samples of 50 pregnant and 21 non-pregnant women. The

percentage of the variance explained by each principal component is shown in parentheses.

https://doi.org/10.1371/journal.pone.0224682.g001
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abundance between groups and the overall decrease in metabolite abundance with gestational

age were preserved after adjustment (see S1 Supporting Information and S1 Fig).

Individual molecule differences

Fig 2 shows box plots of abundances for the 6 most consistently decreased metabolites and for

the 6 most consistently increased metabolites between groups of women, with fold-changes

being reported in Table 2. Each of these metabolites belonged to a different cluster of metabo-

lites identified based on their correlation patterns (S2 Fig).

Decreased metabolites included 5-oxoproline (2.5 fold); eicosapentaenoate (EPA) (4.3

fold); γ-glutamyl valine (2.4 fold); maleate (2.3 fold); γ-glutamyl glutamate (decreased 4.8

fold); and histidylalanine (>25 fold); all FDR < 8.1 × 10−8. In Fig 2A, given that 5-oxoproline

is at or below the limit of detection/quantification in 46 of the 50 pregnant women, the boxplot

appears as a plain black bar at the limit of detection.

Metabolites with increased abundance included: 5α-pregnan-3β,20α-diol monosulfate

(>30 fold); oxidized cysteinylglycine (5.7 fold); allopregnanolone and pregnanolone sulfates

(11.4 fold); palmitoyl-linoleoyl-glycerophosphoinositol (1.8 fold); cysteine s-sulfate (2.1 fold);

and acetoacetate (2.7 fold); all FDR< 1×10−5. S1 Supporting Information provides a review of

the studies in which these compounds were previously reported.

Fig 2. Boxplots of small-molecule abundance as a function of pregnancy status. The distribution of metabolites with increased

(A) or decreased (B) abundance are shown using boxplots; the thick lines represent the medians, the boxes represent inter-quartile

ranges, and the whiskers extend to the minimum/maximum values if not more than 1.5 times the interquartile range. EPA =

eicosapentaenoate; γGluVal = γ-glutamyl valine; γGluGlu = γ-glutamyl glutamate; HisAla = histidylalanine; 5PBAS = 5α-pregnan-

3β,20α-diol monosulfate; PLGPI = palmitoyl-linoleoyl-glycerophosphoinositol; CysGly, oxidized = glycine-cysteine-(SS)-cysteine-

glycine.

https://doi.org/10.1371/journal.pone.0224682.g002
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Sensitivity analysis

When the five, oldest white non-pregnant controls were excluded from analysis, the observed

fold change of each metabolite changed only slightly–the Spearman correlation between fold

changes calculated with-and-without the five older women was 0.986 (see S1 Table for values);

one of the dipeptides, γ-glutamyl lysine is among the few metabolites sensitive to this change

in study population. When the self-reported smokers were excluded, the change was likewise

slight, with a Spearman correlation between fold changes of 0.981. When smokers are

excluded, the plasmalogen 1-stearoylplasmenylethanolamine moves below the false discovery

threshold (see S1 Table).

Pathway analysis

An over-representation analysis identified significant enrichment of five pathways: 1) xanthine

metabolism, including caffeine and derivatives (13/14 metabolites significant between preg-

nant and non-pregnant women, FDR< 0.006); 2) steroid hormones (30/44, FDR< 0.013); 3)

lysolipids (22/33, FDR < 0.06); 4) dipeptides (10/12, FDR< 0.06); and 5) polypeptides that in

this study are exclusively bradykinin and derivatives (6/6, FDR < 0.06). With the exception of

the steroid pathway, the small molecules in these pathways had a reduced abundance in the

pregnancy group. Table 3 summarizes these findings.

S5 Fig shows network diagrams of metabolites in each of these pathways; the edges indicate

significantly correlated metabolites in pregnant women: 1) the steroid hormone network (S5

Fig panel A, mean degree 4.5, IQR 2–8) is split between two modules, pregnancy-increased

pregnane derivatives and pregnancy-reduced androstane derivatives; 2) the lysolipid network

[S5 Fig panel B, mean degree (number of edges to a node) 4, IQR 2–7] shows two features: a)

correlated lysolipids tend to share a lysolipid head-group but not a fatty acid side-chain, and b)

the network is also divided into two modules corresponding mainly to glycerophosphocholine

and glycerophosphoinositol; 3) the dipeptide network (S5 Fig panel C, mean degree 4, IQR

2.5–5.5) demonstrates higher connectivity among dipeptides with an amino acid in common

Table 2. Differences among the most-consistent metabolites abundance in pregnancy.

Metabolite Fold-change in Pregnancy FDR

Metabolites decreased in pregnancy
5-oxoproline [87] 0.40 3.6 × 10−8

eicosapentaenoate (EPA) [88] 0.23 3.6 × 10−8

gamma-glutamylvaline [89] 0.41 3.6 × 10−8

maleate (cis-Butenedioate) [90] 0.43 3.6 × 10−8

gamma-glutamylglutamate [91, 92] 0.21 8.1 × 10−8

histidylalanine[93] <0.01 8.1 × 10−8

Metabolites increased in pregnancy
5α-pregnan-3β,20α-diol monosulfate 30 6.4 × 10−7

cysteinyl glycine, oxidized[94] 5.8 1.6 × 10−7

allopregnanolone and pregnanolone sulfate[95] 11 2.1 × 10−7

palmitoyl-linoleoyl-glycerophosphoinositol[96] 1.8 1.6 × 10−6

cysteine s-sulfate[97] 2.1 1.8 × 10−6

acetoacetate[98] 2.7 5.6 × 10−6

Values are shown as fold change: ratio of median total ion count in pregnant to non-pregnant controls, followed by FDR for the corresponding Wilcoxon test. For

adjusted values, refer to S1 Table. References are bolded when the reference indicates a previous link to obstetric outcome; other findings are believed to be novel, but a

single promising reference to metabolomics and underlying physiology is provided.

https://doi.org/10.1371/journal.pone.0224682.t002
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(e.g. leucylglycine (LG) is correlated with isoleucylglycine (IG), valylglycine (VG), glutamine-

leucine (NL), leucylglutamine (LN), and glycylleucine (GL)). The bradykinin network con-

tained only six nodes (S5 Fig panel D, mean degree 2, IQR 1.5–2 S5 Fig). The xanthine net-

work had the highest connectivity (S5 Fig panel E, mean degree 7.5, IQR 6–9).

For a list of all significant correlations among metabolite abundances in pregnant women,

including metabolite pairs represented in these networks, see S2 Table. Several of these correla-

tions were previously reported in physiological studies [89, 99] of non-pregnant women (S1

Supporting Information and S3 Fig).

Small molecules that change between 8 and 16 weeks of gestation

Among 169 metabolites differing between pregnant and non-pregnant women, the abundance

of 14 metabolites was associated with gestational age (FDR < 0.1). Of these, seven were ste-

roids (such as estriol 3-sulfate increasing with gestational age, R = 0.57; Fig 3D) and four were

lysolipids (such as 1-oleoylGPC decreasing with gestational age, R = −0.37; Fig 3E). In addi-

tion, thyroxine [100] (R = −0.41; Fig 3A), homoarginine [101–103] (R = 0.4; Fig 3B), and beta-

ine [104] (R = −0.63, p< 9 × 10−7; Fig 3C) also changed with gestational age. Thyroxine was

elevated (compared to non-pregnant women) at 8 weeks of gestation but declined to near

non-pregnant levels by 16 weeks of gestation. Homoarginine was near non-pregnant levels at

8 weeks of gestation but then increased with gestational age while betaine was near non-preg-

nant levels at 8 weeks of gestation but then decreased with gestational age. With the exception

of thyroxine, where gestational age dependencies and the pregnant vs non-pregnant compari-

son were both significant, the pattern was of pregnant/non-pregnant differences becoming

more pronounced with advancing gestational age, hence supporting the differential abundance

results between pregnant and non-pregnant groups.

Discussion

Principal findings of the study

1) Pregnant women and non-pregnant women differ in the abundance of 44% of the profiled

plasma metabolites; 2) metabolite differences and associated perturbed pathways reflect

physiological changes occurring in the first 16 weeks of normal pregnancy; and 3) metabo-

lites not previously reported were identified to change as a consequence of pregnancy (e.g.,

blood lysolipids and dipeptides), some of which changed in accord with advancing

gestation.

Table 3. Pathways perturbed in pregnancy.

Pathway Significant metabolites/ Detected metabolites Fisher’s test p-value (FDR) Example metabolite

Xanthine metabolism 13 / 14 0.0002 (0.006) caffeine

Steroid hormones 30 / 44 0.0006 (0.012) pregnanolone sulfatea

Lysolipids 22 / 33 0.0053 (0.056) palmitoyl-linoleoyl-glycerophosphoinositol�

Dipeptides 10 / 12 0.0057 (0.056) histidylalaninea

Polypeptides 6 / 6 0.0067 (0.056) bradykininb

Only the five significantly enriched (FDR < 0.1) pathways are shown.
aSee Table 2.
bAll 6 polypeptides detected in this study were bradykinin or derivatives thereof.

https://doi.org/10.1371/journal.pone.0224682.t003
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What is the overall change in metabolite abundance between non-

pregnancy and early pregnancy?

The abundance of nearly one-half of maternal circulating small molecules that we profiled

changed within the first 16 weeks of gestation, and the majority decreased. This finding is

novel and could be explained 1) by the inhibition of specific metabolic processes producing a

lower abundance of small molecules [105], the activation of catabolic processes consuming

small molecules (e.g. folate [44]), or 2) by expanding blood volume, leading to dilution. How-

ever, dilution effects would be removed by the transformation of the data included in the

abundance adjustment. Except where compensated by increased metabolite production [45],

hemodilution would affect all metabolites equally; thus, by setting the median and other quan-

tiles of metabolite abundance to the same level across samples (quantile normalization), the

direct effects of hemodilution will be cancelled out.

Which metabolic pathways are perturbed in early pregnancy?

Five metabolic pathways were significantly enriched with metabolites differing between non-

pregnant women and those in early pregnancy. These pathway perturbations provide a “sys-

tem level” [75, 106] view of pregnancy. The finding of pregnancy-specific perturbations in

Fig 3. Metabolites associated with gestational age. Each panel shows metabolite abundance (on the vertical axis) vs. gestational age

in weeks (on the horizontal axis). Non-pregnant women are shown to the left of gestational age 0 on the horizontal axis, with dither

added so that points can be distinguished. Each point corresponds to one sample; linear regression lines are shown for pregnant

women, and median values are shown for non-pregnant women.

https://doi.org/10.1371/journal.pone.0224682.g003
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lysolipids and dipeptides is novel. The pathways significantly perturbed with pregnancy also

included steroid hormones, bradykinin derivatives, and caffeine/xanthines.

Steroid hormones. Of all metabolites, 5α-pregnan-3β,20α-diol monosulfate most consis-

tently differentiated pregnant and non-pregnant women. Some changes in the abundance of

the sulfated steroid hormones may result from maternal intrahepatic processes associated with

pregnancy. Indeed, a ratio of sulfated to unsulfated steroid hormones in this class has been

implicated in the diagnosis of intrahepatic cholestasis of pregnancy [107], although later in

gestation. However, the steroid backbones of these sulfated steroids may be of placental origin,

which would contribute to both gestational-age and early-pregnancy effects on steroid abun-

dances, independent of effects in the maternal liver.

An additional group of sulfate-conjugated steroids, the pregnanolone sulfates (and allopreg-

nanolone sulfate, an isomer), is also greatly increased in abundance for women in early preg-

nancy. This is in accord with previous reports [95, 108]. The role of pregnanolone during early

gestation is not clear. These neuroactive steroids have been implicated in the neuro-develop-

ment of the fetus [109] later in gestation. In addition, low pregnanolone isomer concentrations

during gestation have been associated with subsequent post-partum depression [110], consis-

tent with anti-anxiety GABAnergic effects of pregnanolones [111]. The lack of distinction

among pregnanolone sulfate isomers is a limitation of our platform; however, targeted experi-

ments in which these isomers are distinguished [112] validated our observation.

Dipeptides. The abundance of dipeptides, pairs of amino acids connected by a peptide

bond, decreased in pregnant compared to non-pregnant women. A clear chemical relationship

among these compounds was observed: dipeptides containing the same amino acid(s) were

correlated in their abundance. This could be a consequence of either a decreased production

or an increased demand of dipeptides [113]. If the latter explanation were true, then a decrease

in single amino acids would be expected; however, we did not observe such a change. There-

fore, the first option, a decline in dipeptide production, is more plausible. The network correla-

tion suggests that these dipeptides are breakdown products of the same protein degradation

processes (histidylalanine has been interpreted this way [93]), suggesting that protein degrada-

tion processes are lower in pregnancy.

Bradykinin and derivatives. All of the polypeptides measured by the platform used in

this study are derivatives of bradykinin. These compounds are potent vasodilators [114] and

may act synergistically with nitric oxide [115] or angiotensin [116]. The des-Arg9-bradykinin

at the center of the network is the most active form [117]. They have a well-studied role in

pregnancy-related vasodilation [118–120] during later stages of gestation.

Our observation is the first report comparing changes in bradykinin abundance between

non-pregnant women and pregnant women in early gestation. A possible explanation for our

observation could be derived from animal models showing that the vasodilatory effect of hCG

is mediated by other mechanisms rather than through bradykinin [121] and that placental

growth factor has an inhibitory effect on bradykinin activity [122].

What are the changes in the maternal plasma metabolome between 8 and

16 weeks gestation?

There were 14 (including 7 steroids and 4 lysolipids) of 169 metabolites associated with preg-

nancy that also changed with gestational age. While some of these associations are novel (such

as lysolipids), the increase in thyroxine abundance during the first trimester was previously

reported [5, 123–126].

Steroid metabolites were the most significantly perturbed pathway in this study, and indi-

vidual steroids are the most consistent changes associated with pregnancy. These observations
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were not surprising, given that the regulation of steroid hormones [127] is important for ovu-

lation, conception, blastocyst implantation, and the sustenance of gestation [128–130]. This

tightly regulated process involves the uterus (myometrium [131] and endometrium [132]), the

cervix [133], and the ovaries [134] as well as the embryo [135, 136] and subsequently the fetal-

placental unit [137]. Gestational-age changes in steroid abundance [138] over the first trimes-

ter reflect, in part, the luteal-placental shift [130]. Sulfate conjugates were the main forms of

steroid hormones detected in the peripheral circulation during early pregnancy, which is in

agreement with previous reports [139–141]. For example, estriol 3-sulfate increased in abun-

dance from 10 weeks onward, resulting from production of steroid hormones by the placenta

that begins in the first trimester.

Similar to steroids, lysolipids were a perturbed pathway in pregnancy, and the abundance

of some lysolipids depended on gestational age. Decreasing abundance of lysolipids may

reflect a physiological process by which the sensitivity of the myometrium to progesterone is

enhanced. Lysophospholipids have been implicated in inhibiting the effect of progesterone

and estrogen on the quiescence of the myometrium [142, 143]. Therefore, a decrease in

lysophospholipid abundances could reflect a mechanism that assures the quiescence of the

myometrium early in gestation, an important requirement for the maintenance of

pregnancy.

In addition to potentially inter-related changes in lysolipids and hormones, amino acid

derivatives also differ between pregnant and non-pregnant women. For example, the increase

of homoarginine abundance with gestational age is expected in healthy pregnancies, given the

role of this metabolite in vasodilation [102, 103]. Conversely, betaine, an important osmopro-

tectant [144] and methyl donor [145], decreases over the course of the first trimester. Our

observation of declining betaine can be explained by a finding in a rat model of high placental

betaine concentrations, suggesting that betaine could have been drawn from the maternal cir-

culation as a placental methyl donor or osmoprotectant compound [146]; this observation

needs further validation in human placentae. Alternatively, decreasing betaine abundance is

consistent with reported low homocysteine and cysteine concentrations, inferring a lower

need for methyl donation in the homocysteine pathway [147]. Mothers homozygous for the

non-functional variant in betaine homocysteine s-methyl transferase (BHMT) had a 2.8-fold

greater odds of placental abruption [104].

Strengths and limitations of the study

Due to space constraints, not all of the significantly different metabolites can be discussed at

length (S1 Table). The non-pregnant women in this study were somewhat older, less likely to

be of African-American ethnicity, and less likely to self-report smoking (although the differ-

ence in cotinine abundances was not significant). A sensitivity analysis found no qualitative

difference in the results, when older, white, non-pregnant controls were excluded, or, when

self-reported smokers were excluded. Although the women in this study were not given dietary

questionnaires, the great majority of differences identified have not previously been associated

with dietary differences[148], and matching diets between pregnant and non-pregnant women

may not be possible[149]. Finally, where gestational age differences were observed, the trend is

for pregnancy-specific effects to grow, supporting that these differences are due to pregnancy;

however, metabolite differences characteristic of the immediate post-implantation period of

pregnancy (before 8 weeks) were not captured herein. Assessing metabolomics adaptations

prior to 8 weeks of gestation will remain challenging even for future studies due to sample

availability. Caffeine abundance was greatly reduced in pregnant women; this is plausibly

caused by abstinence from coffee; however, we did not survey coffee consumption. In the
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future, a more powerful imputation approach might successfully recover additional preg-

nancy-specific differences[150].

In contrast to prior studies [25, 27–29, 52, 59, 61, 67], the larger sample size of this study,

and the co-randomization of pregnant and non-pregnant women (which is not always done

[26]) across runs of a more sensitive high-throughput mass-spectrometry metabolomic plat-

form, enabled us to identify a larger number of metabolites associated with pregnancy.

Conclusions

We present the first study utilizing high-throughput multi-platform chromatographic mass-

spectrometry to compare the metabolite profiles of pregnant and non-pregnant women. The

results of this study revealed increased pregnancy-induced maternal plasma metabolic

changes, some of which corroborated previous findings. These results will have implications in

further studies since metabolites with pregnancy-related changes in abundance could be prior-

itized for the discovery of much-needed biomarkers [82] in the “great obstetrical syndromes”

[7, 151]. Moreover, efforts to identify metabolic markers of other diseases, using the same mea-

surement platforms, must account for the metabolic effects of pregnancy: for example, lysoli-

pids in alcoholic hepatitis [152] or dipeptides in periodontal disease [153].
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