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Background
Conventional molecular biology assumes genetic information is stored primarily in the 
sequences of genes that code for proteins [1]. However, an increasing number of stud-
ies have revealed that protein-coding genes account for only a tiny fraction of human 
genome (approximately 1.5%), while the other human genes are not involved in the 
protein-coding sequence [2–5]. In addition, in recent years, an increasing amount of 
experimental evidence has demonstrated that in most biological processes non-coding 
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RNAs (ncRNAs) are involved extensively [6, 7]. In particular, long non-coding RNAs 
(lncRNAs) with a nucleotide sequence length greater than 200 are large and essential 
non-coding RNAs [8, 9]. Recently, with the improvement of computational power and 
experimental techniques, thousands of lncRNAs have been discovered, from lower 
eukaryotes such as paramecia to humans [10]. Although lncRNAs cannot encode pro-
teins, they play important roles in biochemical reactions in the human body, such as 
protein translation, expression, gene regulation, immune regulation, oncogenesis and 
tissue development [11]. Currently, there are many accumulated peices of evidence that 
the association between lncRNAs and diseases is particularly important. Many dis-
eases caused by lncRNAs are complex and difficult to control, such as prostate cancer, 
colon cancer, Alzheimer’s disease, cardiovascular disease, and lung cancer [12–16]. For 
instance, the oncogenic effect of lncRNA-H19 can be inhibited by the under-regulation 
of renal carcinoma cells [17]. Therefore, it is essential to predict lncRNA-disease associa-
tions. It can help us to understand the biological processes and the molecular mecha-
nisms of human diseases from the perspective of ncRNAs.

In recent years, a large number of computational methods have been proposed to 
predict lncRNA-disease associations for application in biological experimental verifica-
tion. These approaches are mainly divided into three categories. The first predicts the 
correlation between unknown lncRNAs and diseases by sorting out disease similari-
ties, lncRNA similarities, and the association between lncRNAs and diseases based on 
a random walk. However, if there is no known interaction of relevant lncRNA informa-
tion on the new disease or no known interaction of relevant disease information on the 
new lncRNA, it is difficult for these methods to be applied to the relevant association 
prediction. For example, Sun et al. [18]., restarted the random walk and applyied it to 
the functional similarity network of lncRNAs. They proposed a computational model 
called RWRLNCD to detect the associations between diseases and lncRNAs in humans. 
In addition, Yao et al. [19]., Zhou et al. [20]., also raised a similar calculation approach 
based on a random walk. However, they focused more on the construction of a heteroge-
neous network to achieve the purpose of disease association prediction forzz lncRNAs.

The second method utilizes semi-supervised learning methods and machine learning 
models to extract the feature space between the known lncRNA-disease association and 
predict the unverified association of the two. In 2013, Chen et al. [22]., created a semi-
supervised learning model based on the Laplacian regularized least-squares method 
(LRLS). In 2016, Lan et al. [21]., blended different data sources and employed a classi-
fier SVM to predict potential interactions between diseases and lncRNAs. Their model 
solved the problem that the method of LRLS for predicting lncRNA-disease associations 
was degraded by using two combined classifiers. However, the method proposed by Lan 
et al. still had great deficiencies in the effective fusion of different lncRNA cores. In 2019, 
Li et al. [23] proposed a disease gene prioritization based on graph convolutional neural 
network (PGCN). Their method empolyed end-to-end manner to embedding the heter-
geneous network of diseases and genes.

The third category constructs a correlation matrix of lncRNA-disease pairs based on 
known experimental data. The sequence similarity between lncRNAs and semantic simi-
larity between diseases are integrated to find their associations with genes, to obtain the 
potential association between lncRNAs and diseases. Such an approach, however, relies 
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heavily on extensive genetic records. As a result, these models are greatly limited in their 
predictive tasks. For example, in 2012, Chen et al. [24]., predicted lncRNA-disease asso-
ciations based on the close relationship between genes through the association between 
diseases and lncRNA genes. However, the identification of lncRNA position character-
istics is still a tough task. In 2015, a computational model called KATZ was proposed by 
Chen et al. [25]. The main idea of KATZ is to integrate disease semantic similarities and 
the expression profile of lncRNAs. However, the low expression level of lncRNA inhib-
ited the function of this model.

In the past decade, deep learning has become one of the most popular subjects in sci-
entific research. Many deep learning models have been created by scholars and applied 
in various fields. At the same time, great success has been achieved in the field of biol-
ogy. In particular, computational models based on neural networks have made outstand-
ing contributions to the task of prediction [26]. As a neural network, the auto-encoder 
can learn input data through unsupervised learning, strongly represent potential fea-
tures, effectively reduce sample noise, and randomly generate data similar to the training 
data [27].

Therefore, this paper proposed a bidirectional generative adversarial network that uses 
an encoder and generator to learn high-level features in latent space, and a discriminator 
to predict lncRNA-disease associations.

Results
Parameter settings

In our study, the input length of the BiGAN encoder is 6137 and the output length is 
100. The lengths of the generator input and output are opposite to those of the encoder 
input and output. We applied a fully connected layer and ReLU activation function on 
each network and employed a cross-entropy function as the loss function. Adam was 
also used to optimize our model. The number of epochs was set as 5, and the batch size 
was set as 64 in our predicted model.

Evaluation metrics

To evaluate the predictive ability of the BiGAN on the association between lncRNA and 
disease pairs, we validated our proposed model using five-fold and 10-fold cross-valida-
tion. Almost all samples were taken as candidates in each cross-validation. Therefore, 
the distribution closest to the original samples makes the evaluation results highly reli-
able. We utilized the experimentally verified lncRNA-disease associations as samples, 
while all the unverified associations of the lncRNA-disease pair were used as candidates. 
Hence, we could rank each candidate sample based on the predicted score. In the rank 
list, a threshold was given. Samples with lncRNA- disease association prediction scores 
above the threshold were considered true positive (TP). For each given threshold, we 
can find the corresponding TP to determine the true positive ratio (TPR), which is also 
known as sensitivity. Similarly, we can obtain the false negative (FN) samples among 
the candidate samples by setting a threshold, and the corresponding false positive ratio 
(FPR) is also called the 1-specificity. The TPR and the FPR can be calculated as follows:
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where TP is the number of positive samples, and FN is the number of negative samples 
whose prediction scores are higher than the threshold but considered as a negative sam-
ple. TN is the number of negative samples, and FP is the number of negative samples 
whose prediction scores are lower than the threshold but considered positive samples.

TPR and FPR denote the proportion of the number of lncRNA-disease association 
prediction scores over or under a given threshold in the test samples respectively. There-
fore, according to the different thresholds, we can plot the receiver operating charac-
teristic (ROC) curve, which is shown in Fig. 1. At the same time, we calculated the area 
under the ROC curve(AUC) to evaluate the lncRNA-disease association ability of our 
proposed model [28]. The higher the AUC value is, the better the performance of the 
BiGAN. When the AUC value of reaches 1, it is considered that the BiGAN can perfectly 
predict lncRNA- disease associations. When the value is close to 0.5, it is considered 
to predict the association randomly. To balance the samples of known lncRNA-disease 
associations and unknown lncRNA-disease associations, we also utilized the precision-
recall (PR) curve to estimate our BiGAN [29]. Precision and Recall are defined as follows:

In addition, we utilized statistical parameters to measure the performance of our pre-
dicted model, such as the F1-score, accuracy, and Matthews Correlation Coefficient 
(MCC). The experimental results in the three datasets are shown in Table 1. 

Comparison with other methods

We compared the BiGAN with other four other advanced methods to prove that our 
model can predict the associations of lncRNA-disease pairs effectively. The three data-
sets mentioned above were employed as gold standard training sets to evaluate the other 

(1)FPR =
FP

FP + TN
,TPR =

TP

TP + FN

(2)Precision =
TP

TP + FP
,Recall =

TP

TP + FN

Fig. 1  ROC curves of the BiGAN in five-fold cross-validation in LncRNADisease dataset
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methods. The four methods were the probabilistic prediction model of the association 
between lncRNAs and disease based on Naive Bayes Classifier [30], the Convolutional 
Neural Network based on an attention mechanism for the lncRNA genes relationship 
with diseases (CNNLDA) [31], identifying known lncRNA-disease association by using 
Topological Information (TILDA) [32], and the web service for discovering lncRNA-dis-
ease interaction through mixing multiple biological data resources (LDAP).

As shown in Fig. 2, the AUC (0.931) of the BiGAN is the highest compared to those of 
the other methods in 10-fold cross-validation on the LncRNADisease dataset. The AUC 
values of CNNLDA, NBCLDA, TILDA, and LDAP are 0.907, 0.871, 0.817, and 0.806, 
respectively. The AUC and AUPR values for all methods in five-fold cross-validation are 
shown in Table 2.  

To verify that our prediction model performs well not only in a single dataset, but also 
in two other datasets. As shown in Fig. 3a, the area enclosed by the ROC curve and the 
coordinate axis of BiGAN and different models in the dataset Lnc2Cancer in 10-fold 
cross-validation. In the Lnc2Cancer dataset, except for the fact that the AUC value of 

Table 1  Ten-fold cross-validation results performed by the BiGAN on three datasets

Dataset AUC​ AUPR Accuracy F1-score MCC

MNDR 0.929 0.901 0.967 0.874 0.867

LncRNADisease 0.931 0.911 0.961 0.871 0.864

LncRNACancer 0.934 0.905 0.979 0.873 0.864

Fig. 2  ROC curves in 10-fold cross-validation by different methods

Table 2  The AUC and AUPR values for all methods in five-fold cross-validation

Five-fold cross-
validation

BiGAN CNNLDA NBCLDA TILDA LDAP

AUC​ 0.927 0.914 0.821 0.815 0.776

AUPR 0.917 0.897 0.807 0.796 0.753
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TILDA was slightly higher than that for LncRNADisease, the AUC values of the models 
was lower. Most likely, this is because the underlying cancer was more difficult to predict 
than a common disease. So the performance of most models on Lnc2Cancer dataset was 
poorer. In the MNDR, the AUC of the BiGAN reached the highest value, 0.934 (Fig. 4). 
The results in the three datasets demonstrated that the proposed model was not solely 
capable of efficient prediction of lncRNA-disease association in a specific dataset. As the 
results show, the BiGAN has strong robustness and generalization ability, which is better 
than other state-of-the-art models in most datasets.

Case studies on colon cancer and renal cancer

To demonstrate the ability of the BiGAN to predict the latent association between lncR-
NAs and diseases, we measured our method based on case studies on the Lnc2Cancer 
dataset and MNDR dataset.

Colon cancer is one of the most dangerous cancers and one of the main causes of 
death among humans. The relationship among the codes in the sequence of lncRNAs 
associated with colon cancer is that these sequences may cause cancer. With the devel-
opment of cancer research, lncRNAs had become an essential target for colon can-
cer prevention, diagnosis, and treatment. In the Lnc2Cancer and MNDR datasets, we 
applied the BiGAN to predict the associations between colon cancer and lncRNAs, and 
7 experimentally verified lncRNAs were on the top ten prediction list. ANRIL can sup-
press the expression of other RNAs in the late phase of the DNA damage response to 
repair DNA to normal levels [33]. Experimental results show that the control network 
composed of UCA1 and other RNAs is a potential factor in the treatment of colon can-
cer [34]. Additionally, the migration ability of colon cancer cells is significantly inhibited 
and blocked when TUG1 is expressed, and the overexpression of TUG1 may accelerate 
the cell migration process of colon cancer cells [35].More details are shown in Table 3.

Fig. 3  Ten-fold cross-validation ROC curves obtained by different methods on the Lnc2Cancer dataset
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More than 250 thousand new cases of renal cancer are diagnosed each year, and renal 
cancer is recognized as one of the top ten common cancers. It is important to find an 
association between renal cancer progression and the dysregulation of certain lncR-
NAs. Among all the lncRNA candidates predicted by the BiGAN as being associated 
with renal cancer, 7 lncRNAs were among the top 10 in the predicted list, (MALAT1 1st, 
HOTAIR 2nd, PVT1 3rd, NBAT1 4th, UCA1 5th, H19 6th, and MEG3 7th). MALAT1 
reduces the expression of miR-203 to promote the expression of BIRC5 and accelerate 
the occurrence and development of renal cell carcinoma [36]. The long non-coding RNA 
HOTAIR accelerates α-2, 8-salivary transferases in renal cell carcinoma malignancies by 
wetting pre-miniaturized microRNA-124 [37]. By down-regulating miR-16-5p, lncRNA 
PVT1 promoted the invasion, proliferation, and epithelial-mesenchymal transformation 
of renal cell carcinoma cells [38].

According to the above description, the BiGAN can achieve good performance in pre-
dicting unknown association between lncRNA-disease pairs. Therefore, our approach 
can be widely used for predicting unverified lncRNA-disease associations recorded in 
the databases. All candidate associations are prioritized and the predicted results can be 
used for future research and experimental validation.

Discussion
In the experiment, we integrated the comprehensive similarity vectors of known 
lncRNA-disease correlations to present their relationship as the first step. Then, the 
BiGAN model was built to predict the unverified associations between lncRNAs and dis-
eases by learning high-level features in latent space from the similarity vectors. Although 
the BiGAN seems to outperform than other advanced methods in the above evaluation, 
it still has some room for improvement.

Based on an auto-encoder, the BiGAN can automatically recognize the comprehensive 
similarity characteristics of lncRNAs and diseases, eliminate noise, and reduce dimen-
sions. It always learns the annotated biological patterns perfectly. However, we found 
that our proposed model did not achieve the best performance in predicting the asso-
ciation between lncRNAs and diseases. In our research, two main factors may affect the 

Table 3  Top ten predicted results between colon cancer and renal cancer by the BiGAN with 
experimental validation in the literature on Lnc2Cancer dataset

Colon cancer Ṟenal cancer

Name of lncRNAs Rank Pubmed ID Name of lncRNAs Rank Pubmed ID

ANRIL 3 23416462 UCA1 5 31996265

CCAT1 6 31039730 MALAT1 1 31250518

H19 4 31602323 ACTN4 6 Unknown

ENST 8 Unknown PVT1 3 30105850

XIAP-AS1 9 30892955 FAL1 9 Unknown

P14AS 7 Unknown HOTAIR 2 30105850

GAS5 2 28722800 H19 7 29214011

UCA1 5 30652355 RAB31 10 Unknown

TUG1 1 27634385 NBAT1 4 31298469

DANCR 10 Unknown MEG3 8 31071531
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results. On the one hand, the performance of the BiGAN strongly depends on the simi-
larity eigenvectors which are computed through handcrafted measurements. However, it 
is not easy to extract the similarity features from high-dimensional data by using these 
methods. On the other hand, the structure of the BiGAN is based on an auto-encoder 
whose main idea is to compress the features into low dimensions and learn the latent 
representation. Thus, we assume that the BiGAN cannot share and propagate informa-
tion perfectly in each network layer.

In this study, we did not further consider whether the performance would be impacted 
by the values of the parameters that were set as default. In fact, the parameter settings 
are significantly important to a certain model because suitable parameters can help 
the model learn privileged information from the eigenvectors, particularly for complex 
associated features. In recent years, heteroscedastic dropout has been one of the best 
regularization techniques for controlling deep neural networks to absorb privileged 
information. Thus, we will take what has been discussed above as our future work to 
improve the prediction ability of lncRNA-disease associations.

Conclusions
In this manuscript, we introduce an unsupervised learning lncRNA- disease association 
prediction framework called BiGAN. The model includes three main parts, a feature 
extractor based on similarity algorithm, a bidirectional generator based on autoencoder, 
and a discriminator that jointly discriminates data and latent space features. We inte-
grated lncRNA sequence similarity, disease semantic similarity, and Gaussian interac-
tion profile kernel similarity to mine the high-level representation of the potential space 
between lncRNAs and diseases. Ultimately, the BiGAN can effectively predict the asso-
ciations between lncRNAs based on the latent relationship of the integrated similarity 
vectors. In 10-fold cross-validation and five-fold cross-validation, our AUC values were 
0.931 and 0.927, respectively, indicating the effectiveness of our prediction model. We 
also compared our model with other state-of-the-art methods, and the results revealed 
that the BiGAN was superior to other advanced methods. Additionally, we conducted 
case studies on colon cancer and renal cancer. The case results showed that our pro-
posed model had an accurate predictive ability for the association of lncRNA-disease 
pairs.

Methods
Datasets

To better train our BiGAN model, we collected three experimentally validated datasets 
from MNDR v3.0, Lnc2Cancer, and LncRNADisease. Below is a brief description of the 
datasets used.

The first dataset is from the mammalian ncRNA disease repository (MNDR) with 
coverage and annotation proposed by Lin et  al. 24 August 2020 [39]. We extracted 
association information about human lncRNA-disease pairs in MNDR, consisting of 
two datasets. One of the databases is experimentally verified association information, 
covering 742 human diseases, 25,494 human lncRNAs, and 39,783 lncRNA-disease 
associations, which can be used as a training set. The other dataset is the association 
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information of predicted lncRNA-disease pairs, covering 231 human diseases, 17,713 
human lncRNAs, and 52,144 pieces of association information, which can be used as a 
validation set.

The second dataset was released on 8 January 2019, and contains experimentally 
validated lncRNA-disease correlations downloaded from LncRNADisease V2.0 [40]. 
We also collected another special ncRNA dataset named circRNA whose sequences 
were sufficiently long (>200) in this dataset. After removing the lncRNA disease pairs 
that were not labelled with IDs and that lacked features, we deleted duplicate samples 
describing the lncRNA-disease relationship according to known experimental evidence. 
From this, we obtained 205,959 interaction associations for 529 human diseases and 
19,166 lncRNAs. In addition, 823 circRNAs and 529 human diseases, and 1004 interac-
tion associations were included. This dataset contains more comprehensive information 
than the other two datasets.

The third dataset was published on 30 June 2020, and contains experimentally 
proven lncRNA-disease correlations which were based on the Lnc2Cancer V3.0 data-
set [41]. After removing the lncRNA disease pairs that were not labelled with IDs and 
that lacked characteristics, we deleted duplicate samples describing the lncRNA-disease 
relationships according to known experimental evidence. As a result, 216 human dis-
eases,2659 human lncRNAs, and 9254 human lncRNA-disease interaction associations 
were obtained. Compared with lnc2cancer2.0 published in 2018, the number of diseases 
have increased by 51 and the number of lncRNAs increased by more than 1000, and 
the lncRNA-disease association nearly doubled. This allows us to collect enough data 
to learn the features of the latent space between lncRNAs and diseases in training the 
BiGAN.

LncRNA‑disease association

According to the sorted dataset, the interaction information between diseases and lncR-
NAs was constructed into a matrix A ∈ Rnd×nl , where the columns represent lncRNAs 
and the rows represent disease. If there was an experimentally verified lncRNA-disease 
association, the value of A in the matrix was set to 1. Otherwise, the value was set to 0, 
as shown in Fig. 5A.

LncRNA sequence similarity

An increasing number of studies have shown that similar pathologies between two dif-
ferent diseases may be linked with two similar lncRNAs. Therefore, one of the impor-
tant characteristics of lncRNA-disease association prediction is the similarity between 
different lncRNAs. Between any two strings, the Levenshtein distance is the minimum 
cost required for a single word of one string to be converted to the other string after 
insertion, deletion, or replacement. To investigate the deeper similarity between lncR-
NAs, we used the Levenshtein distance to calculate the similarity between two lncRNAs. 
We set the editing cost as 2, and the cost for deletion and insertion as 1. The similarity 
between the ith lncRNA and the jth lncRNA isLsim(li, lj) ∈ Rnl×nl , and it can be calcu-
lated as follows:



Page 10 of 17Yang and Li ﻿BMC Bioinformatics          (2021) 22:357 

where x represents the minimum cost required to convert one lncRNA sequence into 
another and len represents the sequence length of lncRNA.

Disease semantic similarity

In 2010, Schlicker et al. found that the more similar the disease phenotype was, the more 
similar the gene dysfunction [42]. Gene Ontology annotations provide a way to obtain 
the semantic similarity of genes [43]. Thus, some researchers employ directed acyclic 
graphs (DAGs) to represent diseases. Additionally, the Jaccard correlation coefficient has 
been used to calculate the functional similarity of diseases. We applied DAGs to this 
study to calculate semantic similarity scores for diseases. Let Dsim ∈ Rnd×nd be the dis-
ease similarity between the ith disease and the jth disease. It can be calculated as follows:

where Gdi represents disease di in DAGs , Gdjrepresents dj disease in DAGs . Compare 
disease i and disease j, SVDi(x) denotes the disease semantic value of x ∈ Gdi , and 
SVDj(x) denotes the disease semantic value of x ∈ Gdj .We can calculate the semantic 
value of a disease d by using the following equation:

where d′ ∈ children of d, and µ represents the factor of semantic contribution. According 
to previous research, we set it to 0.5 [44].

(3)Lsim = 1−
x

len(li)+ len(lj)

(4)Dsim(di, dj) =

∑

x∈Gdi
∩Gdj

(SVDi(x)+ SVDj(x))
∑

x∈Gdi
SVDi(x)

+
∑

x∈Gdj
SVDj(x)

(5)SVD(x) =

{

max {µ · SVD(d′)}, if x �= d
1, Otherwise

Fig. 4  Ten-fold cross-validation ROC curves obtained by different methods on the MNDR dataset
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Gaussian interaction profile kernel similarity

Similar lncRNAs may be associated with different diseases that have similar pathological 
characteristics, and vice versa. Based on this assumption, the kernel similarity between 
lncRNAs and diseases can be calculated by the Gaussian interaction profile (GIP). The 
GIP kernel similarities were computed based on the lncRNA-disease interaction matrix 
obtained from the LncRNADisease dataset. The GIP similarities GKL(li, lj) of lncRNAs can 
be computed as follows:

where A(li) and A(lj) represent the ith and jth columns information in the association 
matrix A. Let � be a parameter that can control the width of the kernel boundary and is 
represented by the average number of diseases associated with each lncRNA, which is 
defined as follows:

where nl denotes the number of lncRNAs.
Similarly, we can obtain the GIP kernel similarity of disease di and disease dj as follows:

where A(di) and A(dj) denote the ith and jth rows information in the lncRNA-disease 
association matrix A. Let � be a parameter that can control the width of the kernel 
boundary and is represented by the average number of lncRNAs associated with each 
disease, which can be calculated as follows:

where nd denotes the number of diseases.

Integrated similarity

From the above,the lncRNAs sequence similarity, the semantic similarity of diseases, and 
the GIP kernel similarity of lncRNAs and diseases were gathered. We obtained the inte-
grated similarity of lncRNA (Ls) and integrated similarity of diseases (Ds), (Fig. 5B), and the 
calculation formula is shown as follows:

The disease similarity vector for disease di contains the similarity values of all other 
diseases to di . Additionally, the lncRNA similarity vector for lncRNA li includes the 
similarity values of all other lncRNAs to li . Therefore, we concatenated these similarity 
vectors for the corresponding lncRNA-disease pair to generate large eigenvectors of size 

(6)GKL(li, lj) = exp (−�||A(li)− A(lj)||
2)

(7)� =
1

1
nl

∑nl
i=1 ||A(li)||

2

(8)GKD(di, dj) = exp (−�||A(di)− A(dj)||
2)

(9)� =
1

1
nl

∑nd
i=1 ||A(di)||

2

(10)Ls(li, ij) =
Lsim(li, lj)+ GKL(li, lj)

2

(11)Ds(di, dj) =
Dsim(di, dj)+ GKD(di, dj)

2
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nd + nl , where the number of diseases and lncRNAs was nd and nl, as shown in Fig. 5C. 
There were nd × nl samples altogether, each corresponding to a lncRNA-disease pair.

BiGAN

In 2018, Chen et  al. proposed using linear-based principal component analysis (PCA) 
to obtain the traits of GIP kernel similarity [45]. However, the potential lncRNA-disease 
correlation features were difficult to mine. As a nonlinear generalization of PCA, an 
auto-encoder is an unsupervised neural network model that mainly includes an encoder 
and decoder. This special neural network has two advantages in dealing with the fea-
tures of lncRNA-disease associations [46]. One is that auto-encoders are good at learn-
ing biological patterns that are annotated. Second, they can automatically recognize 
the comprehensive similarity characteristics of lncRNAs and diseases, eliminate noise, 
and reduce dimensions. This can solve the problem that features extracted from large 
datasets may produce considerable noise. To further study the model of unsupervised 
learning, we developed a novel generative adversarial network model inspired by the 
auto-encoder.

The main framework of the BiGAN

In this study, we propose using the bidirectional generative adversarial network(BiGAN) 
model to complete the task of predicting the association of lncRNA-disease pairs. 
BiGAN consists of an encoder, a generator, and a discriminator, the main framework 
of which is shown in Fig. 6. The BiGAN encoder can map the original data point x to 
the latent representation z. The BiGAN generator will capture the feature in the latent 
space to generate a new lncRNA-disease association. The BiGAN discriminator not only 

Fig. 5  Flowchart of processing similarity features for lncRNAs and diseases
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discriminates in the traditional data space (x versus G(z)), but also discriminates in the 
joint data and latent space ((x, E(x)) versus (G(z), z)). The latent component is both an 
encoder output E(x) and a generator input z.

We can clearly see that the encoder and the generator cannot “communicate” with 
each other directly. However, the encoder and generator will learn to reverse each other 
through the joint probability distribution. In other words, E(G(z)) and G(E(x)) can be 
computed to fool the BiGAN discriminator. In our model, an encoder E : �X → �Z and 
a generator G : �Z → �X are trained at the same time. The BiGAN encoder includes a 
distribution PE(Z|X) = σ(Z − E(X)) mapping data points x into a latent feature space 
of the generator. The BiGAN generator includes a distribution QG(X |Z) = σ(X − G(Z)) 
extracting randomly sampled noise from the encoder to generat new lncRNA-disease 
associations. The discriminator will take input from the latent space in to predict the 
distribution of PD(Y |X ,Z) , where the value of Y is equal to 0 if X is from the output of 
generator ( G(z), z ∼ pz ), and the value of Y is 1 if X is sampled from the encoder data 
distribution px . Thus, we can define a minimax objective to replace the BiGAN training 
objective.

where V(D, E, G) can be computed based on the following formulas:

In contrast to other advanced unsupervised computing models, the BiGAN can learn 
the gradient information perfectly, so as to ensure the correct weight allocation.

More details of the encoder, generator, and discriminator

Encoder In the similarity eigenvectors, each lncRNA contains the similarity information 
and position information of all other lncRNAs. Likewise, each disease contains informa-
tion about the similarity and position of all the other diseases. As mentioned above, the 
BiGAN encoder is one of the two parts of an auto-encoder. The main functions of the 
encoder are to compress data, eliminate noise, and learn the features of the latent space. 
We take the similarity feature vectors of the samples as input so that the encoder can 
fully learn the parameters of the similarity vectors. In this way, the encoder can effec-
tively map the data points into the latent feature space. The structure of BiGAN encoder 
is shown in Fig. 7A. The encoder is composed of three fully connected layers of the neu-
ral network. We can compute the output of each layer with the following formula:

where x denotes the similarity features of lncRNA-disease pairs. WE and bE represent 
the encoder weights and bias, respectively.

(12)min
G,E

max
D

V (D,E,G)

(13)V (D,E,G) = EX∼pX [logD(X ,E(X))] + EZ∼pZ [log(1− D(G(Z),Z))]

(14)logD(X ,E(X)) = EZ∼pE(·|X)[logD(X ,Z)]

(15)log(1− D(G(Z),Z)) = EX∼pG(·|Z)[log(1− D(X ,Z))]

(16)E(x) = WEx + bE
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The dimension of the similarity eigenvectors between the lncRNA and disease will be 
compressed into a low-dimensional vector after passing through each layer in the encoder. 
A trained encoder can predict the feature representations of data by capturing semantic 
attributes. The dense information of compressed low-dimensional vectors is more condu-
cive to learning the mapping relationship of the latent space. To mine the representation 
of latent space more effectively, we decided to set the number of neurons in the final layer 
to 100. We employed ReLU as the activation function in the BiGAN model, and it can be 
defined as follows:

In addition, the encoder will randomly sample noise z in distribution 
PE(Z|X) = σ(Z − E(X)) and output latent features E(x) during training. Ultimately, we 
can obtain many data pairs (x, E(x)).

(17)ReLU(y) =

{

y y ≥ 0
0 y < 0

Fig. 6  The main framework of BiGAN

Fig. 7  The structure of encoder, generator, and discriminator
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Generator In most generative adversarial network(GAN) models, the role of the genera-
tor is to learn the features of the original data and generate new data based on the learned 
characteristics. However, in the BiGAN model, the generator takes randomly sampled noise 
as input. As shown in Fig. 7B, the generator is similar to the encoder in that it has the same 
network structure. The output of the generator is calculated as follows:

where z is the feature of the latent space. WG and bG denote the weights and bias of the 
generator, respectively.

However, each layer in the generator increases the dimension of the potential repre-
sentation and the final output dimension is the same as the original similarity feature 
vector dimension. Next, the representation with noise is decoded by the generator, and 
new lncRNA-disease associations are generated. Then, we can obtain a series of data 
pairs(G(z),z).
Discriminator The two data pairs mentioned above are taken as inputs to fool the dis-

criminator. The discriminator discrimines whether the input data are real. If the discrimina-
tor thinks the data pairs come from the encoder, will be set as 1. If the discriminator thinks 
data pairs come from the generator, it will be set as 0. The structure of the discriminator is 
shown in Fig. 7C, where the sigmoid function is defined as follows:

where θ is the input of the sigmoid function.
The BiGAN encoder has a strong representation learning ability to learn the latent 

association between lncRNAs and diseases. The BiGAN generator will extract the fea-
tures of the joint data and latent space to generate new lncRNA—disease associations. 
Finally, z = E(G(z)) and x = G(E(x)) are determined through a union probability distri-
bution to arrive at a bidirectional structure. And you can see the concrete proof in the 
study of Jeff et al. According to our experiment, the BiGAN is an unsupervised feature 
learning model with strong robustness and representational learning ability. Compared 
with other computing models, the BiGAN performs remarkably well.
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