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Abstract

Phylogeography interprets molecular genetic variation in a spatial and temporal context. Molecular clocks are frequently
used to calibrate phylogeographic analyses, however there is mounting evidence that molecular rates decay over the
relevant timescales. It is therefore essential that an appropriate rate is determined, consistent with the temporal scale of the
specific analysis. This can be achieved by using temporally spaced data such as ancient DNA or by relating the divergence of
lineages directly to contemporaneous external events of known time. Here we calibrate a Eurasian field vole (Microtus
agrestis) mitochondrial genealogy from the well-established series of post-glacial geophysical changes that led to the
formation of the Baltic Sea and the separation of the Scandinavian peninsula from the central European mainland. The field
vole exhibits the common phylogeographic pattern of Scandinavian colonization from both the north and the south,
however the southernmost of the two relevant lineages appears to have originated in situ on the Scandinavian peninsula, or
possibly in the adjacent island of Zealand, around the close of the Younger Dryas. The mitochondrial substitution rate and
the timescale for the genealogy are closely consistent with those obtained with a previous calibration, based on the
separation of the British Isles from mainland Europe. However the result here is arguably more certain, given the level of
confidence that can be placed in one of the central assumptions of the calibration, that field voles could not survive the last
glaciation of the southern part of the Scandinavian peninsula. Furthermore, the similarity between the molecular clock rate
estimated here and those obtained by sampling heterochronous (ancient) DNA (including that of a congeneric species)
suggest that there is little disparity between the measured genetic divergence and the population divergence that is
implicit in our land-bridge calibration.
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Introduction

Phylogeography makes use of spatially ordered genetic data for

biogeographical inference. Time is fundamentally important to

any phylogeographic interpretation, so the rate of genetic change

must be assumed or inferred in some way. Appropriate calibration

can be accomplished by including genetic data from temporally

spaced sequences [1], for example ancient DNA [2,3]. Unfortu-

nately, intraspecific phylogeographic studies often rely on the

application of published molecular clock rates, as in previous

phylogeographic studies of northern Eurasian Microtus voles [4–

6]. These rates are generally derived from the genetic divergence

between clearly-defined taxa whose separation can be dated from

fossil evidence. This will introduce considerable uncertainty, both

from the process of geological dating and the incomplete nature of

the fossil record itself [7]. However, it is also inappropriate to

apply such rates to recent genetic divergence among populations,

given that they have been derived from fixed differences that have

accumulated over millions of years [8]. It has for some time been

recognised that there is a decay in molecular evolutionary rates,

when these are measured over increasing periods of time [9,10].

This phenomenon has generally been attributed to the effects of

genetic drift and purifying selection on deleterious mutations

[10,11]. Whatever its origin, there is growing realization of the

need to take account of time-dependence in molecular rate

estimates [9,12], as the application of clock rates derived from

fixed genetic distances between species to intraspecific genetic data

can lead to errors in orders of magnitude [8]. Evidence for time

dependence and its influence on the inferred timing of evolution-

ary events are outlined in a recent review [10].
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These contentious issues were fundamentally important to an

earlier analysis of range-wide mitochondrial cytochrome b
variation in the Eurasian field vole [13], which is one of three

incipient or closely related species that make up the Microtus
agrestis complex [14]. In that study, an extremely high nucleotide

substitution rate (ca.461027 substitutions/site/year) was obtained,

around 20 times faster than a commonly used mammalian

mitochondrial clock rate [15]. The rate was inferred by calibrating

the gene genealogy from the possible time of origin of a

monophyletic clade, currently restricted to northern Britain. It

was assumed that the clade originated after 14.685 ka BP, when

the climate rapidly warmed after the last Weichselian glaciation

[16], as field voles would not tolerate the periglacial conditions

that were present in north-western Europe before this time [17]. In

addition it could not have originated more recently than 8.4 ka

BP, the time when the island of Britain was separated from

mainland Europe by the rising sea level of the Holocene [18] or it

would form a subclade within a larger British clade.

This calibration could of course be incorrect, if the clade

survived through one or more of the Weichselian stadials, either in
situ or in a more southerly location with a more hospitable

climate. Survival in situ is a possibility, because our assumptions

about the species’ climatic tolerance are based on its response to

the present-day combination of environmental factors and biota.

Survival of this clade elsewhere is also possible, but there is no

evidence for this, despite the intensive sampling of adjacent parts

of Europe [13]. Previous survival of the clade elsewhere would

imply large-scale replacement of the lineage over its original range,

breaking the link between past and present distributions of

populations. The calibration that we actually use not only has the

obvious correspondence between population divergence and

environmental change, it also implies an association of genetic

and population divergence. Genetic divergence will generally

precede population divergence and the disparity between them

may be considerable, especially in large populations. It is therefore

important to acknowledge the possibility that sampled variation

may represent persistent polymorphism that was present at the

time of population divergence [11].

Although the field vole cytochrome b genealogy of Herman and

Searle [13] was calibrated from the time of origin of a clade

confined to northern Britain, within that genealogy there was also

another monophyletic clade with a restricted distribution in the

southern part of the Scandinavian peninsula. The sequences

representing this clade had previously been incorporated within

one of two widespread lineages that were thought to have

colonized Fennoscandia from two separate centers in mainland

Europe and Russia [6,19,20]. The field vole mitochondrial genetic

structure therefore appeared to follow the general pattern of bi-

directional immigration from the north-east and south that has

been observed in other small mammals, such as the common

shrew Sorex araneus and root vole Microtus oeconomus, as well as

in other animals and plants [4,6,20–23].

However, based on the few Scandinavian samples available at

the time, our more recent analysis [13] showed that the southern

part of the Scandinavian peninsula was occupied by a distinct

clade that was not present elsewhere and which originated at the

same time as the five other clades that together make up the whole

cytochrome b genealogy. This is in contrast to other species where

the clade(s) occupying the Scandinavian peninsula were also

present in central or eastern Europe [4,22,23]. For the field vole,

one of the two source populations for the bi-directional

Fennoscandian colonization had therefore originated in eastern

Europe or western Asia, while the other was confined to the

southern part of the Scandinavian peninsula itself. Field voles with

a distinct Y-chromosomal re-arrangement (Lund-Y) are confined

to one area within the southern part of the peninsula [24,25],

providing further evidence that a distinct lineage may have

evolved here.

For the present study, we obtained 136 new field vole

cytochrome b sequences from Scandinavia, Poland and Russia.

The addition of substantial new data from eastern Europe and

Scandinavia has allowed us to build on the earlier range-wide

analysis of Herman and Searle [13]. We have reduced the heavy

bias towards the British Isles in our previous sampling regime,

while including substantial data for the geographical region that

allows a second calibration of the genealogy (Scandinavia). The

use of another calibration, similar to the previous one from Britain,

permits us to refine our understanding of post-glacial colonization

by the field vole and test our previous estimate of an intraspecific

cytochrome b substitution rate. This new calibration is more

certain than the previous one, as the southern part of the

Scandinavian peninsula was entirely glaciated. Although it is

vulnerable to the same risk as for the isolated British lineage, that

the southern Scandinavian lineage survived one or more of the

Weichselian stadials in an undetected mainland European

refugium, it would be surprising if both isolated lineages were

completely replaced in mainland Europe without any trace being

found. Although our new calibration remains vulnerable to the

possible presence of persistent polymorphism, pre-dating the

divergence of the Scandinavian population, the otherwise low risk

of calibration error permits us to reliably compare the result here

with similar findings from studies that have employed heteroch-

ronous (ancient DNA) samples.

Some degree of discordance is expected between individual

gene genealogies, like the one here, and their corresponding

species trees [26–28]. However, in a study of speciation in the

whole Eurasian field vole (sensu lato) complex [14], it was found

that the distributions of mitochondrial lineages matched those

defined by autosomal and sex-chromosome markers. Although the

depth of corresponding nodes varied among the constituent

genealogies, much finer resolution was obtained with cytochrome

b than with the nuclear markers, due to the higher variability of

cytochrome b. The exclusive use of mitochondrial DNA here is

therefore justified, given the need for sufficient resolution and

unbiased estimation of the field vole cytochrome b substitution

rate. It permits direct comparison between the rate obtained here

and those from other studies that have used heterochronous

sampling, which have so far generally been restricted to

mitochondrial DNA.

Scandinavia at the end of the last glaciation
In Scandinavia and the Baltic region of north-eastern Europe,

the episodes of climate change drove a complex but well-

established process of geophysical change that was dominated by

the deglaciation of the Fennoscandian ice-sheet [29]. Eustatic and

isostatic changes in sea level produced a dynamic pattern of

connectivity between land masses in the region [30,31] and this

can conveniently be divided into a series of discrete, timed stages

that are relevant to colonization by small mammals and other

terrestrial animals (Figure 1). For consistency all dates quoted here

are in ka BP, defined as thousand years before AD 1950, with 14C

values calibrated using the IntCal04 and IntCal09 curves [32,33].

Until 13.1 ka BP the Scandinavian and Baltic region was

deglaciating (Figure 1a), but the ice cover of the southern

Scandinavian peninsula was replaced by Arctic tundra [34],

unsuitable for temperate species like the field vole and furthermore

inaccessible to animals that could not use winter ice cover to cross

the Baltic Ice Lake outlet in the Øresund area. From 13.1 to
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12.7 ka BP, the Baltic Ice Lake drained sub-glacially at the margin

of the receding ice-sheet and a first land bridge was formed

between the southern part of the Scandinavian peninsula and

mainland Europe (Figure 1b). This land bridge, together with the

prevailing warmer climate, surely provided the first opportunity

for temperate small mammals to colonize the Scandinavian

peninsula from the south. Between 12.7 and 12.1 ka BP, the

Øresund outlet of the Baltic Ice Lake was re-established and the

land bridge was no longer available, because the cooling

temperature of the Younger Dryas period brought the retreat of

the ice-sheet to a halt and closed the sub-glacial outflow

(Figure 1c). A second land bridge connected the southern part of

the Scandinavian peninsula to mainland Europe from 12.1 to

10.3 ka BP, once again providing a route for colonization by small

mammals. This land-bridge was formed by the re-opening of a

northern outlet for the Baltic Ice Lake, as the ice-sheet began to

retreat again (Figure 1d). During this period the Baltic Ice Lake

was finally drained and replaced by the Yoldia Sea, then the

Ancylus Lake, when the northern outlet was dammed again, this

time by uplift of southern Scandinavia as the Fennoscandian ice-

cap melted. At 10.3 ka BP the Dana River was formed to the west

and south of Zealand, as the continuing uplift of the southern

Scandinavian peninsula reduced and eventually closed the

northern outlet of the Ancylus Lake through Lake Vänern, then

at 9.2 ka BP the Baltic Sea was created by inundation of the

Øresund channel (Figure 1e). At this point the Scandinavian

peninsula was finally separated from mainland Europe, preventing

further overland colonization from the south.

Materials and Methods

Genomic DNA was extracted from 136 preserved skins of field

voles from Norway, Poland and Russia. These were obtained from

the collections of the Mammal Research Institute, Polish Academy

of Sciences, Białowiez_a, University Museum of Bergen, Norway

and National Museums Scotland, Edinburgh (Table S1). The

entire 1 143 base-pair cytochrome b gene was amplified using the

primers in Table S2 and a protocol designed for this type of

material [35,36]. Museum skins yield reduced amounts of DNA

that also tends to be fragmented [37], so the gene was amplified in

four overlapping fragments of 300 to 400 base-pairs (Figure S1).

Negative extraction and PCR controls, with no tissue and no

template DNA respectively, were included in all procedures.

Sequences were edited and aligned with 305 previously published

sequences from the Palaearctic range of the species [6,13,38]. All

new sequences are available in the GenBank database

(KF218851–KF218952) and voucher specimens in the three

institutions above (Table S1).

Bayesian genealogy sampling with BEAST 1.7.5 [39] was used

to infer the relationship among the cytochrome b sequences,

represented here by the Maximum Clade Credibility Tree, along

with times to most recent common ancestor (tMRCA) for the main

clades. Posterior distributions of these and other model parameters

were obtained from four or more independent Monte Carlo

Markov chain (MCMC) simulations, each run for 200 million

generations, by which time the effective sample size for each

parameter was sufficient (200 or more). Convergence of chains was

confirmed from log traces for each parameter and the first 10

million generations from each chain were discarded as burnin.

The analyses were repeated without sequence data, to test the

effects of the priors and the data on the posterior distributions.

Simulations were carried out with a variety of potentially

appropriate coalescent models. A strict molecular clock was

compared with an uncorrelated lognormal (UCLN) relaxed

molecular clock [40], which is commonly used to accommodate

variation in clock rate across the branches of the genealogy.

Constant population size, simple expansion growth and skyline

demographic models [41] were also compared, to test whether the

population size had changed and attempt to recover the pattern of

change, where present. Path sampling and stepping-stone

sampling were used to estimate marginal likelihoods for compar-

isons between these models [42]. For model selection, MCMC

runs comprised 1 000 steps of 100 000 generations, with power

posteriors defined according to quantiles of a beta distribution with

alpha value 0.3, following 10 million generations burnin. Sufficient

sampling of chains was indicated by convergence of the combined

marginal likelihood estimate from path sampling runs with that

from stepping-stone sampling runs, which is attained more rapidly.

In preliminary tests of the method, convergence was much more

rapid under this regime of many short chains than when regimes

with fewer steps and longer chains were used (100 steps of

1 000 000 generations and 50 steps of 2 000 000 generations).

Proper prior distributions were specified for all parameters, a

requirement for estimation of marginal likelihoods. The resulting

Bayes Factors, expressed as natural logarithms, for preference of

one model over the other were interpreted according to widely

accepted criteria [43].

The molecular clock was calibrated using prior distributions on

the tMRCA of the clade from the southern part of the

Scandinavian peninsula, together with the root height. The

tMRCA of the southern Scandinavian clade was given a normal

distribution truncated at lower and upper limits of 13.1 ka and

9.2 ka BP, respectively. The earlier date represents the first

opportunity for a temperate species to colonize the southern part

of the Scandinavian peninsula, which was until then Arctic tundra

separated from mainland Europe by the newly forming Baltic Ice

Lake (Figure 1a). The more recent limit reflects the assumption

that the clade could not have originated after 9.2 ka BP, the time

when the Scandinavian peninsula was finally separated from

mainland Europe (Figure 1e), or it would form a subclade within a

larger Scandinavian clade. The root height was given a gamma

distribution that peaked around 145 ka BP, which we considered

the most plausible date within the 95% confidence limits of a

previously estimated time of divergence for the whole species [6],

given that it coincides with the end of the penultimate (Saalian)

glacial period. The evidence for this date is limited, so its influence

was tested by running simulations with gamma distributions that

peaked at around 24 ka BP and 450 ka BP, coinciding with the

final maxima of the last (Weichselian) glaciation and that of the

Elsterian glaciation, which immediately preceded the Saalian

glacial period. In addition, the minimum of the root height

distribution was placed at 14.685 ka BP, the time of rapid

warming that marked the end of the most recent (Weichselian)

Figure 1. Stages of land connectivity relating to mammal colonization of Scandinavia. Based on reconstructions in Björck [30,31]; see text
for detail. Dates in ka BP, defined as thousand years before AD 1950, calibrated using IntCal04 and IntCal09 curves [32,33]. Fennoscandian ice sheet -
light gray, land - green, open water - light blue, modern coastline - black outline. a: Deglaciation of Scandinavian peninsula, until 13.1 ka BP (with
dotted lines showing successive positions of ice sheet edge during late glacial retreat); b: First land bridge, 13.1-12.7 ka BP; c: Younger Dryas glacial
re-advance and re-opening of Øresund channel, 12.7-12.1 ka BP; d: Second land bridge, 12.1-10.3 ka BP; e: Separation of Scandinavian peninsula by
Dana River and then formation of Baltic Sea, 10.3-9.2 ka BP.
doi:10.1371/journal.pone.0103949.g001
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glaciation [16]. We constrained the root of the tree, representing

the common ancestor of the whole extant field vole population, to

pre-date this event on the grounds that the whole species would

not be subject to such an extreme population bottleneck after the

last full glacial period.

Summary statistics were also calculated, to quantify genetic

variation in each of the six lineages that were identified by

genealogy sampling. Nucleotide diversity, average number of

substitutions per site between all sequence pairs, was estimated

using MEGA 5.05 [44]. The calculation used the Kimura 2-

parameter nucleotide substitution model and gamma distribution

of rates across sites, with an alpha shape parameter of 0.1705

estimated using maximum likelihood. Standard errors were

estimated from 1 000 bootstrap replicates and t-tests were used

to determine the significance of any difference between groups.

Two neutrality test statistics, Tajima’s D and Fu’s FS, were

estimated with DnaSP 5.10.01 [45]. These can be seen as an

indicator of recent population expansion, which leads to an excess

of singleton mutations in external branches of the phylogeny. The

significance of any departure from neutrality was determined by

comparing the value of the test statistic with an empirical

distribution obtained by randomly placing the observed number

of mutations onto 10 000 coalescent simulations of the genealogy.

Results

There were 304 distinct haplotypes among the 441 sequences

available from this study and GenBank (Table S1). Similar results

were obtained for genealogy sampling trials with a range of GTR-

nested nucleotide substitution models and those reported here

were obtained using a 2-partition (first and second codon position

linked; third separate) HKY substitution model, as recommended

for protein-coding nucleotide data [46], with gamma distribution

of rates among sites. The marginal likelihoods from path-sampling

indicated that the relaxed UCLN clock was very strongly favoured

over the strict clock (loge Bayes Factor = 5.6). This is rather

surprising for intraspecific data but reflected in the posterior

distribution of the standard deviation of the relaxed clock rate,

which peaked above zero, although its lower tail nevertheless

abutted the origin.

The 441 cytochrome b sequences were grouped into six well-

supported lineages (Figure 2), named as eastern, Scandinavia,

central Europe, France, north Britain and western following the

previous results of Herman and Searle [13]. The new sequences

from southern Scandinavia all belong to the previously-described

lineage and no sequences from the Scandinavia clade were found

in mainland Europe, despite substantial numbers of samples

obtained there (Figure 3). The restricted distribution of the

Scandinavia clade is of course critical to our land-bridge

calibration of the genealogy.

The nucleotide diversities from each clade were similar

(Table 1), as might be expected if they were of similar age.

Although the eastern and central Europe clades appeared to be

somewhat more variable than the others, which might reflect their

large geographical ranges, none of the differences between clades

were significant. The two test statistics for neutrality, Tajima’s D
and Fu’s FS, have highly significant values for five of the six clade

populations (Table 1). The only exception is the France clade,

which may simply reflect the very small sample size available. The

significant values for these statistics are consistent with recent

demographic expansion. Taken together, these measures of

genetic variation suggest that the six lineages originated from

contemporaneous founding populations which have subsequently

undergone marked growth.

Based on genealogy sampling with the new calibration from the

root height and the southern Scandinavian clade, the whole of the

existing species’ population would appear to have originated from

a single group of founders around 23 ka BP, the time of the last

glacial maximum (LGM). According to the test runs with the two

alternative prior distributions on the root height, the prior had

little influence on posterior estimates of this parameter. The

current mitochondrial genetic structure is derived from a group of

six founding populations that originated around 12 ka BP, the

time of the Younger Dryas glacial re-advance. There is some

variation in the time of origin of the different clades (Table 2,

Figure 2), which might relate to differences between the timing of

climatic events in specific geographic regions, but the margins of

error in the analysis do not allow any firm conclusions. The

median tMRCA for the southern Scandinavian clade is 11.209 ka

BP, which is well within the timing of the second, more recent,

Scandinavian land bridge. However, the upper of the 95% HPD

limits coincides with the presence of the earlier land bridge and

much of the posterior distribution coincides with the Younger

Dryas glacial re-advance (Figure 1c). Furthermore, the median

tMRCA for the clade is very close to the mean of its prior

distribution, despite the additional constraint that was placed on

the root height.

The relatively high molecular clock rate (mean 4.57261027

substitutions/site/year, 95% highest posterior density interval

3.411–5.83461027 substitutions/site/year) is close to the one that

was obtained using a calibration from the clade confined to

northern Britain, although it is based on this new calibration with

a different clade.

The marginal likelihoods provided very strong evidence for the

expansion growth model over the constant population size model

(loge Bayes Factor = 76.3) and for the Bayesian Skyline model over

the simpler expansion model (loge Bayes Factor = 30.5), indicating

that the field vole population has undergone demographic

expansion and that this can be more accurately recovered from

these data using the skyline model. The Bayesian skyline plot, of

effective female population size with time, is fairly flat until the

origin of the six clades around the time of the Younger Dryas, at

which point it shows a marked rise which flattens around 8 ka BP

(Figure 4). There is therefore no sign of demographic change

between the origin of the whole population at the LGM until the

time when the six regional lineages began to expand after the

Younger Dryas. The simplest explanation is that the whole of the

species’ current population is derived from a single group of

founders that underwent a population bottleneck at the time of the

LGM. The species must have colonized much of the western

Palaearctic region during the subsequent Bølling–Allerød inter-

stadial, for the six regional populations to have originated in

different parts of its current range. However any signal of

population growth would be wiped out by a second set of

bottlenecks, at the time of the Younger Dryas, which apparently

gave rise to these six lineages. The skyline plot also shows another

recent demographic expansion, previously attributed to clearance

of woodland by humans in north-western Europe [13].

It should be noted here that in the tests of genealogy sampling

using the prior distributions alone, with no sequence data, the

estimated root height was more recent than its prior median value,

while the tMRCAs of the clades were roughly proportional to the

number of sequences within them, up to the age of the root. This

can be attributed to the relative constraints on these nodes in the

genealogies. However it appears that this does not unduly alter the

posterior parameter distributions that were estimated here, and

therefore does not affect the conclusions drawn, as the root height

inferred with priors alone was still markedly different from the age

Land-Bridge Calibration of Colonization

PLOS ONE | www.plosone.org 5 August 2014 | Volume 9 | Issue 8 | e103949



inferred with the data and the clade tMRCAs bore no relation

whatsoever to the inferred ages.

Discussion

In the absence of dated ancient DNA sequences, calibration of

intraspecific data can be achieved by aligning common ancestors

with contemporaneous external events, deriving from geological

[47] or archaeological [48] evidence. The field vole is a potentially

useful model for this process, because it has colonized parts of

Europe that have experienced dramatic geophysical changes, for

which there are precise and reliable reconstructions. This allows

the putative alignment of population divergence and genetic

variation with timed events that are either causative or affected by

Figure 2. Field vole mitochondrial cytochrome b genealogy. Maximum clade credibility tree from Bayesian coalescent modelling with 441
sequences, clade support from posterior probability of node. Clades collapsed for clarity and gray bars show 95% highest posterior density intervals
for tMRCA of each lineage.
doi:10.1371/journal.pone.0103949.g002
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the same process of climate change. We have previously made use

of geophysical events around the British Isles [13], but here we are

able to test these earlier reconstructions with an independent and

more certain calibration from similar events in Scandinavia.

With regard to the calibration itself, it is important to take

account of the combined effect that is induced by associating priors

with more than one node in the gene tree. Although the posterior

of the calibration time will not be modified by the sequence data

and will therefore be identical to its prior distribution [49],

specification of multiple calibration priors will induce a joint prior,

with a novel distribution, on the node heights [50]. It is therefore

important to test the combined effect of the calibration priors and

the sensitivity of the result. The marginal prior distributions of the

clade tMRCAs and the root height, obtained by running the

MCMC chains without sequence data, were somewhat different to

their specified prior distributions. However, the posterior distri-

butions of the tMRCAs that were obtained with sequence data

were substantially different from their priors, indicating that they

are not simply the product of the combined calibration priors.

Meanwhile, the tMRCAs obtained with the three variants of the

prior on root height were similar, suggesting that the posterior

distributions of clade and root heights were generally dependent

on the recent limit of the root height prior, which did not vary

among the different prior distributions. Together, these results give

us confidence that the calibration priors are not influencing the

result in some unexpected way.

Our data show that the extant field vole population is made up

from six mitochondrial lineages with coherent and generally

allopatric geographical distributions of very different size (Fig-

ure 3). Based on the calibration here, the origins of the whole

population and those of the six lineages can be associated with

bottlenecks around the time of the LGM (23 ka BP) and Younger

Dryas re-advance (12 ka BP) respectively. Bayesian genealogy

sampling indicates overall demographic expansion from the single

LGM population, as might be expected because the field vole must

have colonized most of its present range since the last glaciation.

Figure 3. Geographical locations of samples from each clade. Closely adjacent localities assigned to same map location.
doi:10.1371/journal.pone.0103949.g003
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Although the species must have colonized much of Eurasia

beforehand, given the dispersed locations of the six lineages, these

mitochondrial data show no sign of population expansion until the

Younger Dryas when their demographic, and presumably spatial,

expansion began. A high molecular clock rate (ca.461027

substitutions/site/year) is obtained by calibration of the model

from the clades confined to Scandinavia (here) or north Britain

[13].

The southern and northern parts of the Scandinavian peninsula

are occupied by members of two separate lineages and these two

lineages have mutually exclusive distributions (Figure 3). The first

of these lineages is confined entirely to southern Sweden and

Norway, with no presence in mainland Denmark (Jutland) or

mainland Europe, but the other lineage has a very wide

distribution in north-eastern Europe and western Asia. It is

generally accepted that the northern part of the Scandinavian

peninsula was colonized from the north and east via Russia and

Finland, following the last glaciation, and the southern part of the

peninsula by means of a land bridge in the Øresund area between

what are now Sweden and Denmark. This overall pattern of post-

glacial Scandinavian colonisation has been inferred in various

mammals, including the root vole Microtus oeconomus [4,5], and

other animals and plants [20–23]. The location of the resulting

suture zone, running east-west across the middle of the peninsula,

is likely due to the position of the last remnant of the

Fennoscandian ice-sheet, which deglaciated in either direction

towards this part of the peninsula, having retreated rapidly from

north-western Russia and Finland at the beginning of the

Holocene [29]. While the field vole appears to follow this general

phylogeographic pattern within the Scandinavian peninsula

[6,19], our analysis here suggests that the lineage in the southern

part of the peninsula originated either in situ, or possibly in what is

now the Danish island of Zealand, around the close of the

Younger Dryas. Zealand and the southern part of the Scandina-

vian peninsula were connected for a long period following the

Younger Dryas, from 12.1 until 9.2 ka BP (see above; Fig. 1d,e), so

field voles could have colonized the peninsula from Zealand at any

time between these dates. Furthermore, there is evidence from

mitochondrial RFLP data that field voles in Zealand and southern

Sweden are closely related [19].

Radiocarbon dates from subfossil remains indicate that many

mammal species entered the Scandinavian peninsula via the first

post-glacial land bridge, or even earlier in a few cases, however

almost all the large terrestrial species were lost from Sweden at the

time of the Younger Dryas re-advance [51]. Most of the current

mammalian fauna therefore colonized the Scandinavian peninsula

across the more recent land bridge (Figure 1d). Although there

appear to be no subfossil finds of field vole here before the

Younger Dryas, it does seem likely that this species would closely

follow the retreat of the ice and it has been recorded from the late

Weichselian in Denmark [51]. The post-glacial expansion of the

root vole seems to have followed a similar pattern to that of the

field vole and there are remains of this species from the very late

Pleistocene of both southern Sweden and Denmark [4]. Subfossil

evidence from caves indicates that the field vole was also able to

colonize the mainland of southern Britain before the Younger

Dryas [52], and according to our data it appears to have survived

the Younger Dryas there [13]. It therefore seems likely that the

field vole would have colonized the southern part of the

Scandinavian peninsula from northern mainland Europe during

the original expansion of the single LGM refugial population over

the first land bridge during the Bølling–Allerød interstadial

(Figure 1b).T
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The lack of any fossil evidence for a Younger Dryas refugium in

the southern Scandinavian peninsula is perhaps surprising, given

that the field vole appears to have survived the glacial re-advance

in southern Britain. However, the Scandinavian climate is more

continental than that of the British Isles and there is likewise no

sign of a distinct northern population in the adjacent eastern part

Table 2. Times to most recent common mitochondrial ancestor (tMRCAs).

Lineage 95% HPD lower (ka BP) Median (ka BP) 95% HPD upper (ka BP)

Root 16.477 22.933 32.185

eastern 8.480 11.835 16.073

Scandinavia 9.586 11.209 12.828

central Europe 8.878 12.444 17.197

France 6.724 10.512 14.722

north Britain 8.378 11.272 14.562

western 7.855 11.629 20.697

Time to most recent common mitochondrial ancestor (tMRCA) for whole field vole population and the six clades. Median and 95% highest posterior density (HPD) range
of times, obtained with Bayesian genealogy sampling, calibrated with possible times of origin of whole species and clade from southern Scandinavian peninsula.
doi:10.1371/journal.pone.0103949.t002

Figure 4. Bayesian skyline plots showing effective female population size. Effective female population size (Nef), in thousands, multiplied by
mean generation time (T), in years. Heavy line is median and lighter lines are 95% highest posterior density (HPD) limits. Nef x T plotted on log scale
for clarity and truncated to median estimate of tMRCA.
doi:10.1371/journal.pone.0103949.g004
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of the species’ range. On the contrary, a vast area of Russia and

northern Fennoscandia was colonized from a single Younger

Dryas refugium, presumably somewhere towards the southern

limit of the area occupied by this lineage [6,13]. Competition with

tundra mammals presumably played a part in defining the

northern limit of the species’ distribution, in the eastern part its

range. Although there do not appear to be any fossil remains of

lemmings in southern Sweden from the time of the Younger Dryas

[51], they may have survived the last glaciation in the northern

part of the Scandinavian peninsula and have been recorded from

mainland Europe at this time [53]. If tundra mammals were

indeed part of the fauna, they would be in competition with any

surviving field voles, when this isolated pocket in southern

Fennoscandia returned to the colder conditions of the Younger

Dryas. Nevertheless, it is difficult to reconcile the origin of the

southern Scandinavian field vole lineage with any climatic event

since the Younger Dryas.

Based on the analyses that we present here, the southern

Scandinavian lineage does indeed appear to have originated in
situ on the Scandinavian peninsula or in Zealand, probably

around the end of the Younger Dryas. Although we have not

found any members of this clade in mainland Europe, notwith-

standing the number of samples sequenced from Poland and the

Jutland region of Denmark, flawed assumptions about the

distributions of populations are a potential source of calibration

error in phylogeography. Nevertheless, the phylogeographic and

demographic reconstruction that we obtain here is easily

reconciled with the pattern of climatic and geophysical change

at this time.

Calibrations from external events are equally vulnerable to the

potential disparity between the timing of population divergence

and that of the sampled genetic variation. The high molecular

rates that we obtained with the Scandinavian data here, and with

those from northern Britain, are therefore susceptible to error

from the putative association of genetic and population diver-

gence. However, they are very similar to a clock rate of 3.2761027

substitutions/site/year that was estimated from ancient DNA in

the closely related common vole Microtus arvalis [54]. They are

also consistent with mitochondrial clock rates that have been

estimated from heterochronous samples in a wide range of other

vertebrates [2,55]. Rates like these are highly controversial,

particularly when based on ancient DNA [56], so it is interesting

that similar results are obtained with land bridge calibration here.

In view of the concordance between the rate estimated here and

others obtained with ancient DNA, including that from M. arvalis
[54], it appears that the assumptions inherent in our landbridge

calibration were in this case justified. Our initial assumption, that

population divergence relates to geophysical and climatic events, is

hardly contentious, given the nature of these changes in northern

Eurasia. However, it is more important that the result supports the

close alignment of population divergence, as represented by the

landbridge proxy, and (mitochondrial) genetic divergence. This

finding suggests that the geographical distribution of genetic

variation can indeed be used to infer the relationship between

climatic change and the recent history of populations of species. It

is therefore relevant to the controversial subject of time

dependence in molecular rates, which is very important for

understanding recent evolutionary events [10], and highlights the

need for more thorough investigation of the molecular evolution-

ary processes on which phylogeographic inference rests. Indeed,

the benefits of more genetic data and the integration of other

evidence have been emphasized before [57,58], given the

perpetual and rapid nature of environmental change and the

individual response it engenders in species and their populations.

The congruence between our result and those from heteroch-

ronous (ancient DNA) sampling suggest that mitochondrial genetic

variation can be related to recent geophysical and climatic events,

whose likely effects on historical populations are fairly certain.

However, this does not imply that current phylogeographic

methods are necessarily able to recover the history of deeper

evolutionary changes. Although the use of multiple markers can

resolve the potential problem of inconsistency between gene

genealogies and species trees [26–28], it will not address the

fundamental problem of how to distinguish between patterns that

have arisen by dispersal and vicariance [59]. While the use of

limited numbers of additional markers may be sufficient for

intraspecific analyses, like the one here, it is likely that deeper and

wider biogeographical insights will require the resolution of

genomic data and more sophisticated analysis, perhaps involving

other types of data.

Supporting Information

Figure S1 Primers for cytochrome b amplification.
Schematic representation of the relative position of the primers

used to amplify the complete cytochrome b. The primer sequences

are listed in Table S2.

(TIF)

Table S1 Provenance of field vole cytochrome b se-
quences. Vouchers are held in Mammal Research Institute,

Polish Academy of Sciences, Białowiez_a (prefix MRI.PAS.),

Bergen University Museum, Norway (prefix Berg.) and National

Museums Scotland, Edinburgh (prefix NMS.Z.). New sequences *.

(DOCX)

Table S2 Primers for cytochrome b amplification.
Primers used for PCR amplification and sequencing of cyto-

chrome b gene in Microtus agrestis (see Figure S1 for approximate

positions of primers).

(DOCX)
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