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Background: RNA plays an important role in tumorigenesis. Changes in RNA may cause changes in 
the biological function. The N7-methylguanosine (m7G) methylation modification performs an integral 
function in tumor progression as the most widely existed RNA modification. Hepatocellular carcinoma 
(HCC) is among the greatest threats to human health worldwide. Low detection rates remain the main cause 
of advanced disease progression. Therefore, finding significant biomarkers for prognosis prediction and 
immune therapy response in HCC is valuable and urgently needed. 
Methods: RNA expression and clinical data were acquired from The Cancer Genome Atlas (TCGA) 
database and the Gene Expression Omnibus (GEO) database. Different subtypes screening was finished by 
consensus cluster. Different expression was performed by R software. The results were validated by western 
blot (WB) methods. Genes with HCC prognostic potential were identified utilizing least absolute shrinkage 
and selection operator (LASSO) analyses. A prognosis model was established with the help of the risk score 
that we calculated. Related genes screening and protein-protein interactions (PPI) network construction 
were performed using the GeneMANIA database. Functional annotation was performed using the Database 
for Annotation, Visualization and Integrated Discovery (DAVID) databases. In addition, gene set enrichment 
analysis (GSEA) of key genes and immune infiltration status were both done by R software. Finally, the 
immune infiltration was performed by cibersort method and single sample GSEA (ssGSEA) method. The 
response of immune therapy was validated by Tumor Immune Dysfunction and Exclusion database (TIDE) 
and the immune therapy cohort in GEO database.
Results: We found that two different subtypes related with m7G RNA modification and four genes 
associated with m7G RNA modification were differentially expressed in the TCGA-Liver Hepatocellular 
Carcinoma (TCGA-LIHC) database. Additionally, to examine the value of these four genes in the HCC 
patients’ prognoses according to the LASSO, we selected three genes, including WDR4, AGO2, and 
NCBP2, as prognostic related genes. Premised on the expression of these three genes, a risk score model 
and nomogram were constructed to provide a prediction of the HCC patients’ prognoses. We performed 
functional annotation and created a PPI network based on the three genes (WDR4, NCBP2, and AGO2). 
Using R software, we performed the GSEA and immune regulation analyses. Finally, we predicted the 
relationship between the gene expression and the response of immune therapy.
Conclusions: Our study suggests that high expression of m7G RNA modification subtype is related 
with poor prognosis and immune response. WDR4, AGO2, and NCBP2 are key regulators of m7G RNA 
modification which can be clinically promising biomarkers that can be used to treat HCC. In addition, our 
risk score model was shown to have a strong link to OS in patients with HCC.
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Introduction

The study of RNA modifications has shown that such 
modifications potentially influence all RNA mechanisms, 
such as localization, stability, and splicing (1). The 
methylation of guanosine on internal RNAs at position N7 
(also known as m7G) has been discovered in all domains 
of life, and it may play a role in human disease (2). Several 
research reports have illustrated that abnormal m7G 
RNA modification performs a critical function in tumor 
progression, therefore, it is of great significance to screen 
the genes related with m7G RNA modification that play a 
role in tumor prognosis.

Hepatocellular carcinoma (HCC) is the most frequent 
kind of tumor originating in the liver. In recent years, 
there has been a continued elevation in both the morbidity 
and death rates associated with HCC (3). Hepatitis virus 
infection, alcohol, and improper use of drugs are major risk 
factors for HCC (4). Surgery is still the primary treatment 
in HCC patients. With the improvement of imaging 
technology and the increased attention given to HCC, the 
detection rate of HCC is gradually increasing (5). However, 
it is still a challenge to give a prognostic prediction for the 
HCC patients today. Therefore, it is of great necessity to 
discover new subtypes and biological markers to better 
treat HCC.

Our study builds on existing research to identify 
different subtypes related with key regulators of m7G 
RNA modification and construct a prognostic model to 
investigate their potential role in HCC. We generated a 
prognostic risk signature prediction model that divided 
HCC patients into two categories depending on the 
optimal cutoff value. According to validation set, our model 
demonstrated a positive predictive performance for HCC 
patients. We also performed the functional annotation of 
these genes and their related genes using bioinformatics 
methods. Finally, we investigated the relationship between 
the gene expression and the response of immune therapy. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tcr.amegroups.com/
article/view/10.21037/tcr-24-22/rc).

Methods

Consensus clustering and differential expression analysis

This study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). Genes currently considered 
to be regulators of m7G RNA modification were acquired 
from the literature retrieval and gene set enrichment analysis 
(GSEA) database (http://software.broadinstitute.org/gsea/
index.jsp) (6). The Cancer Genome Atlas (TCGA) database (7)  
was searched for data on gene expression as well as clinical 
data of patients with HCC. Cluster analysis was performed 
using ConsensusClusterPlus and the optimal number of 
cluster was determined using the empirical cumulative 
distribution function plot. The score of m7G RNA 
modification in different subtypes were performed by single 
sample GSEA (ssGSEA) method. Differential analysis was 
conducted with R program, and the differentially expressed 
genes (DEGs) were identified under the condition of the 
adjusted P value (Padj) <0.05 coupled with |log2FC| >1. 

Cell culture

We selected HCC cell line, Huh-7, from BeNa Culture 
collection company. And human normal liver tissue cell 
line THLE-2 and L02 were purchased from American 
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type culture collection (ATCC). Cells were cultured in 
Dulbecco’s modified eagle medium (DMEM) medium 
supplemented with 10% fetal bovine serum (FBS). They all 
cultured in an incubator with the condition of 5% carbon 
and 37 ℃.

Western blot

Total protein of Huh-7, THLE-2 and L02 cells were 
selected with Radio Immunoprecipitation Assay (RIPA) 
buffer, and then performed electrophoresis in 10% agarose 
and transferred onto polyvinylidene fluoride (PVDF) 
membrane. We used 5% skimmed milk for blocking. 
The primary antibody was incubated with the membrane 
overnight at a temperature of 4 ℃. The secondary antibody 
was incubated for 2 hours at normal temperature and 
centrifuged at 4 ℃. The results of western blot were 
analyzed by ImageJ, photoshop and Graphpad prism9. 

Prognostic model construction and validation

The least absolute shrinkage and selection operator 
(LASSO) Cox regression method was used to select the 
prognostic related key genes. We calculated risk score 
from LASSO model and constructed a prognostic model 
with high risk and low risk two groups. Receiver operating 
characteristic (ROC) curves were utilized to examine the 
effectiveness of the model as a tool for prognosis prediction. 
Validation set GSE14520 (8) was selected from GEO 
database (https://www.ncbi.nlm.nih.gov/geo/) (9).

Protein-protein interactions (PPI) network construction 
and enrichment analysis

The PPI network was constructed using the GeneMANIA 
database (https://genemania.org/) (10) and DAVID database 
(https://david.ncifcrf.gov/) (11) was utilized for enrichment 
analysis of key genes and their related genes. R software 
was used to complete this visualization. To determine the 
possible molecular processes or functional pathways, GSEA 
(http://software.broadinstitute.org/gsea/index.jsp) was 
applied (12).

Immune infiltration analysis

Cibersort method (13) was used to describe the immune 
infiltration between two different subtypes. Tumor Immune 
Dysfunction and Exclusion database (TIDE) method was 

performed to compare the immunotherapy response (14). 
The immune therapy response cohort GSE126044 (15) was 
used to show the relationship between the gene expression 
and the response result. We performed visualization by R 
software.

Statistical analysis

R software and its resource packages were used for statistical 
analysis and the creation of the related visualizations. The 
differential expression was calculated using a Wilcoxon 
Rank Sum Test or Student’s t-test. In this investigation, 
Kaplan-Meier plots were created, and log-rank tests were 
carried out. For all statistical tests in this analysis, P<0.05 
was established as the criterion for determining statistically 
significant differences.

Results

Identification of m7G RNA modification-related subtypes 
by consensus cluster

By consensus cluster method, we first divided the TCGA-
LIHC database into two groups (Figure 1A,1B). In this 
cohort, there were 378 samples of HCC patients with 
clinical information. We calculated the enrichment score of 
m7G RNA modification related genes in the two groups and 
found that one group (C1) with low score and one group 
(C2) with high score (Figure 1C). Next, we performed the 
survival curve between the two groups and we found that 
high score group was related with unfavorable prognosis 
(Figure 1D). The different expression genes were selected by 
limma package and we made an intersection with m7G RNA 
modification related genes (Figure 1E). We finally found 
four genes (WDR4, EIF3D, NCBP2 and AGO2) as our 
key genes. We screened different function by gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses between two groups (Figure 1F,1G). 

Different genes expression and validation by experimental 
method

We used key genes to perform differential analysis on the 
TCGA-LIHC datasets. The expression levels of WDR4, 
EIF3D, NCBP2, and AGO2 were considerably elevated 
in HCC tumor specimens in contrast with those in normal 
specimens. These four genes satisfied the requirements for 
assessment (Padj <0.05, |log2FC|>1.0) and were identified 
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Figure 1 Identification of two different subtypes by consensus cluster. (A,B) The result of the consensus cluster. (C) The comparison of 
the functional score of m7G RNA modification related genes in two groups (****, represents P<0.001 between two compared groups). 
(D) Survival curve in two groups. (E) Volcano map to show the different expression genes (red color represents up-regulated genes; green 
color represents down-regulated genes; black color represents genes no differences between two groups). (F,G) Bubble charts to show the 
functional annotation results in two groups. HR, hazard ratio; BP, biological processes; CC, cellular components; MF, molecular functions.
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as key m7G-related genes in HCC. The unpaired box plots 
were used to show their differential expression in HCC 
(Figure 2A-2D). By using western blot, the levels of WDR4, 
NCBP2, EIF3D, and AGO2 in HCC cell lines were 
elevated compared with those in normal liver cell lines. 
We found the different expression of the four genes by 
western blot (Figure 2E-2H). By using image, the different 
expression of four genes were visualized (Figure 2I-2L).

Construction and validation of a genetic risk score model 
for HCC patient

We performed univariate analysis and visualization by forest 
map to find the correlation between the four genes and the 
prognosis of patients with HCC. We used TCGA-LIHC 
database to find the relationship between the expression of 
the four genes and the prognostic value. Depending on the 

Figure 2 The differential expression of m7G RNA Modification Related genes in Hepatocellular carcinoma. (A-D) Box plot to show the 
differentially genes in Hepatocellular carcinoma. (E-H) The experimental results of different expression. (I-L) The bar chart to show the 
result of western blot. * represents P<0.05, *** represents P<0.01, **** represents P<0.001 and ns represents no statistical difference between 
two compared groups; TPM, transcripts per million.
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prognostic curves, we found that with the high expression of 
WDR4 and NCBP2, the prognostic of HCC patients were 
worse in overall survival (OS) and progress-free survival 
(PFS) (Figure 3A-3D). However, the expression of AGO2 
had no prognostic significance in OS and the expression of 
EIF3D had no prognostic significance in PFS in TCGA-
LIHC database (Figure 3E-3H).

To further exam the prognostic value of these four genes, 
we selected three genes as our key genes through LASSO 
Cox regression analysis (Figure 3I-3K). WDR4, AGO2, 
and NCBP2, were selected to establish the HCC risk 
model. The risk score was calculated: risk score = (0.066 
× expression value of WDR4) + (0.023 × expression value 
of AGO2) + (0.074 × expression value of NCBP2). Based 
on the computational process, we divide into high-risk 
group and low risk group by the optimal cut-off value of 
approximately 1.017. A dot plot was performed to show the 
survival rate of each patient and a heatmap was to depict the 
differential expression of 3 key genes (Figure 3L).

We found a significant prognostic difference and high-
risk group had a poor prognosis in K-M curve (P=9.7e−8) 
(Figure 4A). After that, the ROC curve and AUC was 
calculated to exam the efficiency of this model (Figure 4B). 
To further validate this model, we selected another dataset 
GSE14520 from GEO database and calculate risk score by 
the same method. Tumor and paired non-tumor samples 
of 338 patients contained in this dataset. K-M curve and 
ROC curve show that this model can predict prognosis in 
another dataset (Figure 4C,4D). To further investigate the 
prognostic value of our three key genes, we established a 
nomogram based on the expression of our key genes. We 
could calculate the score of every patient by this diagram 
and predict the survival probability (Figure 5).

In conclusion, we found that this three-gene signature 
model has the most accurate capability for predicting the 
prognosis of patients with HCC.

Establishment of the PPI network and functional 
annotation of key genes in HCC

After completing the differential analysis, we further identified 
genes related to the key genes using the GeneMANIA 
database and finished the PPI network (Figure 6A). In 
addition, the functions of the three genes and their 
corresponding genes were evaluated by GO and KEGG 
in DAVID. As depicted in the map (Figure 6B), a strong 
enrichment of these genes was found in the biological 
processes (BP) category, including the development of 

translation initiation complex in the cytoplasm, assembly of 
the ribonucleoprotein complex, organization of the subunits 
of the ribonucleoprotein complex, cytoplasmic translation, 
and initiation of translation in the cytoplasm. Moreover, 
these genes played a role in cellular components (CC), 
such as translation initiation factor 3 complex in eukaryotic 
cells, 48S pre-initiation complex in eukaryotic cells, 43S 
pre-initiation complex in eukaryotic cells, translation pre-
initiation complex, and cytoplasmic ribonucleoprotein 
granule. In addition, these genes also prominently affected 
the activity of molecular functions (MF), including RNA 
binding, translation factor, tRNA methyltransferase, 
translation initiation factor, RNA methyltransferase, 
catalysis, and acting on RNA. In KEGG analysis, we found 
these genes enriched in some pathways, including RNA 
transport, Spliceosome, and mRNA surveillance pathway.

Furthermore, the findings of the GSEA highlighted 
that the tumor markers could be implicated in the drug-
metabolizing cytochrome P450; retinol metabolism; 
metabolism of fatty acids; complement and coagulation 
cascades (Figure 6C).

Besides, we investigated the function of the three key 
genes by GO and KEGG methods. As the bar charts 
shown, we found that WDR4 mainly involved in the 
process of RNA methylation and tRNA modification 
and it mainly joined these processes by activating RNA 
methyltransferase (Figure 6D). NCBP2 mainly involved 
in pre-mRNA cleavage required for polyadenylation, 
regulation of RNA export from nucleus and positive 
regulation of mRNA 3’-end processing. And the molecular 
function including the binding of RNA, m7G-cap and 
snRNA (Figure 6E). We also found that AGO2 could 
join in the positive regulation of nuclear-transcribed 
mRNA catabolic processing, deadenylation-dependent 
decay and pre-miRNA processing. And it played a role in 
molecular function as endoribonuclease activity, producing 
5’-phosphomonoesters, RNA cap binding, m7G cap binding 
and siRNA binding (Figure 6F).

Immune infiltration analysis of key genes in HCC

By Cibersort method, we performed immune infiltration 
between C1 and C2, we found that the different expression 
of Tregs (Figure 7A). We used TIDE method to evaluate the 
immune response between two groups, finally, the immune 
response rate of the high expression group was lower than 
that of the low expression group (Figure 7B).

To determine whether the key genes were involved in 
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Figure 3 The survival analysis of genes and least absolute shrinkage and selection operator cox regression analysis. (A-H) The survival 
curves of WDR4, NCBP2, AGO2 and EIF3D in the cancer genome atlas database -liver hepatocellular carcinoma. (I) The forest map 
shows prognostic-related genes. (J,K) The least absolute shrinkage and selection operator cox regression analysis to ascertain the accurate 
prognostic power-related genes. (L) The risk scores distributions in the prognostic model; a dot pot for displaying each patient’s survival 
rate; a heatmap depicting the expression of three prognostic genes in low- and high-risk groups. TCGA-LIHC, The Cancer Genome Atlas-
Liver Hepatocellular Carcinoma.
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Figure 4 The prognostic risk model construction is premised on m7G RNA modification-related genes. (A) Comparing the overall survival 
between high- and low-risk groups in the Cancer Genome Atlas database. (B) Receiver operating characteristic curves to show the model’s 
credibility in Cancer Genome Atlas database. (C) Kaplan-Meier curve in GSE14520. (D) Receiver operating characteristic curves curve in 
GSE14520. HR, hazard ratio; CI, confidence interval.

tumor immunity, we described the immune infiltration of 
these key genes in HCC by ssGSEA method. We found that 
the expression of the genes were all positive correlated with 
the Th2 cells and TFH cells (Figure 7C-7E). This may help 
them to perform immune escaping in tumor. We further 
tested the relationship between the expression of the three 
genes and the result of immune response in immune therapy 
cohort GSE126044, we found that the high expression of 
WDR4 related with the non-response to anti PD-1 therapy 
(Figure 7F-7H). 

Discussion

RNA modification may serve as a key point to cure 
cancer in the future. Some studies have confirmed that 
m7G is involved in tumor growth and progression  
(16-18). However, few biomarkers associated with m7G 

modification have been found to be significant in the cancer 
field. HCC is a kind of cancer that has a high incidence 
of morbidity and death all over the globe (19). Despite 
the multitude of therapeutic methods available for HCC, 
surgery remains an essential treatment, and the prognosis 
is poor (20). Therefore, there is an urgent need to find 
biomarkers that can be used to detect the occurrence of 
HCC. Recently, some experts and researchers have focused 
on finding these biomarkers for HCC tumors. Previous 
studies have identified several prognostic prediction 
signatures on the basis of mRNA, miRNA, and lncRNA, 
such as PSMD14, ISG20L2, NRAS, OSGIN1, BRD8, 
CACYBP, CD320, HSP90AA1, MAPT, FABP6, and 
NDRG1 (21,22). 

We identified m7G RNA modification-related subtypes 
and key regulators with high expression in HCC tissues 
and a low expression in normal tissues. Furthermore, to 
identify genes that are linked to prognosis, we performed 
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Figure 5 The nomogram to predict the survival probability of hepatocellular carcinoma patients. AFP, alpha-fetoprotein.

LASSO Cox regression analyses. Three genes, including 
WDR4, AGO2, and NCBP2, were selected and defined 
as our key genes. Risk score methods that are based on 
polygenic signatures are being used more often to anticipate 
the prognosis of patients with malignancies. With the 
help of three key genes, we built a predictive signature. 
Surprisingly, we confirmed that this risk score model 
can effectively anticipate HCC patients’ prognoses. By 
the validation set, we discovered that the risk signatures 
constructed in this research have the potential to assist 
practitioners in producing more accurate personalized 
survival predictions. Functional annotation and immune 
analysis were investigated of these key genes to identify 

their function and their value to immune therapy. 
WDR4 has a wide range of effects that prove its critical 

role in translation and tumor progression. The MYC/
WDR4/CCNB1 signaling pathway and its impact on PI3K/
AKT and P53 have previously been studied. Furthermore, 
according to the findings of the research, one of the 
oncogenic factors in lung cancer is METTL1/WDR4-
mediated alteration of m7G tRNA. These findings provide 
new ideas for studying m7G modification in cancer (23,24). 
WDR4 may have more complex functions in HCC, which 
poses a new challenge to the study.

AGO2 is one of the key regulators in tumorigenesis. 
Numerous research reports have concentrated on the role 
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Figure 6 Functional annotation of the differentially m7G RNA modification-related genes. (A) Protein-protein interactions network of key 
genes. (B) Gene ontology enrichment terms and Kyoto Encyclopedia of Genes and Genomes terms. (C) Gene set enrichment analysis of the 
key genes. (D-F) The results of functional annotations of WDR4, NCBP2 and AGO2. BP, biological processes; CC, cellular components; 
MF, molecular functions; KEGG, Kyoto Encyclopedia of Genes and Genomes.

that AGO2 plays in the onset and progression of tumors (25). 
Multiple forms of tumors, including colon cancer, HCC, 
breast cancer, and gastric carcinoma, have been shown to 
have an upregulated level of AGO2. However, in both lung 
adenocarcinoma and non-small cell lung cancer, AGO2 has 
been shown in previous research to inhibit the progression 
of tumors and/or metastases (26). In recent work, the 
researchers discovered a new modulatory axis composed 
of AGO2/miR-185-3p/NRP1 that regulates epithelial-
mesenchymal transition (EMT) and the potential for 
metastasis. These studies proved that AGO2, an important 
gene, is essential to further investigation (27). Notably, few 
studies have explored the mechanism of action of NCBP2 
in tumors. Therefore, its pivotal role is also worth revealing 
in future studies in HCC.

There are some limitations of our study. First, due to 
the limited amount of data, not many groups were assessed. 

Furthermore, the utility of the key genes identified in this 
study as drug targets must be investigated further.

Conclusions

In conclusion, the current study suggests that high 
expression of m7G RNA modification subtype is related 
with poor prognosis and immune response. WDR4, 
AGO2, and NCBP2 are key regulators of m7G RNA 
modification which can be clinically promising biomarkers 
that can be used to treat HCC. In addition, our risk score 
model was shown to have a strong link to OS in patients 
with HCC, which provides a better understanding of 
the molecular targets of HCC cells so that therapeutic 
strategies can be improved in the future. Furthermore, 
we investigated the immune infiltration of key genes in 
HCC with the hope that they may contribute to future 
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Figure 7 Immune regulation analysis. (A) The different expression of immune cells between two groups (* represents P<0.05, *** represents 
P<0.01, and - represents no statistical difference between two compared groups). (B) The immune response results in two groups. (C-E) The 
link between immune cells and WDR4, AGO2 and NCBP2. (F-H) The relationship between the expression of WDR4 and the response of 
immune therapy. TIDE, Tumor Immune Dysfunction and Exclusion; PD-1, programmed death 1; PD-L1, programmed death-ligand 1.

immunotherapy.
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