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THE BIGGER PICTURE Electronic health record (EHR) data collected during routine clinical care are
increasingly used by translational and clinical researchers to address a variety of questions, such as iden-
tifying associations between diseases or phenotypes, predicting disease risk or prognosis, or supporting
the safety and efficacy of treatments. The feasibility of these studies relies on precisely inferring the timing
and ordering of clinical events from EHR data to define baseline eligibility and patient outcomes. Rule-
based extraction methods can be inaccurate, and existing machine-learning approaches generally require
large-scale labels for training. Better methods for identifying the timing of clinical events could help expand
the use of EHR data to address important medical questions and could improve the quality of the resulting
analyses.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Electronic health record (EHR) data are increasingly used to support real-world evidence studies but are
limited by the lack of precise timings of clinical events. Here, we propose a label-efficient incident phenotyp-
ing (LATTE) algorithm to accurately annotate the timing of clinical events from longitudinal EHR data. By
leveraging the pre-trained semantic embeddings, LATTE selects predictive features and compresses
their information into longitudinal visit embeddings through visit attention learning. LATTE models the
sequential dependency between the target event and visit embeddings to derive the timings. To improve la-
bel efficiency, LATTE constructs longitudinal silver-standard labels from unlabeled patients to perform semi-
supervised training. LATTE is evaluated on the onset of type 2 diabetes, heart failure, and relapses of multiple
sclerosis. LATTE consistently achieves substantial improvements over benchmark methods while providing
high prediction interpretability. The event timings are shown to help discover risk factors of heart failure
among patients with rheumatoid arthritis.
INTRODUCTION

In recent years, electronic health record (EHR) data collected

during the routine delivery of care has opened opportunities for
This is an open access article under the CC BY-N
discovery and translational research.1,2 For example,

EHR-derived cohorts have led to large-scale clinical studies

and phenome-wide association studies.3,4,5,6 Due to their large

size and broad patient population, EHR cohorts are increasingly
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used to support real-world evidence (RWE) on the efficacy and

safety of therapeutic drugs or intervention procedures.7,8,9,10

However, the capacity of EHR data for supporting RWE studies

is currently limited due to the lack of direct observations on the

precise timing of clinical events, such as the onset of heart fail-

ure. The timing information plays an important role in RWE

studies, including in determining eligibility at baseline or defining

time-to-event outcomes.11 Readily available EHR features, such

as the timing of relevant international classification of disease

(ICD) codes, are often inaccurate due to either miscoding or

ICD codes being assigned to visits that rule out a disease. Addi-

tionally, event-time-derived surrogates tend to have systematic

biases.12,13 On the other hand, it is time and resource prohibitive

to extract event information via manual chart review. For binary

phenotype traits, such as the presence or absence of a condi-

tion, a wide range of supervised, unsupervised, and label-effi-

cient semi-supervised machine learning-based phenotyping al-

gorithms have been successfully developed and validated

across many disease phenotypes.14,15,16,17,18 On the contrary,

few methods currently exist to accurately and efficiently derive

computational event time phenotypes based on longitudinal

EHR data.

Existing approaches to deriving computational event time

phenotypes can generally be categorized as rule based13,19

and machine learning based.20,21 For example, Chubak et al.19

developed rules to predict breast cancer recurrence based on

the earliest observation of expert-specified codes. Uno et al.13

proposed to alleviate the systematic temporal biases between

code timings and phenotype onset by using points ofmaximal in-

crease in lieu of peak values. Even though rule-based methods

can achieve notable performance for some phenotypes, they

are limited by the reliance on expert knowledge to curate a small

set of predictive surrogate concepts, which prevents their appli-

cation to diseases without such predictive concepts or the

scaling up to data with hundreds of unspecific features. Rule-

based methods are tailored to specific applications, such as

cancer recurrence per domain knowledge, and are hardly gener-

alizable to other applications.

A more generalizable alternative approach is to employ

machine learning to derive computational incident phenotyping

algorithms using temporal patterns of EHR data. For example,

random forests were investigated for phenotyping opioid over-

dose events.22 Due to the stronger learning power, recently,

deep learning models have been introduced for phenotyp-

ing.23,24,25 Based on the label availability, these methods can

be categorized into unsupervised clustering,2,26,27 which mostly

aims for novel phenotype or subtype discovery; supervised

models,21,28,29 which focus on devising novel network architec-

tures to better model the structures of EHR data; and semi-su-

pervised methods,30,31,32,32,33 which aim for label efficiency by

either leveraging the predictive silver labels or through unsuper-

vised pre-training. For example, Zang et al.33 propose to

generate silver-standard labels to learn the screening of border-

line personality disorders based on the model pre-trained using

gold-standard labels. As for time-to-event prediction, sequential

models are prevalently introduced to model visit temporal de-

pendency. For example, a graph-based framework is proposed

for temporal phenotyping by Liu et al.,34 and recurrent neural net-

works are employed to mimic physician attention for interpret-
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able phenotyping21 and to perform outcome-oriented temporal

phenotyping.35 Due to the large-scale parameters, deep

learning-based algorithms heavily depend on large-scale labels,

which are expensive to obtain and not widely available, espe-

cially when the annotations involve event timings. To alleviate

this issue, a recent semi-supervised algorithm, semi-supervised

adaptive Markov Gaussian embedding process (SAMGEP),20 is

developed by imposing relatively simple linear effects on the

concept embedding aggregation, which could lead the visit

embedding vectors to be trivial and dominated by non-indicative

common concepts, and by modeling disease progression as a

Gaussian process emission through a hidden Markov model

(HMM), which has limited capability of incorporating future infor-

mation and capturing complex long-range visit dependency pat-

terns. Meanwhile, self-supervised representation learning

methods,36,37 which aim to capture the concept or visit depen-

dency by predicting the masked parts of longitudinal EHR

data, and contrastive representation learning38,39 are investi-

gated to improve model generalization in scenarios with zero

or few labels.

In this study, we propose a semi-supervised label-efficient

incident phenotyping (LATTE) algorithm to derive the timing of

clinical incidents from longitudinal EHR data. LATTE attains

high accuracy with a small label size by effectively leveraging

longitudinal silver-standard labels and the prior knowledge

from semantic embeddings of EHR concepts to perform unsu-

pervised pre-training and semi-supervised model co-training.

Another key advantage of LATTE compared with existing litera-

ture lies in its cross-site portability, which is enabled via contras-

tive representation learning. Efficient and accurate annotations

of clinical event times through LATTE strengthen the potential

of EHR data for generating RWE.

Method
Overview

Architecture of LATTE. As illustrated in Figure 1, with longitudi-

nal EHR data and a small number of labels on the phenotype

status over time as the input, LATTE consists of four key compu-

tational components: (1) a concept re-weighting (CR) module

that assigns a weight for each input concept or feature; (2) a visit

attention network (VAN), which aims to assign higher weights to

visits that are more indicative of the incident; (3) a sequential

model to capture visit temporal dependency and obtain visit rep-

resentations; and (4) final incident predictions at each visit by the

predictor.

Procedures of LATTE. To alleviate the need for gold-standard

labels, the learning of LATTE comprises the following two steps.

(1) LATTE constructs longitudinal silver-standard labels for the

event status over time based on predictive surrogates to perform

unsupervised model pre-training. (2) LATTE is fine tuned jointly

by the gold-standard labels and silver-standard labels. The

four computational components of LATTE are optimized end to

end together at both the pre-training and fine-tuning stages.

Input data structure and notations

EHR data consist of longitudinal patient visits, with each visit

recording the observations of both structured EHR concepts

(codes for diagnosis, procedures, medication prescriptions, lab-

oratory test orders, and results) and unstructured narrative clin-

ical notes. Raw EHR concepts are rolled up to higher-level
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Figure 1. LATTE framework

LATTE is an end-to-end neural network pipeline consisting of four major components: (a) the CR module, which selects important input features based on their

semantic relationship to the target phenotype; (b) the VAN, which learns to pay attention to the most incident-indicative visits; (c) BiGRU layers, which model the

sequential dependency among visits; and (d) incident predictors, which generate incident predictions at each visit.
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concepts according to common ontology as in previous

studies40: Diagnosis (ICD) codes are grouped into the estab-

lished phenome-wide association study (PheWAS) catalogs

(PheCodes), procedure codes are grouped into categories ac-

cording to the Clinical Classifications Software for Services

and Procedures (CCS), medications are mapped to ingredient-

level RxNorm codes, and laboratory tests are mapped to Logical

Observation Identifiers Names and Codes (LOINC). From free-

text clinical notes, we extract NLP (natural language processing)

mentions of clinical terms mapped to the concept unique identi-

fiers (CUIs) in the Unified Medical Language System (UMLS) us-

ing the Narrative Information Linear Extraction (NILE) tool.40,41,42

We assume that the training data contain a total of N patients,

organized in a longitudinal format indexed by t and that without

generality, the first M patients are labeled. For patient i and visit

at time t˛ f1;.;Tig, letYt
i ˛ f0; 1gdenote the gold-standard label

on the event status, which is annotated by physicians; let St
i ˛

½0;1� be the silver-standard label for incidence status; and let

Dt
i ˛Rp be the p-dimensional vector of features, where Ti is the

last follow-up time for patient i, upper boundedbyglobalmaximal

follow-up time tmax. Here, the scalable silver-standard labels are

obtained in an unsupervised manner. They are expected to be

indicative of gold-standard labels but may be contaminated by

bias or noise. For learning the onset time of a phenotype, silver-

standard labels are typically derived from the corresponding

diagnosis codes or NLP mentions. Hence, the input data consist

of G =
��

Yt
i ;S

t
i ;D

t
i

�
: t = 1;.; Ti; i = 1;.;M

�
for M labeled pa-

tients and U =
��

St
i ;D

t
i

�
: t = 1;.;Ti; i = M+ 1;.;N

�
for the

other N � M unlabeled patients. Let Di = fDt
i : t = 1;.;Tig be
the features aggregated over follow-up time. Our LATTE algo-

rithm builds a prediction model for PðYt
i = 1

��DiÞ, t = 1;.;Ti,

the incidence rate over time given the longitudinal features.

Semantic embedding vector of input features. LATTE lever-

ages a q-dimensional semantic embedding vector as the prior

knowledge of each element of the p-dimensional feature D to

compress visit information into a q-dimensional visit embedding

4ðDt
i Þ. Let h1;.;hp ˛Rq be the semantic embedding vectors

associated with features or concepts in D and hG be the seman-

tic embedding vector of the surrogate concept, which can be the

target phenotype itself or a concept that is most predictive of it.

The embedding vectors are obtained by performing matrix

factorization, a variant skip-gram algorithm,43,44 on a co-occur-

rence matrix of the EHR concepts aggregated from large-scale,

unlabeled, patient-level, longitudinal EHR data.40 As shown pre-

viously,40,41,42,45 such embedding vectors effectively capture the

clinical semantic relationship or similarity of EHR concepts or

input features.

Construction of longitudinal silver labels. The silver-standard

label St
i , which serves as a noisy proxy for Yt

i , can be designed

according to specific applications. When the event informa-

tion can be well captured by surrogate features, such as a

relevant NLP CUI or PheCode, LATTE constructs longitudinal

silver-standard labels by leveraging such surrogate concepts,

similar to other weakly supervised algorithms, such as

PheNorm.18 Let cti denote the counts of silver-standard label

concepts at visit t and Ut
i be a health utilization measure at t

which is often needed for normalizing the silver-standard

labels.
Patterns 5, 100906, January 12, 2024 3



Table 1. Summary of the used notations

Notation Description Notation Description

Ti last follow-up time for patient i tmax global maximal follow-up time

Yt
i incidence status for patient i at visit t St

i silver-standard label for patient i at visit t

Yi aggregation of Yt
i for patient i across visits Si aggregation of St

i for patient i across visits

Dt
i features for patient i at visit t Di aggregation of Dt

i for patient i across visits

F visit representation module V i visit representation of patient i

cti count of concept i at visit t h semantic concept embedding

L training loss P penalty terms

G Bi-GRU deep learning module N number of training patients

CR concept re-weighting module VAN visit attention network

4 CR transformation j visit attention transformation

KCR parameter of CR w parameters of all layers

QVAN query matrix of the VAN KVAN key matrix of the VAN

GY logistic transformation for incidence GS logistic transformation for silver labels

~G generated synthetic data Ai;k time window of synthetic data
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When the outcome of interest is time to the first onset of a con-

dition, with Yt
i indicating whether the event has occurred by time

t, we use the cumulative counts
Pt

u= 0c
u
i up to visit t,

St
cum;i = expit

"(
log

 
1 +

Xt

u= 0

cu
i

!
� a log

 
1 +

Xt

u= 0

Uu
i

!),
t

#
:

(Equation 1)

For prediction of recurrent events, such as relapse status over

time, with Yt
i episodically shifting between 0 and 1, we only

use cti at visit t,

St
rec;i = expit

��
log
�
1 + ct

i

� � a log
�
1 + Ut

i

�� �
t
	
: (Equation 2)

The hyperparameter t denotes the temperature of the expitð $Þ
and controls the sharpness of the silver-standard label. A small t

would sharpen the silver labels to be in alignment with the gold-

standard label, which is 0 for a negative visit and 1 for a positive

visit. A controls the influence of Ut
i for constructing silver-stan-

dard labels.

Architecture and training of LATTE

We next describe the construction of deep-learning modelsGY+
Fðt;DiÞ for incidencePðYt

i = 1
��DiÞ andGS+Fðt;DiÞ for silver-stan-

dard label EðSt
i

��DiÞ. Inspired by semi-supervised learning with a

semi-parametric transformation model,46 we let the models for

gold-standard incidence Yt
i and silver-standard label St

i share

the core visit representation learning component Fðt;DiÞ˛Rq

while allowing different prediction functions GY and GS:

Rq1½0; 1�. We create in Fðt;DiÞ (1) a CR module to learn inci-

dent-indicative input concepts, (2) a VAN to highlight informative

visits frombackgroundnoises amongother visits, and (3) thebidi-

rectional gated recurrent unit (Bi-GRU) network for communica-

tion over time. Under Loss functions for semi-supervised

learning, we describe the loss functions for the training of deep-

learning model F. Based on the cross-entropy loss of the binary

outcome Yt
i , we devise (1) a kernel weighting strategy to borrow

outcomedata near t for learningGY+Fðt;DiÞ, (2) a penalty to regu-

larize GY+Fðt;DiÞ toward a function increasing/smooth along t

and compatible with the context of the outcome, and (3) a
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semi-supervised training strategy to leverage the informative sil-

ver-standard labels St
i . We summarize the notations in Table 1.

Construction of deep-learning model. As illustrated by the

model architecture in Figure 1, the incident prediction is pro-

duced through the following steps.

(1) Input layer: longitudinal Di = fD1
i ;.;DTi

i g.
(2) module: mining the input concepts’ semantic relationship

to the target phenotype,

4 : Dt
i ˛ Rp14

�
Dt

i

�
˛ Rq;q � p;FðDiÞ =

�
4
�
D1

i

�
;.;4

�
DT

i

��
:

3. Visit attention module: obtaining the visit attentions by

contrasting 4ðDt
i Þ along t,

c : FðDiÞ ˛ Rq3Ti1c +FðDiÞ ˛ RTi ;c =
�
j1;.;jTi

�
:

4. Sequential modeling module: communicating the visit em-

beddings along time through a Bi-GRU layer:

G : fFðDiÞ;cðDiÞg1fFð1;DiÞ;.;FðTi;DiÞg;Fðt;DiÞ˛R:

5. Incident predictor: separating the logistic regression

transformations for incidence and silver-standard label

models with link expitðxÞ = 1 =ð1 + e� xÞ,

for incidence GYfFðt;DiÞg= expit
�
bY ;0 + bu

Y Fðt;DiÞ
�
;

� standard label GSfFðt;DiÞg= expit
�
bS;0 + bu

S Fðt;DiÞ
�
:

for silver

We detail the design of 4, with parameterKCR, c, with param-

eters ðQVAN;KVANÞ, and G in the following paragraphs. The final
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models are determined by the combined parameters of 4, c, G,

GY and GS across all layers; namely,

w =
�
KCR;QVAN;KVAN;G; bY ;0;bY ;bS;0;bS

�
:

CR: Selecting important features. LATTE learns a CRmodule

to attach a weight to each input concept by mining its semantic

relationship to the target phenotype, which reduces colinearity of

features and overfitting along irrelevant features. We charac-

terize the relevance of features by a multilayer perception

(MLP) network:

KCR : ðhj;hGÞ ˛ Rq 3Rq1KCRðhj;hGÞ˛R:

KCR has two input branches: one branch receives the embed-

ding vector of the input concept, and the other one receives

the embedding vector of the target phenotype. Both branches

first use one fully connected layer to learn a low-dimensional rep-

resentation, which is then fused to output the importance of the

input concept, ranging from 0–1. The KCR module is shared

across all concepts and optimized end to end to learn the weight

of each input concept.

Using standardized weights derived from KCR, we aggregate

the concept embedding vectors within each visit to obtain the

visit embeddings:

4
�
Dt

i ;KCR

�
=
1

p

Xp
j = 1

Dt
i;j

exp
�
KCRðhj;hGÞ

�Pp

j
0
= 1

exp
�
KCRðhj

0 ;hGÞ
�hj:

(Equation 3)

Such a competing normalization across all p concepts would

induce visit embeddings dominated by the most informative fea-

tures, thus filtering out the noise from irrelevant features.

Compared with the direct utilization of embedding similarity

between hj and hG as the concept importance, our data-driven

module KCR would adaptively capture the predictability of fea-

tures even when the semantic similarity aligns poorly with pre-

dictability of incidence.

Visit attention: Highlighting informative visits. In the next

step, LATTE devises a VAN to highlight informative visits accord-

ing to the attention value. The VAN module can reduce noise

from non-informative visits adaptively for patients with heteroge-

neous background noises. In the VAN, we employ a self-atten-

tion47 layer to contrast informative visits from the whole visit

sequence in the background. Self-attention47 has been shown

to be a successful technique for capturing long-range sequential

dependency for various data types, including text48 and video.49

The VAN receives sequential visit embedding vectors to obtain

corresponding attention values. There are two components in

the VAN, shared across all visits:

Query QVAN : 4
�
Dt

i

�
˛ Rq1QVAN +4

�
Dt

i

�
˛Rd;

Key KVAN : 4
�
Dt

i

�
˛ Rq1KVAN +4

�
Dt

i

�
˛Rd;

both of which consist of a linear mapping layer as in Vaswani

et al.47 to map the q-dimensional visit embedding to the

d-dimensional query and key vectors, respectively. The attention
value for visit t of patients i is derived from averaging the inner

products between its query vector and the key vectors across

all available Ti visits, including itself,

jtðFðDiÞ;QVAN;KVANÞ =
1

Ti

XTi
u= 1

expit
h
QVAN

�
4
�
Du

i

��u
KVAN

�
4
�
Dt

i

��. ffiffiffi
d

p i
;

(Equation 4)

where expitðxÞ = 1 =ð1 + e� xÞ. We choose the expit function

rather than the typical soft-max function47 because there could

be multiple visits or incidents to pay attention to.

Bi-GRU: Information communication along time. Last,

LATTE employs a recurrent neural network tomodel the sequen-

tial dependency between visits to learn visit representation, upon

which phenotype incidents are predicted at each visit. To enable

both prior and future visit information to be utilized for the predic-

tion at the current visit, one Bi-GRUs layer is employed for the

sequential modeling. Bi-GRUs receives the patient’s longitudinal

visit embedding vectors 4ðDt
i Þ from CR, along with their corre-

sponding attention values jt+FðDiÞ learned by VAN, and out-

puts the representation of each visit

GfFðDiÞ;cðDiÞg = BiGRUG

�
4
�
D1

i

�
j1 +FðDiÞ;.;

4
�
DTi

i

�
jTi

+FðDiÞ
�

= fFð1;DiÞ;.;FðTi;DiÞg

= fV ið1Þ;.;V iðTiÞg;

where V iðtÞ denotes the visit representation of patient i at

visit t.

Loss functions for semi-supervised learning. For a binary

outcome Yt
i , the pooled cross-entropy loss across patients

and visits would be the typical choice for model training, as

done in SAMGEP20 and RETAIN.21 However, this loss function

has two major limitations for incident phenotyping: (1) the out-

comes Yt
i only contribute to the prediction model at time t,

ignoring the longitudinal nature of the outcome-feature pairs,

and (2) the fact that there is no guarantee regarding the monoto-

nicity/smoothness of the prediction and the model may compro-

mise its rationality. For example, the cumulative incidence rate

may be expected to be non-decreasing over time. Moreover, a

large amount of training data is typically required to effectively

utilize the capacity of the complex deep learning model. This

poses a major concern because it is very costly to generate a

large quantity of gold-standard outcomes. To address these

challenges, we propose a two-step semi-supervised training

strategy combining information from outcomes Yt
i and silver-

standard labels St
i through supervised and unsupervised

kernel-weighted losses LSL and LUL with penalty terms PSL

and PUL, which encourages the model’s monotonicity/

smoothness.

Next, we introduce the loss function components LSL, LUL,

and P, used for the two-step label efficient training strategy

described under Label-efficient training of LATTE.

Kernel-weighted losses: Incorporating distance into incidence.

The outcomes around a given time tmay provide useful modality

information for the predictionmodel at that time t. For cumulative
Patterns 5, 100906, January 12, 2024 5
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incidence, the features Dt
i may follow different patterns depend-

ing on the distance between t and the onset time. We translate

the distance factor into a kernel weighting, where

wt
Y ;i = wmin + exp

n
� dY ;iðtÞ2

.�
2h2
�o

; dY;iðtÞ

= min
�ju � tj : Yu

i = 1
�
;

wt
S;i = wmin + exp

n
� dS;iðtÞ2

.�
2h2
�o

; dS;iðtÞ

= min
�ju � tj : Su

i R k
�
:

Here, h is a bandwidth hyperparameter, k is a threshold for silver-

standard label Su
i above which incidence Yu

i is likely active, and

we set minfBg = +N. A minimum weight of wmin ensures the

stability of the loss. With standardized kernel weighting, we

construct the supervised and unsupervised loss functions,
LSLðwÞ= � 1

n

Xn
i = 1

PTi
t = 1w

t
Y ;i

�
Yt
i logfGY+Fðt;DiÞg+

�
1 � Yt

i

�
logf1 �GY+Fðt;DiÞg

	PTi
t0 = 1w

t0
Y ;i

LULðwÞ= � 1

N

XN
i = 1

PTi
t = 1w

t
S;i

�
St
i logfGS+Fðt;DiÞg+

�
1 � St

i

�
logf1 �GS+Fðt;DiÞg

	PTi
t0 = 1w

t0
S;i

: (Equation 5)
Penalty: Regularization toward monotonicity/smoothness.

Depending on the type of incidence studied, we construct two

penalty terms. We use the full cohort for the construction of pen-

alties because (1) no outcome information is needed, and (2) the

monotonicity/smoothness is expected for prediction over the full

cohort. For the prediction of the cumulative incidence rate, with

Yt
i a counting process with at most one jump, we impose a pen-

alty that encourages the longitudinal prediction to be non-

decreasing across time,

PcumðwÞ =
1

N

XN
i = 1

1

Ti� 1

XTi� 1

t = 1

maxfGS +Fðt;DiÞ

� GS +Fðt + 1;DiÞ; 0g: (Equation 6)

For the prediction of recurrent incidence rate, with Yt
i episod-

ically shifting between 0 and 1, we impose a penalty that regu-

lates the longitudinal prediction to ensure its smoothness

over time.

PrecðwÞ =
1

N

XN
i = 1

1

Ti� 1

XTi� 1

t = 1

k Fðt;DiÞ � Fðt + 1;DiÞk2:

(Equation 7)
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We denote P the penalty chosen between Pcum and Prec, de-

pending on the type of incidence studied.

Label-efficient training of LATTE. LATTE is built on deep neural

networks, which, in general, heavily depend on large-scale an-

notations. To address the possible over-fitting under a small

set of gold-standard labels, we rely on scalable silver-standard

labels on which LATTE is optimized in two steps: unsupervised

pre-training and semi-supervised joint training.

Unsupervised pre-training. In the first step, LATTE is pre-

trained using the silver labels. As shown in Figure 1, instead of

sharing the same predictor, GY+F, that predicts gold-standard

labels, we attach an additional silver predictor, GS+F, to the visit

representation to predict the silver labels. We pre-train all deep

learning model parameters w, excluding GY , using the unsuper-

vised loss LUL and the penalty P. We then denote the result-

ing loss

LPTðwÞ = LULðwÞ+ lPðwÞ; (Equation 8)
bwPT = argmin
w

LPTðwÞ; (Equation 9)

where l is a hyperparameter determining the level of penaliza-

tion. The CR KCRðhj;hGÞ learned in the pre-training can then be

used in another round of feature selection because it reflects

the relevance of the features Dt
i to the silver-standard labels St

i .

Semi-supervised joint training. In the second step, LATTE

performs semi-supervised fine-tuning of the model using both

the gold-standard labels and the silver labels. The use of sepa-

rate predictors for those two types of labels aims to prevent

the potential poor quality of silver-standard labels from deterio-

rating the learning of gold-standard labels. The final training

objective then becomes

LSSLðOwÞ= LSLðbwPT +OwÞ+gLULðbwPT +OwÞ+ lPðbwPT +OwÞ;bwLATTE = bwPT + argmin
Ow

LSSLðOwÞ;

(Equation 10)

where g balances the contribution of gold-standard labels

and silver-standard labels. CR model KCR, VAN modules

ðQVAN;KVANÞ and the GRUmodel G are jointly optimized accord-

ing to the combination of the three objective functions. The
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output transformations GY and GS are optimized according to

their involvements in LSLðwÞ and LULðwÞ, respectively.
Enhancing cross-site portability

We further strengthen LATTE’s cross-site portability via contras-

tive representation learning. We consider three aspects of data

shift: (1) concept utilization bias, (2) visit frequency, and (3) visit

phase. Utilization bias is the fact that different institutions tend to

havedifferentpreferences regardingconceptutilization,especially

formedications. Visit frequency shifts reflect the idea that different

patients visit hospitals at different frequencies. Visit phase shift is

caused by the fact that patients tend to visit and be discharged

from hospitals during different stages of the phenotype, causing

longitudinal EHR data to reflect patients at various phenotype

phases. For example, some patientsmay have already developed

heart failure by the time of their first EHR visit, while other patients

may not yet have signs of the condition.

To enhance the robustness of LATTE toward these data shifts,

we construct a robustnessmeasure based on synthetic data that

will be incorporated into the loss functions. To mimic the three

data shifts, we generate the synthetic data

~G =
n�

~Y
t

i;k ;
~D
t

i;k

�
: t = 1;.; ~Ti;k ;i = 1;.;N;k = 1;.;M

o
from labeled data G using the bellow strategy.

(1) Placing a random Gaussian noise and a random corrup-

tion on concept counts to randomly set some concept

counts to zero. We sample ε
t
i;k;j� N ð1;0:05Þ, dti;k;j �

Bernð0:9Þ and add noise to the features,

~D
t

i;k;j = dti;k;j

�
D

t

i;k + εi;k;j

�
:

2. Aggregating the visit sequence with varied time windows

tomimic varied visit frequency. With an integer hyperpara-

meter amid, we cycle Ai;k through amid � 1; amid; amid + 1.

We aggregate the original T
�

i;k visits into ~Ti;k = ½T
�

i;k =Ai;k �
visits, where dxe denotes the smallest integer bigger than

x. A new visit at time t thus combines the previous visits

from et = ðt� 1ÞAi;k + 1 to nt = minftAi;k ;T
�

i;kg by taking

the maximal outcome and summing over features

~Y
t

i;k = max
u:et %u% nt

Y
�
u
i;k ;D

t

i;k =
Xnt
u = et

D
�
u
i;k ; t = 1;2;.; ~Ti;:

3. Randomly shifting the starting visit before the incidents

of the EHR sequences to obtain sub-sequence

samples. We randomly sample a truncation time Li;k from

f0;1;.;minðTi; LmaxÞg with equal probability. Here, Lmax

is an integer hyperparameter for maximal truncation time.

We truncate the original data as

T
�

i;k = Ti � Li;k ;


Y
�
t
i;k ;D

�
t
i;k

�
=
�
Y

t� Li;k
i ;D

t� Li;k
i

�
; t = 1;.;T

�

i;k :

We construct a concordance of F between G and ~G to measure

the robustness of the model toward data shifts,
LCCðwÞ =
1

N2M

XN
i0 = 1

XN
i = 1

XM
k = 1

XTi0
t0 = 1

�
X~Ti;k

t = 1

max
n
ð�1ÞIðYt0

i0 = ~Y
t

i;kÞðc� kFðt0;Di0 Þ � Fðt; ~Di;kÞk2Þ;0
o

Ti0 ~Ti;k

;

where c is a tolerance for the contrast between positive and nega-

tive visits. LCC encourages the representation of positive visits to

cluster together and keep at least a distance of c from negative

visits. Incorporating LCC with a hyperweighting parameter k, the

cross-site portable semi-supervised loss function becomes

LCSPðwÞ = LSLðwÞ+gLULðwÞ+ lPðwÞ+ kLCCðwÞ: (Equation 11)

RESULTS

We first evaluate LATTE on three representative phenotypes to

demonstrate its advantages over existing methods regarding la-

bel efficiency and cross-site portability for incident phenotyping.

Further, based on phenotype incident predictions on longitudinal

EHR data, we identify risk factors of heart failure among patients

with rheumatoid arthritis (RA).
Performance of incident phenotyping
Data and settings

Data sources. We first evaluate the performance of LATTE in

identifying three temporal events, onset of type 2 diabetes

(T2D; PheCode 250.2) and heart failure (HF; PheCode 428) and

relapses over time for those with multiple sclerosis (MS;

PheCode 335), using EHR data from Mass General Brigham

(MGB). Both T2D and HF are chronic diseases for which the first

onset probability over time is of primary interest. MS relapse is a

relapsing and remitting phenotype for which we aim to predict all

recurrent relapses over time. For both T2D and HF, the corre-

sponding diagnostic codes are predictive of the ever/never sta-

tus, but the dates of the first diagnostic codes often deviate from

the true incident times with systematic preceding and lagging

biases. For MS relapse, no predictive diagnostic code exists,

so complex visit dependency modeling is required to precisely

identify incident visits. For HF, we further evaluate the transport-

ability of the algorithm to a Biobank cohort at MGB and to the

Million Veteran Project (MVP) cohort at the Veterans Affairs (VA).

For T2D, we assemble EHR data for 10,315 patients who have

at least one T2D ICD code from theMGB healthcare system. The

T2D status and onset dates for 172 randomly selected patients

from this cohort are annotated via chart review. Among the

172 patients, 52.3% develop T2D during the follow-up time,

with EHR visits observed at MGB, and 11.0% have already

developed T2D before their first clinical visit at MGB. 10-fold

cross-validation is used for performance evaluation. For MS

relapse, we assemble EHR data for 4,706 patients at MGB, of

which 1,435 patients are participants of the Comprehensive Lon-

gitudinal Investigation of Multiple Sclerosis at BWH (CLIMB)

research registry with relapse status annotated over time. Within

the CLIMB cohort, 57.2% of patients have at least one relapse

event, with a mean of 2.60 relapses per patient.
Patterns 5, 100906, January 12, 2024 7
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For HF, we train the algorithm using EHR data from the MGB

RA cohort, in which each patient has at least 1 ICD code for

RA. HF status and onset time are annotated for a random subset

of 234 patients, among which 60.7% are determined to have

developed HF during follow-up. Beyond 10-fold cross-valida-

tion, We further evaluate the portability of the HF incident pheno-

typing algorithm trained in the MGB RA cohort to the MGB Bio-

bank cohort and the MVP cohort at the VA. The MGB Biobank

and VA-MVP cohorts consist of 13,597 and 122,035 patients

with at least 1 ICD code of HF, of which 94 and 208, respectively,

are randomly annotated and used for transportability validation.

We bin the longitudinal EHR data into consecutive, non-over-

lapping, 3-month time windows,20 from which event rates,

commonly in years,9 as clinical outcomes can be easily derived.

However, we also clarify that the choice of the time window may

depend on whether the event is highly acute, in which case a

short window can be considered. For T2D and HF, we use the

codified features only. As a chronic condition, management of

T2D will generate consistent patterns of codified EHR data,

such as routine clinic visits with T2D ICD codes, lab tests for

monitoring glycemic control, and prescription of anti-diabetic

agents. For HF onset, we additionally include HF-relevant NLP

CUIs extracted frommedical notes. This is because, as an acute

event, key codified information identifying HF, concentrated in a

short time window, is subject to data leakage if the patient is

admitted into out-of-network hospitals. We leverage documen-

tation of HF events in narrative notes from subsequent in-

network encounters. In accordance with our reasoning, we

observe that the information from medical notes substantially

boosts the performance only for HF but not for T2D. For both

phenotypes, the codified features are selected based onmedical

knowledge graphs extracted via knowledge extraction via

sparse embedding regression (KESER), which connects each

phenotype to the relevant medical concepts. The concept sec-

tion by KESER is shown to work effectively for phenotyping.40

The NLP CUIs are selected via the CUI search tool (http://app.

parse-health.org/CUISearch/), which combines the medical

knowledge graph of KESER and knowledge from multiple sour-

ces. For MS relapse, 155 EHR features are manually selected by

a domain expert as in a previous study.20

Comparedmethods. We consider five benchmarkmethods: (1)

long short-term memory recurrent neural network (LSTM); (2)

RETAIN,21 which is trained with longitudinal raw EHR features

and without effective utilization of pre-trained concept embed-

ding vectors, and (3) SAMGEP,20 which aggregates patient visit

embedding as a pre-processing step without learning to distin-

guish the importance of concepts/visits and mines only linear

and feedforward dependencies between visits, lacking the ca-

pacity to model the complex and long-range temporal relation-

ship between incidents and patient visits. For both methods,

the training of incidence phenotyping models depends exclu-

sively on the labeled data with gold-standard outcomes, over-

looking the information from the predictive surrogates of the

vast unlabeled data.

We also compare methods focusing on representation

learning on EHR data, including (4) SCEHR,39 which proposes

contrastive cross-entropy loss and a contrastive regularizer; (5)

OTCSurv,50 which is equipped with similar concepts and visit

attention modules and an additional weighted contrastive
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learning strategy; and (6) BEHRT,36 which performs self-super-

vised representation learning on the longitudinal EHRdata based

on the transformer model.47 In addition, we include a deep lan-

guage model (large language model [LLM]), Bio-GPT,51 in which

we concatenate the text strings of observed concepts as the

input of each visit. As a baseline, we include predictions based

only on the closest PheCodes (T2D, 250.2; HF, 428; MS relapse,

355) and PheNorm with temporally cumulative counts,18 de-

noted as PheNorm(acc), which is shown to perform effectively

on ever/never phenotyping.

Evaluation measures. To evaluate the methods’ performance,

we sample varied sizes of patients from the gold-standard

labeled set to train the model and evaluate each trained model

on the rest of the labels. For T2D andHF, the visits before the first

onset are treated as negatives, and the visits after it are treated

as negatives. For MS relapse, the visits with relapses are treated

as positives and otherwise as negatives. To quantify the accu-

racy of the methods’ predictions, we compute (1) AUC (area un-

der the receiver operating characteristic curve) and (2) F1 score

with a cutoff value that achieves 95% specificity. The two values

measure the incident identification error by treating each visit

independently. We also report the methods’ longitudinal pheno-

type predictions; namely, the area between the label curve Yt
i

and predicted cumulative probability bY t

i = 1 � Qk% t
k = 0ð1 � pk

i Þ,
denoted by ABCcdf , where pk

i denotes patient i’s prediction at

time k. ABCcdf effectively evaluates the mean absolute differ-

ence between true and predicted incident times but would scale

upwhen patients are observed with longer EHR observations. (3)

Therefore, we compute the normalized version,ABCgain, which is

the methods’ percent decrease over a null model that sets the

probability at each visit to the prevalence of the phenotypes;20

namely ABCgain = ðABCcdf ;null � ABCcdf ;methodÞ=ABCcdf ;null.

Result analysis

The phenotyping results are shown in Figure 2 in which the error

bars indicate 95% confidence interval. For better visualization,

we truncate ABCgain values to be above 0. Different sizes of

gold-standard label sets are evaluated, and the ‘‘0’’ labels, visu-

alized as dashed lines, denote the unsupervised scenario where

no gold-standard label is used.

T2D. The results of classifying T2D first onset time in the MGB

cohort are shown in Figure 2A. LATTE shows significant advan-

tages over the compared methods in terms of ABCgain, F1

score, and AUC. The unsupervised approaches, PheCode

only, PheNorm(ACC), and LATTE(silver), achieve comparable

performance in terms of AUC and F1 score compared with the

supervised models, LSTM, RETAIN, SAMGEP, and LATTE.

This indicates that the main PheCode itself is able to distinguish

the case visits from control visits. In addition to that, the

PheCode and PheNorm(acc) are significantly outperformed in

ABCgain by the supervised models, which indicates that

PheCode only fails to precisely localize the incidents. On the

other hand, the performance of LATTE(silver), which is trained

only using silver-standard labels, is comparable to LSTM,

RETAIN, and SAMGEP, which are trained by 100 gold-standard

labels. The results show the promise of unsupervised represen-

tation learning upon the predictive surrogate concepts. Of note,

although LATTE(silver) exploits the main PheCode as a

strong surrogate, which is the same as in PheNorm, it optimizes

the sequential representation learned by GRUs to output

http://app.parse-health.org/CUISearch/
http://app.parse-health.org/CUISearch/


A B C Figure 2. Numerical results of incident phe-

notyping with varied gold-standard label

sizes

We evaluate LATTE on the onset of both type 2

diabetes (T2D) and heart failure (HF) and the onset

and relapse of multiple sclerosis (MS). Error bars

indicate 95% confidence intervals.
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non-decreasing incident risks across time. As a result, the pre-

dictions obtained using LATTE(silver) are guided to bemore sen-

sitive to the onset of T2D. When only small sets of labels are

available (for example, 30 or 50), the deep learning models

LSTM and RETAIN suffer severe overfitting and are outper-

formed by SAMGEP in ABCgain, while the performance gaps

become smaller as more gold-standard labels are available.

HF. The results of predicting HF first onset on the MGB RA

cohort are provided in Figure 2B. LATTE(silver) consistently out-

performs the LSTM and RETAIN when the label set size is small.

SAMGEP achieves performance comparable with RETAIN and

LSTM in terms of AUC and F1 scores but shows significant im-

provements in ABCgain that become minor as more labels are

available. With increasing label set sizes, the performance im-

provements are limited for SAMGEP but are substantial for

LATTE, LSTM, and RETAIN. And the performance gaps between

LATTE and SAMGEP grow, which justifies the stronger learning

capability of LATTE compared with SAMGEP.

MS relapse. The results of localizingMS’s relapses are provided

in Figure 2C. Identifying MS relapse incidents is more challenging

than the first onset of T2D and HF becauseMS relapse can not be

well captured by a simple code or NLP concept and thus does not

haveahighlypredictivesurrogateconcept.Wetherefore further in-

crease the size label set size to 500 for comprehensive evaluation.

LATTE(silver) is only comparable with the PheCodes, and both

methods are significantly outperformed by the supervisedmodels
with100 labelsormore,which indicates that

thePheCodesarenon-predictiveof the inci-

dents. When available labels are less than

200, SAMGEP outperforms the LSTM and

RETAIN, and when the label size grows to

500, SAMGEP is narrowly outperformed

by the LSTM in ABCgain, and the perfor-

mance advantages of LATTE over LSTM,

RETAIN, and SAMGEP become more

distinct, especially in ABCgain. The results

on the three phenotypes also show that

relying solely on the direct deployment of

language models to medical notes, such

as Bio-GPT, may not achieve state-of-the-

art performance in incident phenotyping.

Instead, unsupervised representation

learning on large-scale longitudinal EHR

data, such as the BEHRT,36 are promising.

The results of evaluating model trans-

portability are provided in Table 2. The

models are trained on MGB RA cohort to

identify HF onsets and evaludated on

both MGB Biobank and VA-MVP. The

LSTM and RETAIN methods outperform

the PheCode:428 in terms of ABCgain,
although the PheCode only is distinctive of case/control visits

and has high AUC and F1 scores on the Biobank-HF. LATTE suf-

fers an average performance drop in ABCgain by 11.9% on

Biobank-HF and VA-MVP, which is significantly better than the

66:1% of LSTM and 25:6% of RETAIN.

Discrimination between case/control visits

We provide visualization of embedding vectors of case/control

visits from patientswith T2D or HF to show the benefits of the pro-

posed CR and visit attention, and the necessity of sequential

modeling. As shown in Figure 3, using t-distributed stochastic

neighbor embedding (t-SNE),52 we visualize the raw visit embed-

dings as in SAMGEP,20 visit embeddingwithCR, and visit embed-

ding with simultaneous CR and visit attention. The case visits

(namely, after phenotype onset), and control visits (namely, before

phenotype onset) entangle on the raw embedding space for both

phenotypes. Through CR enhancements, the case/control visits

becomemore distinguishable in the embedding space. By further

incorporating the visit attention, the embedding vectors of case

visits become further distinguished from control visits. The case/

control visits of T2D are well separated in the embedding space

even without the additional sequential modeling. It indicates that

developing T2D tends to distinctly reshape the patient’s clinical

status. In this case, a simple classifier, such as logistic regression,

would be able to well identify the onset timings. For HF, although

becoming more separated via visit attention, case/control visits

are still entangled by large. This indicates the necessity of
Patterns 5, 100906, January 12, 2024 9



Table 2. Cross-site validation of incident phenotyping on the onset of HF (from the MGB RA cohort to Biobank-HF and VA-MVP)

Settings Method AUC F1 ABCgain

MGB-RA/ Biobank-HF PheCode 0.915 0.776 �4.83

LSTM 0.928 / 0.689 0.669 / 0.588 0.635 / 0.105

RETAIN 0.889 / 0.743 0.695 / 0.640 0.445 / 0.243

LATTE 0.969 / 0.879 0.850 / 0.790 0.752 / 0.675

MGB-RA / VA-MVP PheCode 0.663 0.478 0.289

LSTM 0.928 / 0.745 0.669 / 0.638 0.635 / 0.325

RETAIN 0.889 / 0.785 0.695 / 0.667 0.445 / 0.419

LATTE 0.969 / 0.892 0.850 / 0.765 0.752 / 0.650
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modeling visit sequential dependency to distinguish the cases

from controls for precise incident localization.

Evidence for prediction interpretation

LATTEprovides incidentpredictionwithhighmodel interpretability

by indicating the healthcare concepts and visits that contribute to

the predictions. As shown in Figure 4, we visualize the ‘‘evidence’’

at each visit that drives the onset prediction of HF. Here, the longi-

tudinal ‘‘evidence’’ value is the multiplication of longitudinal

concept observations, conceptweights, and visit attention values.

Each patient could have different longitudinal evidence, and the

top 20 concepts are visualized. In Figure 4A, the patient’s first

HF onset is recorded by the EHR data, and the provided evidence

is highly indicative of HF onset. Specifically, LATTE localizes HF

onset at the fifth visit, and the top three shreds of evidence pro-

vided are ‘‘congestiveHFnos’’ (PheCode:428.1), ‘‘congestive car-

diac fail’’ (C0018802), and ‘‘furosemide’’ (C0016860), amedication

used to treat fluid buildup due toHF. In Figure 4B, the patient is not

observed to have HF onset over the available visits, and the top

selected concepts are mostly irrelevant to HF. For example, the

top three pieces of evidence provided by LATTE are ‘‘hy-

drops’’(C0013604), ‘‘wheezing’’ (C0043144), and ‘‘anti-arrhythmic

agent’’(C0003195).

Incident phenotyping for identifying risk factors of heart
failure
HF is a significant cause ofmorbidity andmortality in patients with

RA.53 We revisit the HF study among the MGB RA cohort
A B C

A B C
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described under Data and settings on the risk factors associated

with HF among patients with RA.11 The covariates considered

include demographics, recent lab test results, prior medications,

calendar time of RA diagnosis, comorbidities, and cardiovascular

disease history before RA diagnosis (details regarding the defini-

tion and extraction of the covariates provided in the original pa-

per11). Among the 9,087 RA patients in the study, 1,219 (13.2%)

have at least one HF diagnosis code in their EHR after RA diag-

nosis. The presence of the HF ICD code is very sensitive but not

quite specific to actual HF events. Exact HF status and timings

for 102 patients sampled from the subset with HF diagnosis

code are annotated from chart review, among which 33 (32.3%)

have evidence of HF within 10 years from RA diagnosis. The

10-year prevalence of HF is thus 4.5%. In the original analysis by

Huang et al.,11 the time of the first HF code after RA diagnosis is

used to define the HF time. Patients with no HF code are marked

as censored at the last EHR encounter date. Four sets of analyses

are employed to assess the risk factors. Two maximal follow-up

times, 10 years or 5 years after RA diagnosis, are considered. Pa-

tients at riskat themaximal follow-up,definedasnot having theHF

code nor reaching the last EHR encounter, are censored at the

maximal follow-up. Two regression methods are considered: (1)

a univariate Cox model that separately regresses the risk factors

with the time to HF code and (2) a multivariate Cox model that re-

gresses all risk factors with the time to HF code.

Using the LATTE prediction on longitudinal HF incidence rate,

we substitute the time to HF code with the LATTE-derived HF
Figure 3. t-SNE visualization of visit embed-

ding vectors on T2D and HF

(A) The visit embedding vectors aggregated based

on the observed counts.

(B) The visit embedding vectors aggregated with the

concept re-weighting (CR).

(C) The visit embedding vectors aggregated with

both CR and visit attention network (VAN).

Blue dots denote the visits before the target in-

cidents, and red dots denote those after the in-

cidents.



A B Figure 4. Prediction interpretability of LATTE

We visualize the prediction curve (orange) and lon-

gitudinal evidence that drive LATTE’s incident pre-

dictions. The concepts are ranked from bottom to

top by the learned importance. Red, diagnosis

code; green, medication code; purple, lab test

code; blue, UMLS CUIs extracted from medical

notes. The chart date is the annotated date of

HF onset.
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onset time. According to a threshold to be described later, we

define the LATTE-derived HF onset time as the first time when

the longitudinal HF incidence rate from LATTE exceeds the cho-

sen threshold. We select the threshold according to the false

positive rate (FPR) for HF status at the last EHR encounter and

evaluate all patients without HF code and 102 labeled patients

up-weighted by the inverse labeling probability among patients

with the HF code (1/0.084). To investigate the impact of the

threshold, we consider 2 thresholds targeting 0.05 and 0.01 FPR.

In Table 3, we present the risk factor detection results using

the time to HF code outcome and LATTE-derived HF time with

2 thresholds. The numbers in the table are the counts of risk fac-

tors whose 95% confidence intervals of relative risks do not

contain one. By tightening the tolerance of FPR from 0.05 to

0.01, analysis with LATTE-derived HF time starts to detect

more potential risk factors. Considering that a lower FPR means

a larger threshold and, subsequently, a smaller number of

derived HF events, we suggest that LATTE at 0.01 FPR might

have filtered out many spurious HF events and, hence, eliminate

the bias toward null induced by them. In Figure 5, we present the

point estimates alongwith 95%confidence intervals up to 5-year

follow-up. In Figure 6, we present the estimated relative effi-

ciency of coefficient estimation from LATTE-derived HF times

in comparison with that from the time to HF code outcome up

to 5-year follow-up, which demonstrates a systematic advan-

tage for LATTE-derived HF times. We present the results for

the analyses up to 10-year follow-up in Figures S2 and S3 of

Note S2, which similarly shows the advantages of LATTE.

Another notable discovery from the analyses with LATTE-

derived HF time is the decreasing trend of HF risk over calendar

time. In the LATTE at 0.01 FPR analysis, patients diagnosed with

RA after 2000 are associated with 55% risk reduction in univar-

iate analysis and 61% risk reduction in the multivariate analysis

compared with patients diagnosed before 2000, and patients
Table 3. Numbers of identified risk factors of HF among patients

with rheumatoid arthritis (RA) from the MGB RA cohort

Univariate Multivariate

Method 10 years 5 years 10 years 5 years

HF Code 16 18 19 19

LATTE FPR 0.05 17 18 20 19

LATTE FPR 0.01 18 19 20 20

We compare LATTEwith the different false positive rates (FPRs) with rule-

based methods. Univariate and multivariate Cox model analyses have

been considered for data up to 5 years and 10 years after RA diagnosis.
diagnosed with RA after 2010 are associated with 85% risk

reduction in both analyses compared with patients diagnosed

before 2000. The finding may suggest the progress in managing

cardiovascular health among patients with RA during the past

decades. Such temporal trending on health outcomes has also

been reported for other EHR-based studies with long observa-

tion windows.10
DISCUSSION

This study proposes a computational framework based on semi-

supervised learning for label-efficient incident phenotyping from

longitudinal EHR data. Specifically, we develop and validate the

proposed architecture, named LATTE, that identifies phenotype

incident timings by learning to focus on the incident-indicative

input features and patient visits and modeling the sequential de-

pendency among visits. LATTE does not assume intensive in-

puts from experts for feature engineering and can perform

feature selection from large-scale EHR features in a data-driven

manner. It aims to be robust and scalable to all phenotypes with

high clinical interpretation and directly portable across multiple

clinical sites. Experimental results on the three representative

phenotypes show that LATTE identifies phenotype incident tim-

ings with high label efficiency. Particularly, LATTE consistently

shows significant advantages over existing methods when the

annotation size is small or the visit dependency is complicated,

as in MS relapse.

While the identification of binary phenotypes using EHR data

has been well studied in the literature, few studies have taken

it one step further to ascertain the longitudinal status of pheno-

type evolving over time and derive the incidence timings. Inci-

dent timings are essential for the design of many clinical studies,

and effectivemethods to extract incident timings, like LATTE, will

enable the use of EHR data to support clinical research. Exam-

ples include supporting RWE on the efficacy or safety of thera-

peutic drugs or intervention procedures, in which incident tim-

ings are needed to determine baseline eligibility and define

time-to-event outcomes. Further, phenotype incident timings

pave the way to mining temporal dependencies among progres-

sion of multiple diseases and interventions to uncover the

optimal overall disease management plan.

LATTE has major clinical advantages over existing methods.

(1) It’s highly label-efficient by leveraging information from unla-

beled data. Our highly scalable LATTE can curate accurate event

times for clinical research using large EHRs with a small cost in

label annotation. (2) Instead of training simultaneously on
Patterns 5, 100906, January 12, 2024 11
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Figure 5. Hazard ratio (HR) for HF risk predic-

tion on patientswith rheumatoid arthritis (RA)

We provide the estimated hazard ratios with 95%

confidence intervals for risk prediction among RA

patients up to 5-year follow-up.
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multiple sites, the LATTE model trained in one site enjoys stron-

ger portability and is ready for direct application in other clinical

sites, which prevents potential privacy leakage in data sharing.

Event times curated by LATTE at one research center can adap-

tively support clinical research using EHRs atmany collaborating

sites. (2) By indicatingwhich visits and concept observation drive

the incident, LATTE’s predictions can be easily used to facilitate

incident annotations. Specifically, the LATTE model trained us-

ing only the silver-standard labels achieves performance com-

parable with supervised models with hundreds of labels on HF

and T2D, and leveraging LATTE predictions would substantially

reduce the annotation expenses. The architecture of LATTE can

also guide feature engineering in future clinical studies us-

ing EHRs.

LLMs are gaining increasing attention in EHR studies. Existing

LLMs for EHR are mostly focused on medical notes,51,54 with a

few exceptions for codified data, such as BEHRT36 and Med-

BERT.37 These models are typically trained in a phenotype-

agnostic manner and have limited ability to accurately extract

event timing information from a large number of clinical notes.

First, clinical event information is embedded in potentially a large

number of longitudinally recorded notes, which is a much larger

context than what typical LLMs can do (in terms of howmany to-

kens the LLMs can analyze). Second, existing LLMs are not yet

well trained to leverage temporality information across a poten-

tially long time horizon. In addition, codified EHR data provide

valuable information but cannot be effectively leveraged by

LLMs that are trained only based on narrative text data. In the
12 Patterns 5, 100906, January 12, 2024
experimental parts, we show that two

LLM-based approaches (BioGPT and

BEHRT) are consistently outperformed by

LATTE. After all, ascertaining clinical event

time is a challenging task.

Because LATTE aggregates medical in-

formation from various sources, the suc-

cessful application of LATTE is limited by

the availability and quality of these re-

sources. First, LATTE requires pre-learned

concept embedding vectors for EHR

features to screen predictive features and

construct the visit embeddings. The

training of such embedding vectors from

co-occurrence data is usually time- and

resource-consuming and, thus, must be

conducted separately. While we proposed

to utilize published concept embeddings,

caution should be taken regarding the

potential transferable issues due to hetero-

geneity in encoding and documentation

patterns across healthcare systems and

calendar time. Moreover, some pheno-
types, like rare or novel diseases, can be poorly represented or

even absent in the global concept embeddings dominated by

common phenotypes. To generalize LATTE for rare or novel phe-

notypes, concept embeddings based on LLMs that are trained

based on expert-curated knowledge55,56 can be considered.

Second, effective pre-training of LATTE relies on one reasonably

indicative silver standard surrogate for the target phenotype.

Identification of a silver standard surrogate is straightforward

for diseases with corresponding diagnosis codes but chal-

lenging for any phenotypes poorly structured in EHRs; e.g., novel

diseases like long coronavirus disease 2019 (COVID-19) or as-

sessments not regularly performed in practice, like RECIST.57

Powered by the advancement in language models, specialized

NLP tools can be used to classify event status from narrative

notes and thus provide silver-standard surrogates for LATTE to

calibrate against gold-standard labels. Third, LATTE uses pa-

tient-level healthcare data within a single healthcare institute.

For large-scale studies conducted by multiple institutions, regu-

lations limit the share of patient-level data across institutions to

protect patient privacy. Development of a federated learning

strategy for LATTE will be necessary. LATTE can also be

extended toward broader types of input data and outcome vari-

ables. Fourth, LATTE currently only accepts the counts of the

observed concepts and is not examined on other types of multi-

modal EHR data, such as numeric test values or images. The co-

des or mentions of relevant lab tests or diagnostic images may

adequately indicate broad phenotypes, but identification of

sub-phenotypes may require specific numerical or image data.
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Figure 6. Estimated relative efficiency of co-

efficient estimation

We provide the estimated relative efficiency of an-

alyses with LATTE-derived HF timings versus anal-

ysis with HF diagnosis code-derived outcomes in

HR risk prediction among RA patients up to 5-year

follow-up. LATTE-derived outcomes achieve sys-

tematically improved efficiency.
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To incorporate the additional data types, multiple modules for

profiling longitudinal test values and images can be created in

parallel with the CR module, whose outputs would be concate-

nated with the visit embedding to comprehensively describe

each visit. Fifth, LATTE focuses on the binary events but not

other types of clinical data. As a related but distinct task, ascer-

taining the longitudinal profile of key markers, such as DAS28-

CRP, measuring disease severity of RA, is fundamental for eval-

uating patient outcomes. Combining the architecture of LATTE

with the appropriate loss function according to suitable statisti-

cal models (e.g., marked point process) may redirect LATTE

for a wide variety of clinical variables.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Tianxi Cai (tcai@hsph.

harvard.edu).

Materials availability

This study did not generate any physical materials.

Data and code availability

The clinical data reported in this study cannot be deposited in a public repos-

itory due to regulations on protected health information (PHI). All source codes

with simulated example data have been published on Zenodo58 (also at

https://github.com/celehs/LATTE/). We provide the pre-trained incident phe-

notyping models for the 3 representative phenotypes and the embedding vec-

tors and weights of selected EHR concepts upon request. Any information
required to reanalyze the data reported in this paper is available from the

lead contact upon reasonable request.

Implementation details

The concept reweighting module consists of three layers, with the first layer

containing two branches, each with shared 32 units, and the fusion layer

with 16 units, followed by the output layer with one unit. The VAN uses

32-dimensional query and key vectors. For T2D and HF, we use one GRU layer

containing 32 units and for MS relapse two layers. For HF and T2D, the model

has 51,000 parameters and 44million flops and for MS 56,000 parameters and

47million flops. For the silver-standard label construction defined in Eqn Equa-

tion 1 and Eqn Equation 2, we set t = 0:1 and a = 0:2. For improved cross-site

portability, we set the distance tolerance c= 10 and visit shifts Lmax = 7. In the

final objective for cross-site training, we set g = 0:1, l = 0:5, and k= 0:1 to

balance those objectives. We provide their sensitivity analysis in Figure S1

and Note S1. The whole model is optimized end to end using the Adam opti-

mizer with a learning rate of 0.001.
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Supplemental information can be found online at https://doi.org/10.1016/j.
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