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Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power
generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the
most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults.
In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well
drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring
the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend
the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a
certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault
samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.

1. Introduction

Gas turbines, mechanical systems operating on a thermo-
dynamic cycle, usually with air as the working fluid, are
considered as one kind of the most important devices in
power engineering, where the air is compressed, mixed with
fuel, and burnt in a combustor, with the generated hot gas
expanded through a turbine to generate power, which is used
for driving the compressor and for providing the means to
overcome external loads. Gas turbines play an increasingly
important role in the domains of mechanical drives in the oil
and gas sectors, electricity generation in the power sector, and
propulsion systems in the aerospace and marine sectors.

Safety and economy are always two fundamentally impor-
tant factors in designing, producing, and operating gas
turbine systems.Once amalfunction occurs to a gas turbine, a
serious accident, even disaster,may take place. It was reported
that about 25 accidents take place every year due to jet
malfunctioning. In 1989, 111 were killed in a plane crash due
to an engine fault. Although great progress has been made
these years in the area of condition monitoring and fault

diagnosis, how to predict and detect malfunctions is still an
open problem for the complex systems. In some cases, such
as offshore oil well drilling platforms, the main power system
is self-monitoring without man on duty. So the reliability
and stabilization are of critical importance to these systems.
There are hundreds of offshore platforms with gas turbines
providing electricity and powers in China.There is an urgent
requirement to design and develop online remotemonitoring
and health management techniques for these systems.

More than two hundred sensors are installed in each
gas turbine for monitoring the state of a gas turbine. The
data gathered by these sensors reflects the state and trend
of the system. If we build a center to monitor two hundred
gas turbine systems, we should watch the data coming from
more than forty thousand sensors. Obviously, it is infeasible
to manually analyze them. Techniques on intelligent data
analysis have been employed in gas turbine monitoring and
diagnosis. In 2007, Wang et al. designed a conceptual system
for remote monitoring and fault diagnosis of gas turbine-
based power generation systems [1]. In 2008, Donat et al.
discussed the issue of data visualization, data reduction,
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and ensemble learning for intelligent fault diagnosis in gas
turbine engines [2]. In 2009, Li and Nilkitsaranont described
a prognostic approach to estimating the remaining useful life
of gas turbine engines before their next major overhaul based
on a combined regression technique with both linear and
quadratic models [3]. In the same year, Bassily et al. proposed
a technique, which assessed whether or not the multivariate
autocovariance functions of two independently sampled
signals coincide, to detect faults in a gas turbine [4]. In 2010,
Young et al. presented an offline fault diagnosis method for
industrial gas turbines in a steady-state using Bayesian data
analysis. The authors employed multiple Bayesian models
via model averaging for improving the performance of the
resulted system [5]. In 2011, Yu et al. designed a sensor
fault diagnosis technique for Micro-Gas Turbine Engine
based on wavelet entropy, where wavelet decomposition was
utilized to decompose the signal in different scales, and then
the instantaneous wavelet energy entropy and instantaneous
wavelet singular entropy are computed based on the previous
wavelet entropy theory [6].

In recent years, signal processing and data mining
techniques are combined to extract knowledge and build
models for fault diagnosis. In 2012, Wu et al. studied the
issue of bearing fault diagnosis based on multiscale per-
mutation entropy and support vector machine [7]. In 2013,
they designed a technique for defecting diagnostics based
on multiscale analysis and support vector machines [8].
Nozari et al. presented a model-based robust fault detection
and isolation method with a hybrid structure, where time-
delay multilayer perceptron models, local linear neurofuzzy
models, and linear model tree were used in the system [9].
Sarkar et al. [10] designed symbolic dynamic filtering by
optimally partitioning sensor observation, and the objective
is to reduce the effects of sensor noise level variation and
magnify the system fault signatures. Feature extraction and
pattern classification are used for fault detection in aircraft
gas turbine engines.

Entropy is a fundamental concept in the domains of
information theory and thermodynamics. It was first defined
to be a measure of progressing towards thermodynamic
equilibrium; then it was introduced in information theory by
Shannon [11] as a measure of the amount of information that
is missing before reception.This concept gets popular in both
domains [12–16]. Now it is widely used in machine learning
and data driven modeling [17, 18]. In 2011, a new measure-
ment, called maximal information coefficient, was reported.
This function can be used to discover the association between
two random variables [19]. However, it cannot be used to
compute the relevance between feature sets.

In this work, we will develop techniques to detect abnor-
mality and analyze faults based on a generalized information
entropy model. Moreover, we also describe a system for
state monitoring of gas turbines on offshore oil well drilling
platforms. First we will describe a system developed for
remote and online condition monitoring and fault diagnosis
of gas turbines installed on oil drilling platforms. As vast
amount of historical records is gathered in this system, it is
an urgent task to design algorithms for automatically online
detecting abnormality of the data and analyze the data to

obtain the causes and sources of faults. Due to the complexity
of gas turbine systems, we focus on the gas-path subsystem
in this work.The function of entropy is employed to measure
the uniformity of exhaust temperatures, which is a key factor
reflecting the health of the gas path of a gas turbine and also
reflecting the performance of the gas turbine.Thenwe extract
features from the healthy and abnormal records. An extended
information entropy model is introduced to evaluate the
quality of these features for selecting informative attributes.
Finally, the selected features are used to build models for
automatic fault recognition, where support vector machines
[20] and C4.5 are considered. Real-world data are collected
to show the effectiveness of the proposed techniques.

The remainder of the work is organized as follows.
Section 2 describes the architecture of the remotemonitoring
and fault diagnosis center for gas turbines installed on the
oil drilling platforms. Section 3 designs an algorithm for
detecting abnormality of the exhaust temperatures. Then
we extract features from the exhaust temperature data and
select informative ones based on evaluating the information
bottlenecks with extend information entropy in Section 4.
Support vector machines and C4.5 are introduced for build-
ing fault diagnosis models in Section 5. In addition, numer-
ical experiments are also described in this section. Finally,
conclusions and future work are given in Section 6.

2. Framework of Remote Monitoring and
Fault Diagnosis Center for Gas Turbine

Gas turbines are widely used as power and electric power
sources. The structure of a general gas turbine is presented
in Figure 1. This system transforms chemical energy into
thermal power, then mechanical energy, and finally electric
energy. Gas turbines are usually considered as the hearts of a
lot of mechanical systems.

As the offshore oil well drilling platforms are usually
unattended, an online and remote state monitoring system
is much useful in this area, which can help find abnormality
before serious faults occur. However, the sensor data cannot
be sent into a center with ground based internet.The data can
only be transmitted via telecommunication satellite, which
was too expensive in the past. Now this is available.

The system consists of four subsystems: data acquisition
and local monitoring subsystem (DALM), data commu-
nication subsystem (DAC), data management subsystem
(DMS), and intelligent diagnosis system (IDS). The first
subsystem gathers the outputs from different sensors and
checks whether there is any abnormality in the system. The
second one packs the acquired data and transforms them
into the monitoring center. Users in the center can also send
a message to this subsystem to ask for some special data if
abnormality or fault occurs.The datamanagement subsystem
stores the historic information and also fault data and fault
cases. A data compression algorithm is embedded in the
system. As most of the historic data are useless for the final
analysis, they will be compressed and removed for saving
storage space. Finally, IDS watches the alarm information
from different unit assemblies and starts the corresponding
module to analyze the related information. This system gives
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Figure 1: Prototype structure of a gas turbine.

some decision and explains how the decision has been made.
The structure of the system is shown in Figure 2.

One of the webpages of the system is given in Figure 3,
where we can see the rose figure of exhaust temperatures,
and some statistical parameters varying with time are also
presented.

3. Abnormality Detection in
Exhaust Temperatures Based on
Information Entropy

Exhaust temperature is one of the most critical parameters in
a gas turbine as excessive turbine temperatures may lead to
life reduction or catastrophic failures. In the current gener-
ation of machines, temperatures at the combustor discharge
are too high for the type of instrumentation available. Exhaust
temperature is also used as an indicator of turbine inlet
temperature.

As the temperature profile out of a gas turbine is not
uniform, a number of probes will help pinpoint disturbances
or malfunctions in the gas turbine by highlighting the shifts
in the temperature profile. Thus there are usually a set of
thermometers fixed on the exhaust. If the system is normally
operating, all the thermometers give similar outputs. How-
ever, if a fault occurs to some components of the turbine,
different temperatures will be observed. The uniformity of
exhaust temperatures reflects the state of the system. So we
should develop an index to measure the uniformity of the
exhaust temperatures. In this work, we consider the entropy
function for it is widely used in measuring uniformity of
randomvariables. However, to the best of our knowledge, this
function has not been used in this domain.

Assume that there are 𝑛 thermometers and their outputs
are 𝑇
𝑖
, 𝑖 = 1, . . . , 𝑛, respectively. Then we define the unifor-

mity of these outputs as

𝐸 (𝑇) = −

𝑛

∑

𝑖=1

𝑇
𝑖

𝑇

log
2

𝑇
𝑖

𝑇

, (1)

where 𝑇 = ∑
𝑗
𝑇
𝑗
. As 𝑇

𝑖
≥ 0, we define 0 log 0 = 0.

Obviously, we have log
2
𝑛 ≥ 𝐸(𝑇) ≥ 0.𝐸 (𝑇) = log

2
𝑛 if and

only if 𝑇
1
= 𝑇
2
= ⋅ ⋅ ⋅ = 𝑇

𝑛
. In this case, all the thermometers

produce the same output. So the uniformity of the sensors
is maximal. In another extreme case, if 𝑇

1
= 𝑇
2
= 𝑇
𝑖−1

=

𝑇
𝑖+1

⋅ ⋅ ⋅ = 𝑇
𝑛
= 0 and 𝑇

𝑖
= 𝑇, then 𝐸 (𝑇) = 0.

It is notable that the value of entropy is independent
of the values of thermometers, while it depends on the
distribution of the temperatures. The entropy is maximal if
all the thermometers output the same values.

Now we show two sets of real exhaust temperatures mea-
sured on an oil well drilling platform, where 13 thermometers
are fixed. In the first set, the gas turbine starts from a time
point and then runs for several minutes; finally the system
stops.

Observing the curves in Figure 4, we can see that the
13 thermometers give the almost the same outputs at the
beginning. In fact, the outputs are the room temperature in
this case, as shown in Figure 6(a). Thus, the entropy reaches
the peak value.

Some typical samples are presented in Figure 6, where
the temperature distributions around the exhaust at time
points 𝑡 = 5,130,250,400, and 500 are given. Obviously, the
distributions at 𝑡 = 130,250, and 400 are not desirable. It can
be derived that some abnormality occurs to the system. The
entropy of temperature distribution is given in Figure 5.
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Figure 2: Structure of the remote system of condition monitoring and fault analysis.

Figure 3: A typical webpage for monitoring of the subsystem.

0 50 100 150 200 250 300 350 400 450 500

0

100

200

300

400

500

600

700

Time

Te
m

pe
ra

tu
re

Figure 4: Exhaust temperatures from a set of thermometers.
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Figure 5: Uniformity of the temperatures (red dash line is the ideal
case; blue line is the real case).
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(a) Rose map of exhaust temperatures at 𝑡 = 5
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(b) Rose map of exhaust temperatures at 𝑡 =
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(c) Rose map of exhaust temperatures at 𝑡 =
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(d) Rose map of exhaust temperatures at 𝑡 =
400
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(e) Rose map of exhaust temperatures at 𝑡 =
500

Figure 6: Samples of temperature distribution in different times.

Another example is also given in Figures 7 to 9. In this
example, there is significant difference between the outputs
of 13 thermometers even when the gas turbine is not running,
just as shown in Figure 9(a).Thus the entropy of temperature
distribution is a little lower than the ideal case, as shown in
Figure 8. Besides, some representative samples are also given
in Figure 9.

Considering the above examples, we can see that the func-
tion of entropy is an effective measurement of uniformity. It
can be used to reflect the uniformity of exhaust temperatures.

If the uniformity is less than a threshold, some faults possibly
occur to the gas path of the gas turbine. Thus the entropy
function is used as an index of the health of the gas path.

4. Fault Feature Quality Evaluation with
Generalized Entropy

The above section gives an approach to detecting the abnor-
mality in the exhaust temperature distribution. However, the
function of entropy cannot distinguish what kind of faults
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Figure 7: Exhaust temperatures from another set of thermometers.
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Figure 8: Entropy of the temperature distribution, where the red
dash line is the ideal case and the blue one is the real case.

occurs to the system although it detects abnormality. In order
to analyze why the temperature distribution is not uniform,
we should develop some algorithms to recognize the fault.

Before training an intelligent model, we should construct
some features and select the most informative subsets to
represent different faults. In this section, we will discuss this
issue.

Intuitively, we know that the temperatures of all ther-
mometers reflect the state of the system. Besides, the tem-
perature difference between neighboring thermometers also
indicates the source of faults, which are considered as space
neighboring information. Moreover, we know the temper-
ature change of a thermometer necessarily gives hints to
study the faults, which can be viewed as time neighboring
information. In fact, the inlet temperature𝑇

0
is also an impor-

tant factor. In summary, we can use exhaust temperatures
and their neighboring information along time and space to
recognize different faults. If there are 𝑛 (𝑛 = 13 in our system)
thermometers, we can form a feature vector to describe the
state of the exhaust system as

𝐹 = {𝑇
0
, 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
, 𝑇
1
− 𝑇
2
, 𝑇
2
− 𝑇
3
, . . . ,

𝑇
𝑛
− 𝑇
1
, 𝑇


1
, 𝑇


2
, . . . , 𝑇



𝑛
} ,

(2)

where 𝑇
𝑖
= 𝑇
𝑖
(𝑗) − 𝑇

𝑖
(𝑗 − 1). 𝑇

𝑖
(𝑗) is the temperature at time

𝑗 of the 𝑖th thermometer.
Apart from the above features, we can also construct other

attributes to reflect the conditions of the gas turbine. In this
work, we consider a gas turbine with 13 thermometers around
the exhaust. So we can form a 40-attribute vector finally.

There are some questions whether all the extracted
features are useful for finalmodeling and howwe can evaluate
the features and find the most informative features. In fact,
there are a number of measures to estimate feature quality,
such as dependency in the rough set theory [21], consistency
[22], mutual information in the information theory [23], and
classification margin in the statistical learning theory [24].
However, all these measures are computed in the original
input space, while the effective classification techniques
usually implement a nonlinear mapping of the original space
to a feature space by a kernel function. In this case, we require
a new measure to reflect the classification information of
the feature space. Now we extend the traditional information
entropy to measure it.

Given a set of samples 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
}, each sample

is described with 𝑛 features 𝐹 = {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
}. As to

classification learning, each training sample 𝑥
𝑖
is associated

with a decision 𝑦
𝑖
. As to an arbitrary subset 𝐹 ⊆ 𝐹 and a

kernel function𝐾, we can calculate a kernel matrix

𝐾 =
[

[

[

𝑘
11

. . . 𝑘
1𝑚

... d
...

𝑘
𝑚1

. . . 𝑘
𝑚𝑚

]

]

]

, (3)

where 𝑘
𝑖𝑗
= 𝑘(𝑥

𝑖
, 𝑥
𝑗
). The Gaussian function is a representa-

tive kernel function:

𝑘
𝑖𝑗
= exp(−






𝑥
𝑖
− 𝑥
𝑗







2

𝜎

) . (4)

A number of kernel functions have the properties
(1) 𝑘
𝑖𝑗
∈ [0, 1]; (2) 𝑘

𝑖𝑗
= 𝑘
𝑗𝑖
.

Kernel matrix plays a bottleneck role in kernel based
learning [25]. All the information that a classification algo-
rithm can use is hidden in this matrix. In the same time, we
can also calculate a decision kernel matrix as

𝐷 =
[

[

[

𝑑
11

. . . 𝑑
1𝑚

... d
...

𝑑
𝑚1

. . . 𝑑
𝑚𝑚

]

]

]

, (5)

where 𝑑
𝑖𝑗
= 1 if 𝑦

𝑖
= 𝑦
𝑗
; otherwise, 𝑑

𝑖𝑗
= 0. In fact, the matrix

𝐷 is a matching kernel.

Definition 1. Given a set of samples𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
}, each

sample is described with 𝑛 features 𝐹 = {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
}. 𝐹 ⊆

𝐹,𝐾 is a kernelmatrix over𝑈 in terms of𝐹.Then the entropy
of 𝐹 is defined as

𝐸 (𝐾) = −

1

𝑚

𝑚

∑

𝑖=1

log
2

𝐾
𝑖

𝑚

, (6)

where𝐾
𝑖
= ∑
𝑚

𝑗=1
𝑘
𝑖𝑗
.

As to the above entropy function, if we use Gaussian
function as the kernel, we have log

2
𝑚 ≥ 𝐸 (𝐾) ≥ 0. 𝐸 (𝐾) = 0

if and only if 𝑘
𝑖𝑗
= 1 ∀𝑖, 𝑗. 𝐸 (𝐾) = log

2
𝑚 if and only if 𝑘

𝑖𝑗
= 0,

𝑖 ̸= 𝑗. 𝐸 (𝐾) = 0 means that any pair of samples cannot be
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(a) Rose map of exhaust temperatures at 𝑡 = 500
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(b) Rose map of exhaust temperatures at 𝑡 = 758
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(c) Rose map of exhaust temperatures at 𝑡 = 820
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Figure 9: Samples of temperature distribution in different moments.

distinguished with the current features, while 𝐸 (𝐾) = log
2
𝑚

means any pair of samples is different from each other. So
they can be distinguished. These are two extreme cases. In
real-world applications, part of samples can be discernedwith
the available features, while others are not. In this case, the
entropy function takes value in the interval [0, log

2
𝑚].

Moreover, it is easy to show that if 𝐾
1
⊆ 𝐾
2
, 𝐸(𝐾
1
) ≥

𝐸(𝐾
2
), where𝐾

1
⊆ 𝐾
2
means𝐾

1
(𝑥
𝑖
, 𝑥
𝑗
) ≤ 𝐾
2
(𝑥
𝑖
, 𝑥
𝑗
), ∀𝑖, 𝑗.

Definition 2. Given a set of samples 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
},

each sample is described with 𝑛 features 𝐹 = {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
}.

𝐹
1
, 𝐹
2
⊆ 𝐹. 𝐾

1
and 𝐾

2
are two kernel matrices induced by 𝐹

1

and 𝐹
2
.𝐾 is a new function computed with 𝐹

1
∪ 𝐹
2
. Then the

joint entropy of 𝐹
1
and 𝐹

2
is defined as

𝐸 (𝐾
1
, 𝐾
2
) = 𝐸 (𝐾) = −

1

𝑚

𝑚

∑

𝑖=1

log
2

𝐾
𝑖

𝑚

, (7)

where𝐾
𝑖
= ∑
𝑚

𝑗=1
𝑘
𝑖𝑗
.

As to the Gaussian function, 𝐾(𝑥
𝑖
, 𝑥
𝑗
) = 𝐾

1
(𝑥
𝑖
, 𝑥
𝑗
) ×

𝐾
2
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𝑖
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𝑗
). Thus 𝐾 ⊆ 𝐾

1
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2
. In this case, 𝐸(𝐾) ≥
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1
) and 𝐸(𝐾) ≥ 𝐸(𝐾

2
).

Definition 3. Given a set of samples 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
},

each sample is described with 𝑛 features 𝐹 = {𝑓
1
, 𝑓
2
, . . . ,

𝑓
𝑛
}.One has 𝐹

1
, 𝐹
2
⊆ 𝐹. 𝐾

1
and 𝐾

2
are two kernel matrices

induced by 𝐹
1
and 𝐹

2
. 𝐾 is a new kernel function computed

with 𝐹
1
∪ 𝐹
2
. Knowning 𝐹

1
, the condition entropy of 𝐹

2
is

defined as

𝐸 (𝐾
1
| 𝐾
2
) = 𝐸 (𝐾) − 𝐸 (𝐾

1
) . (8)

As to the Gaussian kernel, 𝐸(𝐾) ≥ 𝐸(𝐾
1
) and 𝐸(𝐾) ≥ 𝐸(𝐾

2
),

so 𝐸(𝐾
1
| 𝐾
2
) ≥ 0 and 𝐸(𝐾

2
| 𝐾
1
) ≥ 0.

Definition 4. Given a set of samples 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
},

each sample is described with 𝑛 features 𝐹 = {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
}.

One has 𝐹
1
, 𝐹
2

⊆ 𝐹. 𝐾
1
and 𝐾

2
are two kernel matrices

induced by 𝐹
1
and 𝐹

2
. 𝐾 is a new kernel function computed

with 𝐹
1
∪ 𝐹
2
. Then the mutual information of 𝐾

1
and 𝐾

2
is

defined as

MI (𝐾
1
, 𝐾
2
) = 𝐸 (𝐾

1
) + 𝐸 (𝐾

2
) − 𝐸 (𝐾) . (9)

As to Gaussian kernel, MI(𝐾
1
, 𝐾
2
) = MI(𝐾

2
, 𝐾
1
). If 𝐾

1
⊆

𝐾
2
, we have MI(𝐾

1
, 𝐾
2
) = 𝐸(𝐾

2
) and if 𝐾

2
⊆ 𝐾
1
, we have

MI(𝐾
1
, 𝐾
2
) = 𝐸(𝐾

1
).
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Figure 10: Fuzzy dependency between a single feature and decision.
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Figure 11: Kernelized mutual information between a single feature
and decision.

Please note that if 𝐹
1
⊆ 𝐹
2
, we have 𝐾

2
⊆ 𝐾
1
. However,

𝐾
2
⊆ 𝐾
1
does not mean 𝐹

1
⊆ 𝐹
2
.

Definition 5. Given a set of samples 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
},

each sample is described with 𝑛 features 𝐹 = {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
}.

𝐹

⊆ 𝐹,𝐾 is a kernelmatrix over𝑈 in terms of𝐹, and𝐷 is the

kernel matrix computed with the decision. Then the feature
significance 𝐹 related to the decision is defined as

MI (𝐾,𝐷) = 𝐸 (𝐾) + 𝐸 (𝐷) − 𝐸 (𝐾,𝐷) . (10)

MI (𝐾,𝐷) measures the importance of feature subset 𝐹
in the kernel space to distinguish different classes. It can be
understood as a kernelized version of Shannon information
entropy, which is widely used feature evaluation selection.
In fact, it is easy to derive the equivalence between this
entropy function and Shannon entropy in the condition that
the attributes are discrete and the matching kernel is used.

Now we show an example in gas turbine fault diagnosis.
We collect 3581 samples from two sets of gas turbine systems.
1440 samples are healthy and the others belong to four kinds
of faults: load rejection, sensor fault, fuel switching, and salt
spray corrosion. The numbers of samples are 45, 588, 71, and
1437, respectively. Thirteen thermometers are installed in the
exhaust. According to the approach described above, we form
a 40-dimensional vector to represent the state of the exhaust.

1 2 3 4

0

0.2

0.4

0.6

0.8

1

Selected feature number

Fu
zz

y 
de

pe
nd

en
cy

0.3475

0.9006

0.99960.9969

Figure 12: Fuzzy dependency between the selected features and
decisions (Features 5, 37, 2, and 3 are selected sequentially).
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Figure 13: Kernelized mutual information between the selected
features and decisions (Features 39, 31, 38, and 40 are selected
sequentially).

Obviously, the classification task is not understandable in
such high dimensional space. Moreover, some features may
be redundant for classification learning, which may confuse
the learning algorithm and reduce modeling performance.
So it is a key preprocessing step to select the necessary and
sufficient subsets.

Here we compare the fuzzy rough set based feature
evaluation algorithm with the proposed kernelized mutual
information. Fuzzy dependency has been widely discussed
and applied in feature selection and attribute reduction these
years [26–28]. Fuzzy dependency can be understood as the
average distance from the samples and their nearest neighbor
belonging to different classes, while the kernelized mutual
information reflects the relevance between features and
decision in the kernel space.

Comparing Figures 10 and 11, significant difference is
obtained. As to fuzzy rough sets, Feature 5 produces the
largest dependency and then Feature 38. However, Feature
39 gets the largest mutual information, and Feature 2 is the
second one. Thus different feature evaluation functions will
lead to completely different results.

Figures 10 and 11 present the significance of single
features. In applications, we should combine a set of features.
Now we consider a greedy search strategy. Starting from an
empty set and the best features are added one by one. In
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Figure 14: Scatter plots in 2D space expended with feature pairs selected by fuzzy dependency.

each round, we select a feature which produces the largest
significance increment with the selected subset. Both fuzzy
dependency and kernelized mutual information increase
monotonically if new attributes are added. If the selected
features are sufficient for classification, these two functions
will keep invariant by adding any new attributes. So we can
stop the algorithm if the increment of significance is less than
a given threshold. The significances of the selected feature
subset are shown in Figures 12 and 13, respectively.

In order to show the effectiveness of the algorithm, we
give the scatter plots in 2D spaces, as shown in Figures 14 to
16, which are expended by the feature pairs selected by fuzzy
dependency, kernelized mutual information, and Shannon
mutual information. As to fuzzy dependency, we select
Features 5, 37, 2, and 3.Then there are 4×4 = 16 combinations
of feature pairs. The subplot in the 𝑖th row and 𝑗th column in
Figure 14 gives the scatters of samples in 2D space expanded
by the 𝑖th selected feature and the 𝑗th selected feature.

Observing the 2nd subplots in the first row of Figure 14,
we can find that the classification task is nonlinear. The first
class is dispersed and the third class is also located at different

regions, which leads to the difficulty in learning classification
models.

However, in the corresponding subplot of Figure 15, we
can see that each class is relatively compact, which leads to a
small intraclass distance.Moreover, the samples in five classes
can be classified with some linear models, which also bring
benefit for learning a simple classification model.

Comparing Figures 15 and 16, we can find that different
classes are overlapped in feature spaces selected by Shannon
mutual information or get entangled, which leads to the bad
classification performance.

5. Diagnosis Modeling with Information
Entropy Based Decision Tree Algorithm

After selecting the informative features, we now go to clas-
sification modeling. There are a great number of learning
algorithms for building a classificationmodel. Generalization
capability and interpretability are the two most important
criteria in evaluating an algorithm. As to fault diagnosis, a
domain expert usually accepts a model which is consistent
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Figure 15: Scatter in 2D space expended with feature pairs selected by kernelized mutual information.

with his common knowledge. Thus, he expects the model
is understandable; otherwise, he will not believe the outputs
of the model. In addition, if the model is understandable, a
domain expert can adapt it according to his prior knowledge,
which makes the model suitable for different diagnosis
objects.

Decision tree algorithms, including CART [29], ID3
[17], and C4.5 [18], are such techniques for training an
understandable classification model. The learned model can
be transformed into a set of rules. All these algorithms build
a decision tree from training samples. They start from a root
node and select one of the features to divide the samples with
cuts into different branches according to their feature values.
This procedure is interactively conducted until the branch is
pure or a stopping criterion is satisfied.The key difference lies
in the evaluation function in selecting attributes or cuts. In
CART, splitting rules GINI and Twoing are adopted, while
ID3 uses information gain and C4.5 takes information gain
ratio.Moreover, C4.5 can deal with numerical attributes com-
pared with ID3. Competent performance is usually observed
with C4.5 in real-world applications compared with some
popular algorithms, including SVM and Baysian net. In this

work, we introduce C4.5 to train classification models. The
pseudocode of C4.5 is formulated as follows.

Decision tree algorithm C4.5
Input: a set of training samples 𝑈 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
}

with features 𝐹 = {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
}

Stopping criterion 𝜏
Output: decision tree 𝑇

(1) Check for sample set
(2) For each attribute 𝑓 compute the normalized infor-

mation gain ratio from splitting on 𝑎
(3) Let f best be the attribute with the highest normalized

information gain
(4) Create a decision node that splits on f best
(5) Recurse on the sublists obtained by splitting on

f best, and add those nodes as children of node until
stopping criterion 𝜏 is satisfied

(6) Output 𝑇.
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Figure 16: Scatter in 2D space expended with feature pairs selected by Shannon mutual information.
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Figure 17: Decision tree trained on the features selected with fuzzy
rough sets.

We input the data sets into C4.5 and build the following
two decision trees. Features 5, 37, 2, and 3 are included in the
first dataset, and Features 39, 31, 38, and 40 are selected in the
second dataset. The two trees are given in Figures 17 and 18,
respectively.

F39
≤0.17>0.17

F39 F40

≤0.42

Class 3

>0.42

Class 5

≤0.45

Class 2

>0.45

F38
≤0.80>0.80

Class 1Class 4

Figure 18: Decision tree trained on the features selected with
kernelized mutual information.

We start from the root node to a leaf node along the
branch, and then a piece of rule is extracted from the tree.
As to the first tree, we can get five decision rules:

(1) if F2 > 0.50 and F37 > 0.49, then the decision is Class
4;
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(2) if F2 > 0.50 and F37 ≤ 0.49, then the decision is Class
1;

(3) if 0.18 < F2 ≤ 0.50 and F3 > 0.41, then the decision is
Class 5;

(4) if 0.18 < F2 ≤ 0.50 and F3 ≤ 0.41, then the decision is
Class 3;

(5) if F2 ≤ 0.18, then the decision is Class 2.

As to the second decision tree, we can also obtain some
rules as

(1) if F39 > 0.45 and F38 > 0.80, then the decision is Class
4;

(2) if F39 > 0.45 and F38 ≤ 0.80, then the decision is Class
1;

(3) if 0.17 < F39 ≤ 0.45, then the decision is Class 2;
(4) if F39 ≤ 0.17 and F40 > 0.42, then the decision is Class

5;
(5) if F39 ≤ 0.17, and F40 ≤ 0.42, then the decision is Class

3.

We can see the derived decision trees are rather simple
and each can extract five pieces of rules. It is very easy for
domain experts to understand the rules and even revise the
rules. As the classification task is a little simple, the accuracy
of each model is high to 97%. As new samples and faults are
recorded by the system,more andmore complex tasksmay be
stored. In that case, the model may become more and more
complex.

6. Conclusions and Future Works

Automatic fault detection and diagnosis are highly desirable
in some industries, such as offshore oil well drilling plat-
forms, for such systems are self-monitoring without man
on duty. In this work, we design an intelligent abnormality
detection and fault recognition technique for the exhaust
system of gas turbines based on information entropy, which
is used in measuring the uniformity of exhaust temperatures,
evaluating the significance of features in kernel spaces, and
selecting splitting nodes for constructing decision trees. The
main contributions of the work are two parts. First, we
introduce the entropy function to measure the uniformity of
exhaust temperatures. The measurement is easy to compute
and understand. Numerical experiments also show its effec-
tiveness. Second, we extend Shannon entropy for evaluating
the significance of attributes in kernelized feature spaces. We
compute the relevance between a kernel matrix induced with
a set of attributes and the matrix computed with the decision
variable. Some numerical experiments are also presented.
Good results are derived.

Although this work gives an effective framework for
automatic fault detection and recognition, the proposed
technique is not tested on large-scale real tasks. We have
developed a remote state monitoring and fault diagnosis sys-
tem. Large scale data are flooding into the center. In the
future, we will improve these techniques and develop a
reliable diagnosis system.
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