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Abstract: A series of substituted heteroaromatic piperazine and piperidine derivatives 

were found through virtual screening based on the structure of human enterovirus 71 

capsid protein VP1. The preliminary biological evaluation revealed that compounds 8e and 

9e have potent activity against EV71 and Coxsackievirus A16 with low cytotoxicity. 

Keywords: virtual screening; piperazine derivative; piperidine derivatives; anti-EV71 
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1. Introduction 

Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) belong to the genus Enterovirus of 

family Picornaviridae [1]. Both viruses are common causes of hand, foot, and mouth disease (HFMD), 

which mostly affects young children [2]. The clinical manifestations associated with HFMD caused by 

both viruses include fever, sore throat, diarrhea, and papulovesicular rash on the hands, feet, and 

oropharyngeal mucosa. Moreover, EV71 infections can damage the central nervous system, leading to 

viral meningitis, encephalitis, or severe myocarditis with or without fatal pulmonary edema [3–5]. 

Many epidemic outbreaks have been reported in Southeast and East Asia because of the high of 

morbidity and mortality rates associated with such infections. Between January 2009 and May 2011, 

the EV71 epidemic in China has led to 1,000 deaths [6]. Although few inhibitors and vaccines have 

been reported, such as compound 1, shown in Supplementary Figure S1 [7–10], no antiviral agent has 

been approved by the US Food and Drug Administration for treating HFMD caused by enteroviral 

infections. Clinical treatments are directed only toward relieving the most prominent symptoms of 

each clinical syndrome. Therefore, we need to develop novel EV71 and CVA16 inhibitors. 

In recent years, there are some organic molecules were identified for HFMD therapy [11], and  

EV71-related anti-virus activity had been identified by screening traditional Chinese medicines [12,13]. 

EV71 and CVA16, which are non-enveloped viruses, comprise a positive single-stranded RNA 

genome packed within an outer capsid composed of four proteins (VP1–VP4) [1]. Mature EV71, like 

other enteroviruses, has a hydrophobic pocket on VP1 that penetrates from the surface deep into the 

interior of the VP1 β-barrel, which underlies a canyon-like surface depression [14] and harbors a 

natural lipid (possibly sphingosine) called the “pocket factor” [15]. Releasing the pocket factor 

contributes to activation because it is required for initiating the uncoating and liberation of the RNA 

genome; thus, potential antivirals simulate natural lipids and inhibit uncoating [16], which provides a 

theoretical basis for virtual screening.  

Our laboratory built an in-house chemical database of nearly 10,000 compounds. Based on the 

crystal structure of the EV71 capsid protein [Protein Data Bank (PDB) ID: 3VBH], we screened our 

database using DOCK 6.0 and found novel N-containing heterocyclic piperazines and piperidines as 

EV71 inhibitors and CVA16 inhibitors. Our findings provide a basis for anti-EV71 and anti-CVA16 

drug development.  

2. Results and Discussion 

2.1. Computer Screening 

Identifying a suitable site on the VP1 protein for binding small organic ligands is critical for 

successfully implementing the computer screening strategy for developing effective anti-EV71 

inhibitors. The binding site is a hydrophobic pocket that penetrates from the surface deep into the 

interior of the VP1 β-barrel and harbors a natural lipid (possibly sphingosine) called the “pocket 

factor” by Wang [16]. The closure of the VP1 pocket after the pocket factor was expelled initiated 

EV71 uncoating with pocket collapse; which switches mature EV71 into expanded particles and 

transforms into a conformation with a high-receptor affinity. Therefore; the release of the pocket factor 

is required for initiating viral uncoating; and the discovery of potential anti-EV71 inhibitors focuses on 
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compounds that are structurally similar to natural lipids to occupy the hydrophobic pocket; the binding 

site. Some amino acids are important in EV71 VP1 and the natural lipid complex crystal structure 

(PDB ID: 3VBH). The hydroxyl group of natural lipids was 2.88 Å away from the N atom of Ile113. It 

indicates the formation of H-bond. Morever the natural lipid and residues Ile111; Asp112; Thr114; 

Val192; Met230; and Phe233 interact through molecular electrostatic potential; and Van der Waals force.  

The identification of a VP1 capsid-binding pocket facilitated the computational screening of 10,000 

organic compounds using our in-house chemical database for potential ligands for this pocket. This 

screening selected 60 compounds for cell culture cytopathic effect (CPE) assays. Most of the 60 

compounds were known as HRV inhibitors before. It is not surprising since the homology of EV71 

VP1 coat protein (Sequence ID: Q91PB1) with human rhinovirus (HRV) 2 coat protein (PDB ID: 

1FPN) and HRV16 coat protein (PDB ID: 1AYM) from UniProtKB were up to 40% and 38%, 

respectively. Among the 60 cmpounds identified, 8e is novel and 9e is known to inhibit HRV and their 

docking models in the hydrophobic pocket are shown in Figure 1 as compared to compound 1 

developed by Shih et al. [10] shown in Supplementary Figures S2–S3. Ile111, Val192, Met230, and 

Phe233 formed hydrophobic interactions with different moieties of compounds 1, 8e, and 9e. The 

carbonyl group of imidazolidinone in compound 1 was 3.49 Å away from the N atom of Ile113, 

indicating formation of H-bond. It was also observed that the formation of π-π effects between the 

compound 1 and residues Phe155 and Trp203 existed. Besides, Phe137, Phe155 and 8e interacted 

through π-π effect, whereas Tyr201 and Asn228 performed σ-π effect with 9e. It seems that those 

compounds have more potential for EV71 VP1 inhibition. Fifteen of these compounds displayed 

significant inhibitory effect (median inhibitory concentration [IC50]: 1 μM to 100 μM), with the 

structure of the 15 organic inhibitors shown in Table 1. This finding also indicates further structural 

optimization directions for our research. 

Figure 1. (a) Structures of compounds 8e, and 9e. (b) The natural lipid (pink) was docked 

in the hydrophobic pocket on the VP1 of EV71. The hydroxy group of the natural lipid was 

2.88 Å from the N of Ile113 (green), which suggests a potential H-bond (red). (c) The 

structure of 8e (blue) docked in the pocket with important interactions shown by orange 

lines. (d) The structure of 9e (orange) docked in the pocket with important interactions 

shown by orange lines.  

(a) 
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Figure 1. Cont. 
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Table 1. Anti-EV71 activity, anti-CVA16 activity, and cytotoxicity of compounds 8a–f and compounds 9a–h. 

 

Cpd Ar X Y n R 
TC50 

(μM) 
TC0 

(μM) 

EV71 CVA16 
IC50 

(μM) 
SI 

IC50 

(μM) 
SI 

1 - - - - - 78 ± 5.3 7.7 ± 0.5 0.6 ± 0.0 137 >7.7 - 

9a 

NN
Cl Cl

 

N C 2 C4H9 19.2 ± 0.7 7.7 ± 0.3 1.2 ± 0.0 16.1 1.4 ± 0.1 13.8 

9b 

NN
Cl Cl

 

N C 2
 

189 ± 17.3 29.7 ± 2.2 21.6 ± 1.4 8.7 >29.7 - 

9c 

NN
Cl Cl

 

N C 2 OC2H5 62.9 ± 2.4 31.5 ± 2.1 >31.5 _ 10.8 ± 0.3 5.8 

9d 

NN
Cl Cl

 

C C 2 CO2CH3 193 ± 19.3 30.5 ± 2.0 >31.5 _ 22.1 ± 1.1 8.7 

9e 

 

C C 2 CO2C2H5 >513 >513 1.0 ± 0.2 513 12.7 ± 0.4 >40.3 

9f 

 

C N 2 CO2C2H5 >512 128 ± 9.5 25.4 ± 1.7 >20.2 16.0 ± 0.9 >32.0 

9g 
 

N C 3 CO2CH3 256 ± 22.7 128 ± 3.8 16.0 ± 0.6 16.0 50.8 ± 4.1 5.0 

9h 
 

N C 3 CO2C2H5 359 ± 21.5 31 ± 4.3 4.9 ± 0.2 73.7 4.9 ± 0.2 73.7 
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Table 1. Cont. 

Cpd Ar X Y n R 
TC50 

(μM) 
TC0 

(μM) 

EV71 CVA16 
IC50 

(μM) 
SI 

IC50 

(μM) 
SI 

8a 
 

N C 5 OCH3 277 ± 2.2 138 ± 9.6 100 ± 9.0 2.8 69.2 ± 5.5 4.0 

8b 
 

N C 5 OC2H5 66.6 ± 1.0 33.3 ± 3.9 21 ± 1.2 3.2 5.3 ± 0.3 12.7 

8c 
 

N C 6 OC2H5 54.1 ± 8.1 6.8 ± 0.1 4.3 ± 0.1 12.7 6.8 ± 0.4 8.0 

8d 
 

N C 6 C2H5 56.0 ± 3.3 28.0±2.5 4.4 ± 0.3 12.7 14.0 ± 0.5 4.0 

8e 
 

N C 6 CH(CH3)2 43.1 ± 4.7 6.8 ± 0.8 4.3 ± 0.0 10.1 1.2 ± 0.5 34.8 

8f 
 

N C 6 C(CH3)3 15.6 ± 0.3 7.8 ± 0.4 3.9 ± 0.1 4.0 7.8 ± 0.6 2.0 
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2.2. Chemistry 

Compounds 9a–h (Table 1) were previously reported as HRV inhibitors [17,18]. Because 

compounds 8a–f have never been reported, we describe their synthesis in this paper (Scheme 1). To 

prepare piperazine-1-yl-alkyl alcohol 4a–b, ethyl piperazine-1-carboxylate 2 was coupled with 

compounds 3a–b in the presence of K2CO3 in acetonitrile and exposed the ethoxycarbonyl group in the 

presence of aq NaOH in ethanol. The 2-bromo group of 2-bromothiazole (5) was substituted with 

compounds 4a–b in the presence of Na2CO3 in dimethylformamide (DMF) to yield compounds 6a–b. 

Finally, compounds 8a–f were synthesized through the Mitsunobu reaction by coupling compounds 

6a–b and 4-substituted phenols 7a–e. 

Scheme 1. Synthesis of compounds 8a–f.  

 
Reagents and conditions: (i) K2CO3, MeCN, reflux; (ii) 10% NaOH (aq), EtOH, reflux; and  
(iii) Na2CO3, DMF, 80 °C. 

2.3. Biology 

The anti-EV71 activity, anti-CVA16 activity, and cytotoxicity of the compounds on the EV71 test 

strain (Shenzhen 98, shzh01-8) and CVA16 (laboratory viral culture) were evaluated by using cell 

culture cytopathic effect assays. The results are listed in Table 1. 

2.3.1. Results for Anti-EV71 Activity 

In the series of imidazolidinone compounds reported by Shia [10], the length of the alkyl linker 

does not contribute significantly to antiviral activity. However, we found such length to be important, 
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as evidenced by our compounds 8b and 8c. The p-monosubstituted phenyl ring crucially affects 

antiviral activity [10]. Similarly, the steric requirement of 4-electron donating substitution may have 

affected the antiviral activity against EV71 via 8d–f. Moreover, the larger the alkoxy group, the higher 

the activity, such as with compounds 8a–b and 9g–h. Compared with that of its corresponding 

pyridine isomer 9f, the antiviral activity of the benzene ring of 9e was increased 25-fold. This effect 

might be due to the strict steric requirement on the phenyl ring or to the increased in basicity of the 

pyridine nitrogen. Although chloropyridine derivatives 9a–h have been known as potent human 

rhinovirus capsid-binding inhibitors [17,18], it hasn’t been reported that the series of compounds manifests 

anti-EV71 activity. We first discovered compounds 9a–h showed a wide range of anti-EV71 activity. 

9a–f were the derivatives of pirodavir that was known as the anti-HRV capsid-binding inbititor [19] 

(Supplementary Figure S1, IC50 = 1.2 ± 0.2 μM, TC50 = 31 ± 2.2 μM, SI = 25 [20]). However, 

compound 9e exhibited high antiviral potency and an excellent selectivity index (IC50 = 1.0 μM,  

TC50 > 512.97 μM, SI = 512.8).  

2.3.2. Results for anti-CVA16 Activity 

The evaluation of the series of compounds 8b–c revealed that the length of the alkyl linker was not 

sensitive to anti-CVA16 activity. 9b exhibited moderate anti-EV71 activity, but it was inactive at the 

highest concentration (29.74 μM, TC0 = 29.74 μM). The compounds with the alkoxy, ester, or alkyl 

group at position 4 of the phenoxyl ring (compounds 8a–f and 9g–h) revealed that the suitable steric 

volume, neither too large nor too small, may be significant for anti-CVA16. Compound 9e was similar 

to its corresponding pyridine isomer 9f in terms of anti-coxsackie activity. These effects might be due 

to distinct differences in the hydrophobicity of the compounds. It was the first time that their anti-CVA16 

activity was reported. 

3. Experimental  

3.1. General 

Melting points (mp; °C, uncorrected) were determined in open glass capillaries using a YRT-3 

electrothermal melting point apparatus. The 1H-NMR and 13C-NMR were recorded on a Bruker ARX 

400 MHz spectrometer (Karlsruhe, Germany). Chemical shifts are expressed in δ (ppm) with reference 

to tetramethylsilane. The mass spectra were processed through a Waters Xevo G2 QTof electrospray 

ionization (ESI) spectrometer (Denver, CO, USA). All solvents and reagents were purchased 

commercially and used without further purification. 

3.2. Computer Screening 

The high-resolution X-ray structure of EV71 VP1 with the capsid-binding pocket was used as a 

receptor for ligand docking. DOCK 6.0 is an automatic computerized method used to screen small 

molecule databases for ligands that bind to a given receptor [21]. DOCK 6.0 defined the EV71 VP1 

binding site with a set of overlapping spheres, the centers of which became the potential locations for 

ligand atoms. The binding of an organic ligand to the VP1 hydrophobic pocket was evaluated based on 

shape complementarity and simplified interaction energy (force field energy). Our in-house database 
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was chosen as the small-molecule database because it included approximately 10,000 available small 

organic compounds. The molecular structures were generated using the CONCORD heuristic 

algorithm (developed by R. Pearlman at the University of Texas). The parameters used for docking 

were set to the defaults. For example, the maximum orientation was 1500, and the bump_max was 3. 

Following four rounds of inflexible and flexible virtual screens, 50 molecules with the best shape 

complementarity scores and 50 with the best force field scores were selected from the DOCK 6.0 

screening. The resulting 60 compounds were then chosen for the cell culture CPE assay. Of these 60 

compounds, 37 were from the shape list, 23 were from the force field list, and 9 were on both lists. 

3.3. Chemical Synthesis 

3.3.1. Synthesis of Compounds 4a,b, and 6a,b 

5-(4-(Thiazol-2-yl)piperazin-1-yl)pentan-1-ol (6a). Ethyl piperazine-1-carboxylate 2 (25.5 g, 161.39 mmol), 

5-bromopentan-1-ol (22.43 g, 161.39 mmol), and K2CO3 (55.68 g, 403.48 mmol) were refluxed 

overnight in 200 mL of acetonitrile. Upon cooling, the reaction mixture was filtered to remove 

insoluble solids, and the filtrate was evaporated in vacuo to remove the acetonitrile to produce an oily 

residue. The crude product was purified via column chromatography (CH2Cl2/MeOH/Et3N 100:1:0.5) 

to afford intermediate ethyl 4-(5-hydroxypentyl)piperazine-1-carboxylate as a yellow oil (20.48 g, 

52.0%). Ethyl 4-(5-hydroxypentyl)piperazine-1-carboxylate (15.9 g, 65.09 mmol) and 10% aq NaOH 

(150 mL) were then refluxed overnight in 150 mL of EtOH. The solvent was removed under reduced 

pressure, and the crude residue was diluted with 200 mL of brine and extracted with dichlormethane  

(5 × 200 mL). The organic layer was dried over MgSO4, filtered, and concentrated. The resulting 

yellow oil 4a (9.69 g, 86.5%) was used for the next step without further purification. 4a (8.6 g, 50 mmol) in 

DMF (10 mL) was added to a stirred suspension of 2-bromothiazole (12.30 g, 75 mmol) and Na2CO3 

(5.3 g, 50 mmol) in DMF (40 mL) at 0 °C in a three-necked flask. The resulting mixture was stirred 

overnight at 80 °C and removed in vacuo to yield a yellow solid. The residue was washed with ether  

(3 × 200 mL) and recrystallized with petroleum ether to yield a white solid 6a (5.95 g, 46.5%). 

6-(4-(thiazol-2-yl)piperazin-1-yl)hexan-1-ol (6b). Compound 6b was obtained as a white solid  

(6.84 g, 21.4%) from 6-bromohexane-1-ol according to the same procedure. 

3.3.2. Preparation of Compounds 8a–f 

2-(4-(5-(4-Methoxyphenoxy)pentyl)piperazin-1-yl)thiazole (8a). Diethyl azodicarboxylate (0.35 g, 2 mmol) 

was added to a solution of 6a (0.51 g, 2 mmol), 4-methoxyphenol (0.22 g, 2 mmol), and 

triphenylphosphine (0.52 g, 2 mmol) in dry tetrahydrofuran (10 mL) at 0 °C in a three-necked bottle. 

The resulting mixture was stirred overnight at ambient temperature. The solvent was then removed 

under reduced pressure to yield a crude product, which was then purified via column chromatography 

(petroleum ether/acetone 15:1) to provide a white solid of 8a (0.15 g, 20.7%): mp = 83 °C to 85 °C;  
1H-NMR (CDCl3): δ7.20 (d, 1H, J = 3.6 Hz), 6.83 (s, 4H), 6.58 (d, 1H, J = 3.2 Hz), 3.92 (t, 2H, J = 6.4 Hz), 

3.77 (s, 3H), 3.52 (br, 3H), 2.57 (br, 3H), 2.42 (br, 1H), 1.80 (m, 2H), and 1.50–1.60 (m, 4H); 13C-NMR 

(dimethyl sulfoxide [DMSO]): δ171.37, 153.20, 152.67, 139.49, 115.25, 114.57, 108.08, 67.75, 57.72, 
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55.34, 51.92, 48.30, 28.72, 26.01, and 23.53; ESI-HRMS: m/z [M+H]+ calculated for C19H27N3O2S: 

362.1902; found: 362.1902. 

2-(4-(5-(4-Ethoxyphenoxy)pentyl)piperazin-1-yl)thiazole (8b). Compound 8b was obtained as a white 

solid (0.25 g, 33.3%) from compound 6a according to the same procedure: mp = 79 °C to 81 °C;  
1H-NMR (CDCl3): δ7.20(d, 1H, J = 3.6 Hz), 6.82 (s, 4H) , 6.57 (d, 1H, J = 3.2 Hz), 3.90–4.00 (m, 4H), 

3.52 (br, 4H), 2.57 (br, 4H), 2.43 (br, 2H), 1.79 (m, 2H), 1.49–1.60 (m, 4H), and 1.39 (t, 3H); 13C-NMR 

(DMSO): δ171.36, 152.60, 152.43, 139.46, 115.22, 115.15, 108.05, 67.72, 63.26, 57.71, 51.91, 48.29, 

28.71, 26.00, 23.52, and 14.78; ESI-HRMS: m/z [M+H]+ calculated for C20H29N3O2S: 376.2059; found: 

376.2061.  

2-(4-(6-(4-Ethoxyphenoxy)hexyl)piperazin-1-yl)thiazole hydrochloride (8c). Diethyl azodicarboxylate 

(0.35 g, 2 mmol) was added to a solution of 6b (0.54g, 2 mmol), 4-ethoxyphenol (0.28g, 2 mmol), and 

triphenylphosphine (0.52 g, 2 mmol) in dry tetrahydrofuran (10 mL) at 0 °C in a three-necked bottle. 

The resulting mixture was stirred overnight at ambient temperature. The solvent was then removed 

under reduced pressure to yield a crude product, which was then purified via column chromatography 

(petroleum ether/acetone 15:1) to provide a white solid of 8c (0.32 g). The white solid was added to 

acetone (10 mL) to form a transparent solution. A saturated solution of hydrogen chloride in ether was 

added dropwise to this solution until the pH was adjusted to about 5. The resultant precipitate was 

filtered and dried to yield a white solid 8c (0.38 g, yield 41.1%): mp = 222 °C to 224 °C; 1H-NMR 

(DMSO): δ10.99 (s, 1H), 7.26 (d, 1H, J = 3.6 Hz), 7.00 (d, 1H, J = 4.0), 6.83 (s, 4H), 3.88–3.95 (m, 6H), 

3.49–3.57 (m, 4H), 3.09–3.14 (m, 4H), 1.68–1.73 (m, 4H), and 1.29–1.44 (m, 3H); 13C-NMR (DMSO): 

δ170.54, 153.05, 152.96, 135.37, 115.71, 115.67, 110.35, 68.12, 63.77, 55.76, 49.87, 46.13, 29.02, 

26.32, 25.59, 23.36, and 15.29; ESI-HRMS: m/z [M+H]+ calculated for C21H33Cl2N3O2S: 390.2213; 

found: 390.2215. 

2-(4-(6-(4-Ethylphenoxy)hexyl)piperazin-1-yl)thiazole hydrochloride (8d). 2-(4-(6-(4-Ethylphenoxy)-

hexyl)piperazin-1-yl)thiazole hydrochloride was obtained as a white solid (0.12 g, yield 13.4%) from 

compound 6b according to the same procedure: mp = 240 °C to 242 °C; 1H-NMR (DMSO): δ 11.32 (s, 

1H), 7.27 (d, 1H, J = 3.6 Hz), 7.06 (d, 2H, J = 8.4), 7.01 (d, 1H, J = 3.6), 6.79 (d, 2H, J = 8.4), 3.86–4.03 

(m, 4H), 3.52–3.60 (m, 4H), 3.04–3.09 (m, 4H), 1.67–1.72 (m, 4H), 1.32–1.40 (m, 4H), and 1.09 (t, 3H, 

J = 7.6 Hz); 13C-NMR (DMSO): 170.26, 156.70, 137.08, 135.57, 128.65, 114.25, 109.86, 67.17, 55.29, 

49.55, 45.37, 28.48, 27.31, 25.81, 25.10, 22.93, and 16.03; ESI-HRMS: m/z [M+H]+ calculated for 

C21H33Cl2N3OS: 374.2266; found: 374.2275. 

2-(4-(6-(4-Isopropylphenoxy)hexyl)piperazin-1-yl)thiazole hydrochloride (8e). 2-(4-(6-(4-

isopropylphenoxy)hexyl)piperazin-1-yl)thiazole hydrochloride was obtained as a white solid (0.33 g, 

yield 35.8%) from compound 6b according to the same procedure.: mp = 135 °C to 137 °C; 1H-NMR 

(DMSO): δ10.93 (s, 1H), 7.23 (d, 1H, J = 3.6 Hz), 7.13 (d, 2H, J = 8.4 Hz), 6.98 (d, 1H, J = 4.0), 6.83 

(d, 2H, J = 8.4), 3.91–4.00 (m, 4H), 3.45–3.57 (m, 4H), 3.08–3.13 (m, 4H), 2.82 (m, 3H), 1.68–1.74 

(m, 4H), 1.35–1.47 (m, 4H), and 1.16 (d, 6H, J = 6.8 Hz); 13C-NMR (DMSO): 170.44, 156.75, 140.25, 

139.55, 127.14, 114.19, 109.84, 67.16, 55.32, 49.75, 45.10, 32.59, 28.47, 25.80, 25.12, 24.20, and 

22.98; ESI-HRMS: m/z [M+H]+ calculated for C22H35Cl2N3OS: 388.2423; found: 388.2429.  
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2-(4-(6-(4-tert-Butylphenoxy)hexyl)piperazin-1-yl)thiazole (8f). Compound 8f was obtained as a white 

solid (0.33 g, 63.0%) from compound 6b according to the same procedure: mp = 30 °C to 32 °C;  
1H-NMR (CDCl3): δ7.29 (t, 2H, J = 2.0 Hz), 7.20 (d, 1H, J = 3.6 Hz), 6.83 (d, 2H, J = 8.8 Hz), 6.57 (d, 

1H, J = 3.6 Hz), 3.94 (t, 2H, J = 6.4 Hz), 3.52 (br, 4H), 2.57 (br, 4H), 2.41 (br, 2H), 1.78 (m, 2H), 

1.37–1.58 (m, 6H), and 1.30 (s, 9H); 13C-NMR (DMSO): 171.37, 156.42, 142.44, 139.46, 126.02, 

113.83, 108.04, 67.23, 57.73, 51.92, 48.28, 33.74, 31.38, 26.69, 26.21, and 25.51; ESI-HRMS: m/z 

[M+H]+ calculated for C23H35N3OS: 402.2579; found: 402.2563. 

3.4. Biological Evaluation 

3.4.1. Neutralization Test [22] 

This assay measured the ability of the test compounds to inhibit the CPE induced by EV71 and 

CVA16 on Vero cells. The 96-well tissue culture plates were seeded with 20,000 Vero cells/mL. The 

plates were incubated for 24 h at 37 °C. The virus (100 TCID50) mixed with different concentrations of 

the test compounds was added to the cells, which were incubated at 37 °C for 2 h. After adsorption, the 

infected cells were overlaid with 50 μL of Dulbecco’s modified Eagle’s medium with 5% fetal bovine 

serum, and 2% DMSO. The concentration of the test compound required to reduce the virus-induced 

CPE to 4+ relative to the virus control was expressed as IC50 according to the Reed–Muench method. 

All assays were performed in triplicate. 

3.4.2. Cytotoxicity Assay [23] 

The Vero cells treated with the test compounds were incubated at 37 °C for 96 h. After incubation, 

the cells were harvested and counted. The concentration of a test compound required to reduce cell 

viability to 50% of the tested control culture was expressed as TC50. 

4. Conclusions  

A computer-based database screening strategy was employed to identify a novel series of aromatic 

heterocyclic substituted piperazine and piperidine derivatives as ligands for the EV71 VP1 

hydrophobic pocket that exhibits antiviral activity against EV71 and CVA16. Further mechanistic 

studies on this new class of anti-EV71 inhibitors are in progress. Our study on the structure–activity 

relationships of anti-EV71 and anti-CVA16 indicated that the space volume of the 4-electron donating 

group substituent at the phenoxyl ring largely influenced the in vitro anti-EV71 activity of the new 

class of potent inhibitors, and the appropriate steric requirement on the p-monosubstituted phenyl ring 

may exhibit activity against CVA16. Interestingly, the anti-EV71 activity of this series of compounds 

was reduced when the phenoxyl ring was substituted for the corresponding pridine isomer. Moreover, 

the length of the alkyl linker influenced the anti-EV71 activity. However, both factors did not affect 

the anti-CVA16 activity. The piperidine derivative 9e exhibited the most potent antiviral activity 

against EV71 (IC50 = 1 μM), with no apparent cytotoxicity against Vero cells (TC50 > 512.97 μM), 

compared with compound 1(IC50 = 1 μM, TC50 = 77.91 μM). Compound 8e exhibited excellent 

activity against CVA16 (IC50 = 1.24 μM) and moderate activity against EV71 (IC50 = 4.28 μM), with 
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weak cytotoxicity on Vero cell lines (TC50 = 43.08 μM). Therefore, these compounds are very 

promising candidates for further optimization towards a drug for HFMD treatment. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/18/5/5059/s1. 
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