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Recent whole-brain calcium imaging recordings of the nematode C. elegans have

demonstrated that the neural activity associated with behavior is dominated by dynamics

on a low-dimensional manifold that can be clustered according to behavioral states.

Previous models of C. elegans dynamics have either been linear models, which cannot

support the existence of multiple fixed points in the system, or Markov-switching models,

which do not describe how control signals in C. elegans neural dynamics can produce

switches between stable states. It remains unclear how a network of neurons can

produce fast and slow timescale dynamics that control transitions between stable states

in a single model. We propose a global, nonlinear control model which is minimally

parameterized and captures the state transitions described by Markov-switching models

with a single dynamical system. The model is fit by reproducing the timeseries of the

dominant PCA mode in the calcium imaging data. Long and short time-scale changes in

transition statistics can be characterized via changes in a single parameter in the control

model. Some of these macro-scale transitions have experimental correlates to single

neuro-modulators that seem to act as biological controls, allowing this model to generate

testable hypotheses about the effect of these neuro-modulators on the global dynamics.

The theory provides an elegant characterization of control in the neuron population

dynamics in C. elegans. Moreover, the mathematical structure of the nonlinear control

framework provides a paradigm that can be generalized to more complex systems with

an arbitrary number of behavioral states.

Keywords: feed-forward control, nonlinear control, dimensionality reduction, neural network models, C. elegans

1. INTRODUCTION

The emergence of large scale neural recordings across model organisms is revolutionizing the
potential for the theoretical modeling of how neuron population dynamics is accomplished.
With the recent advancements in whole brain imaging technologies for the nematode
C. elegans (Schrödel et al., 2013; Prevedel et al., 2014; Nguyen et al., 2016), the relationship between
neural activity and behavioral outcomes can be studied in a holistic fashion. More precisely,
C. elegans provides a unique opportunity to quantify neuron population dynamics as it has only
302 neurons whose stereotyped electro-physical connectivity map (connectome) is known from
serial section electron microscopy (White et al., 1986; Chen et al., 2006). We show that the neuron
population dynamics of the C. elegans nematode can be characterized by a global nonlinear control
model which matches experimental measurements. Moreover, it provides a general mathematical
framework that illustrates how non-linearity can be exploited to produce a global model of neuron
population dynamics and how it can be readily applied to more complex model organisms.

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2020.616639
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2020.616639&domain=pdf&date_stamp=2021-01-22
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mmtree@uw.edu
https://doi.org/10.3389/fncom.2020.616639
https://www.frontiersin.org/articles/10.3389/fncom.2020.616639/full


Morrison et al. Nonlinear Control in C. elegans

Data from C. elegans neural recordings show that
high-dimensional neuronal activity produces dominant,
low-dimensional patterns of activity across the connectome, with
interpretable clusters (Kato et al., 2015; Kutz et al., 2016; Roberts
et al., 2016; Kunert-Graf et al., 2017; Liu et al., 2017; Fieseler et al.,
2018). Previous analysis of behavioral and calcium imaging data
can be categorized within three different modeling paradigms,
each with their own strengths and weaknesses: Markov models,
switching linear dynamical systems, and models with control.
An overview is given in Table 1.

Themost well-establishedmethodology is the HiddenMarkov
Model (HMM) which has been used for decades (Roberts et al.,
2016). This paradigm simplifies data into clusters, and assumes
instantaneous transitions between them. Such models have been
used to uncover different macro-level behaviors in animals that
are characterized by different stabilities of individual behaviors,
such as the difference between roaming and foraging (Arous
et al., 2009). While these models capture the differential stability
of various behaviors, they are statistical models and do not show
how the dynamics in the network generate these transitions.

Recent work extends the HMM paradigm to trajectories in
neuron space (Linderman and Adams, 2014; Linderman et al.,
2016, 2019; Costa et al., 2019). This paradigm models the neural
network as having distinct linear dynamics within different states,
allowing a connection between behavior-level HMMs and neural
trajectories at the cost of manymore parameters. Mathematically,
this is given by ẋ = Aix, where x is the state space, the dot
represents time differentiation, and i refers tomultiple segmented
state spaces. However, these models are fundamentally local, and
it is unclear whether switching between different states can be
biologically achieved.

A recent paradigm has built a global model for calcium
imaging dynamics by including a control signal (Fieseler et al.,
2020). This is given by the equations ẋ = Ax + Bu where
x is the state space, the dot represents time differentiation
and u is the control signal. The global matrices A and B

characterize the intrinsic dynamics, and how actuation forces
these dynamics respectively. This paradigm allows the control
signals to be studied as independent objects, hypothesizing a
separation between the intrinsic dynamics of the network and
the mechanisms that cause transitions. However, this work uses a
linear framework, which requires that there is only a single fixed
point at the origin. From this perspective, all behaviors except one
are merely long-lived and do not have their own fixed point.

In contrast to linear models which can only support a single
fixed point in the dynamics, nonlinear models offer a more
flexible architecture for control, especially in systems like the
C. elegans where multiple behavioral states appear to be stable.
We show that with minimal parametrization, we can construct
a global nonlinear model of the underlying C. elegans control
structure. Our nonlinear control model removes the need for
multiple linear models and provides a parsimonious, global
control framework parameterized by only a few parameters and
consistent with experimental observations. Nonlinear control
theory takes the form ẋ = f (x) + g(u) where f (·) specifies
the nonlinear dynamics and g(·) specifies the actuation on the
underlying dynamics. This provides a theoretical framework for

circumventing many of the standard limitations inherited from
linear control theory. This comes at the expense of provable
controllability criteria which can be rigorously stated in linear
theory. A fundamental benefit of nonlinear control theory is
that one can posit an underlying model with multiple fixed
points where f (xj) = 0 and j = 1, 2, · · · ,N. In the context
of neuron population dynamics and C. elegans, these N fixed
points correspond to distinct behavioral states, i.e., forward or
backward motion. Thus, instead of regressing to the matrices
A and B in constructing a linear model, we instead posit a
global model whose features are consistent with experimental
observations (Kato et al., 2015). We propose a model of the form

x
′ = F(x,β)+ u(t) (1)

where F(x,β) represents the intrinsic nonlinear dynamics
containing multiple stable states; β parameterizes fluctuations
in intrinsic dynamics that may occur over long timescales. Fast-
timescale control signals u(t) control state location by applying
feed-forward control to the intrinsic dynamics.

Nonlinear control has been used to induce and describe
transitions between stable attractors in the nonlinear dynamics
of other biological networks (Purnick and Weiss, 2009). In
synthetic biology, researchers have created nonlinear, bistable
gene regulatory networks in Escherichia coli that can be toggled
between different states with the use of control signals (Gardner
et al., 2000). Control applied to key nodes can induce a nonlinear
system to converge to a desired state rather than an undesired
state (Cornelius et al., 2013). Stochasticity is also a mechanism
for control and is used by organisms to regulate transcription
(Kepler and Elston, 2001). Previous work has considered control
in bistable systems implemented via feed-forward control pulses
(Sootla et al., 2015, 2016, 2018) and through analysis of saddle
points in the system (Trotta et al., 2012). We hypothesize that the
neural network of C. elegans uses nonlinear control mechanisms,
such as those previously explored, to transition between various
stable states and vary its transition probabilities. Feed-forward
control signals could take the form of activity in dedicated
control neurons, such as sensory neurons, but they may have
a distributed representation. We aim to represent the local and
non-local neural activity that, holistically, implements effective
control in the nematode, as a single, low-dimensional time
series u(t).

Our model has the flexibility to describe C. elegans dynamics
under a wide variety of internal states and environmental
stimulus. Quantitative work on postural analysis of the behaving
C. elegans has demonstrated there is low-dimensional structure
on the level of individual movements and body bends (Stephens
et al., 2008, 2011). The statistics of how often these movements
happen show the presence of a few discrete clusters (Pierce-
Shimomura et al., 1999; Wakabayashi et al., 2004; Arous et al.,
2009; Churgin et al., 2017), or a spectrum of behavioral strategies
(Gallagher et al., 2013; Hums et al., 2016) that are appropriate
in different environments and may even be different between
individuals (Moy et al., 2015). Recent modeling work has used
a conceptual or data-driven model of multiple fixed points in the
neuron population phase space (Roberts et al., 2016; Chen et al.,

Frontiers in Computational Neuroscience | www.frontiersin.org 2 January 2021 | Volume 14 | Article 616639

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Morrison et al. Nonlinear Control in C. elegans

TABLE 1 | Different modeling paradigms for C. elegans with experimental implications.

Paradigm Parameters What it models Implications References

Markov < 10 Clusters and transitions Differentiate macro-scale

behaviors

Gallagher et al.,

2013

Linear (switching) >1,000 Local linear dynamics in

neuron-activity spaces

Connection between

behavioral clusters and

neural dynamics within them

Linderman and

Adams, 2014;

Linderman et al.,

2016, 2019; Costa

et al., 2019

Linear (controlled) >100 Global linear dynamics and

control inputs

Disentangle intrinsic

dynamics and transition

mechanisms

Fieseler et al.,

2020

Nonlinear (controlled) <10 Global nonlinear dynamics

and control inputs

Can model different classes

of transitions

This work

2019). However, it remains unclear how statistics of transitions
between behaviors can be controlled by global parameters, or
how individual trajectories through state space are affected
in these cases. Our model is able to reproduce the changes
in statistics between the large-scale roaming and dwelling
behaviors via changing a single global parameter. In addition, this
model reproduces observed short time-scale bursts of reversals
interspersed with extremely short-lived forward states.

Our model further could be used to produce testable
hypotheses of the effects of neuromodulators on global dynamics.
Much work has been done in recent years to extend the
understanding of internal C. elegans dynamics beyond simple
synaptic connections to include additional layers, particularly
the slower dynamics of neuromodulators (Komuniecki et al.,
2014; Bentley et al., 2016). Specifically, single molecules and
simple neuronal circuits have been found to change global
statistics related to fundamental behaviors, most clearly the
frequency of reversal initiation (Wakabayashi et al., 2004; Arous
et al., 2009; Flavell et al., 2013; Bhattacharya et al., 2014;
Hums et al., 2016; Lim et al., 2016; Churgin et al., 2017;
McCloskey et al., 2017). Because our model is able to reproduce
macro-scale behavioral changes with a single parameter, we
hypothesize that there may be a correspondence between some
neuromodulators and our model parameters. As we will show,
our global nonlinear model is minimally parameterized and
provides a parsimonious representation of the neuron population
dynamics of the C. elegans nematode. These parameters have
suggestive connections to experimental work, and some may
correspond to one or more neuromodulators. This mathematical
framework is general, and can be readily applied tomore complex
model organisms.

2. RESULTS

We introduce a nonlinear global model with control for the low
dimensional activity of C. elegans neuron population dynamics
that captures the behavioral dynamics that we aim to model. Any
model of this datamust satisfy the following requirements: (1) the
general structure of the model must support the two fixed points
observed in the data, (2) the model must be flexible enough to

accommodate the full range of variability observed in C. elegans,
and (3) the model must be minimally parameterized such that
the modulation of only a few parameters can generate this full
range of variability. We start by observing the structure of the
data and posit a general model whose parameters can be tuned
to generate activity that is analogous to the activity observed in
the data. We then explore how experimentally observed changes
in C. elegans behavior can be explained by the modulation of
single parameters.

2.1. Nonlinear Global Dynamical Models for
C. elegans
We construct a generalized, low-dimensional representation of
the neural activity ofC. elegans by performing PCA on the activity
of neurons in five C. elegans from Kato et al. (2015). We then
use the first two PCA modes to represent the dynamics linked
to behavior (see section 4). Distinct behaviors correspond to
different regions of PCA space (Figure 1). Forward and reversal
behaviors (states 1, 2, and 7) correspond to two distinct stable
states in PCA space. Dorsal and ventral turn behaviors (states 3
and 4) correspond to reversal to forward transitions while rev
1 and rev 2 behaviors (states 5 and 6) correspond to forward
to reversal transitions. Behavioral states during calcium imaging
are determined by Kato et al. (2015) and Skora et al. (2018). We
fit our general dynamical systems model to the trajectories of
the dominant mode v1(t) which most strongly differentiates the
stable states from the transition states.

This low-dimensional representation suggests a feature space
for a model decomposition. Specifically, it allows us to build a
control model which accurately reproduces the global dynamics
with minimal parametrization. The nonlinear parsimonious and
global control model takes the form

x′ = y

y′ = f (x,β)+ γ y+ u(t),
(2)

where the nonlinear dynamics is prescribed by the cubic

f (x,β) = −(x+ 1)(x− β)(x− 1), (3)

which has by construction (for u = 0) two stable fixed points
at x = ±1 and a single unstable fixed point whose location
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FIGURE 1 | C. elegans neural activity in the PCA space of the first two modes. Trajectories colored by behavioral state.

FIGURE 2 | (A) PCA activity of C. elegans 5. (B) Dynamical systems control model fit to PCA activity of C. elegans 5.

is determined by the parameter β . Additionally, there is a
damping parameter γ and a control input u(t). These relate
to the dominant PCA modes directly, where x(t) = v1(t) and
y(t) = v2(t). Due to the stochastic nature of the observed data,
we additionally add stochastic terms and arrive at the system

dxt = ytdt + σdWt

dyt = −(xt + 1)(xt − β)(xt − 1)dt + γ ytdt + u(t)dt + σdWt ,

(4)

where β and γ parameterize the cubic dynamical system,
and σ and dWt characterize the Brownian motion which
models the noisy fluctuations observed in experiments. We
chose a two dimensional model fit to the first two C. elegans
PCA modes as this is the minimum number of modes that

captures the stable state clusters as well as the variability in

the transition trajectories. While a higher dimensional model

would capture more of the variance in the neural activity,
and a model with more parameters would increase the model

fit, we prioritize minimal parameterization. Our objective is to
create the lowest dimension model with the fewest number
of parameters that is able to represent three features of the
C. elegans neural activity: (1) the intrinsic stability of the neural

activity underlying the forward and reversal behaviors, (2) the
variability in transition trajectories, and (3) the destabilization
of the stable states under the influence of feed-forward control
signals, that is, control of the network’s state. A nonlinear
control model that is higher-dimensional, or that has more
parameters, can be found using the methods outlined in
Morrison and Kutz (2020).
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TABLE 2 | Parameters for models fit to each C. elegans calcium imaging dataset.

C. elegans β γ σ u3,4 u5,6 dt

Id 1 0.1108 −1.5027 0.0574 0.4969 −0.7531 0.2902

Id 2 0.1124 −1.5281 0.0584 0.5059 −0.7159 0.2953

Id 3 0.1107 −1.5321 0.0584 0.5262 −0.7549 0.2951

Id 4 0.1135 −1.4830 0.0591 0.5076 −0.7292 0.3008

Id 5 0.1087 −1.5115 0.0598 0.5350 −0.7731 0.2929

Data, model, and error timeseries shown in Figure 3.

Wefit themodel parameters to the low-dimensionalC. elegans
activity by minimizing the error between the dominant PCA
trajectory v1(t) and the trajectory of the corresponding model
variable x(t) (see section 4). The labeled, behavioral states
timeseries determines when the dynamical system is in the
uncontrolled state u(t) = 0 for states 1, 2, and 7 (forward,
forward slow, and reversal) or a transition state, u(t) = u3,4
(dorsal and ventral turns) or u(t) = u5,6 (rev 1 and rev 2
transitions). The dynamical system fitted to C. elegans 5 is

x′ = y+ 0.06dWt

y′ = −(xt + 1)(xt − 0.11)(xt − 1)dt

− 1.51ytdt + 0.06dWt + u(t)dt,

(5)

with control signal strengths u3,4 = 0.54 and u5,6 = −0.77 and
timescaling parameter dt = 0.29. Figure 2 shows a comparison
of the C. elegans neural activity in PCA space (Figure 2A) with
the dynamical systems model reproducing this activity colored
by behavioral state (Figure 2B). Model parameters for all five
C. elegans are shown in Table 2 and a comparison of the data,
model, and errors is shown in Figure 3. Across all models, β ≈

0.1 indicates that the model’s reversal state (x = −1) is more
stable than the forward state (x = 1). Because the rev 1 and
rev 2 transitions are shorter than the dorsal and ventral turn
transitions, stronger control signals are necessary to complete
the forward to reversal transition |u5,6| > |u3,4|. A weaker
forward state stability (β ≈ 0.1) also aids in the forward to
reversal transitions.

Figure 3 shows the timeseries of the dominant PCA mode
(v1(t)) compared with the corresponding model variable (x(t))
for each model fit. The error over time (E(t)) shows that
E(t) ≈ 0 during the stable states 1, 2, and 7, indicating
that the model executes most transitions between the forward
and reversal states successfully. The error spikes during state
transitions, |E(t)| > 0, indicating that the model does not
capture the shape of the transitions accurately due to the model’s
minimal parameterization.

2.2. Changes to a Single Parameter
Reproduce Different Long-Timescale
Behaviors of C. elegans
As shown in the section 4, this global model has three fixed
points whose stability is determined by the parameter β ∈

(−1, 1). The parameter γ determines the linear growth/decay

rate of each fixed point. The parameter σ controls the
amount of stochasticity in the system. Figures 4A–C shows
the behavior of Equation (4) as a function of β for randomly
generated control signals. For β = 0, there is a symmetry
between the two stable fixed states corresponding to the
forward and reversal state, which reproduces the long time-scale
distribution of behaviors across individuals. As β approaches
unity, the dynamics are skewed in favor of one of the
fixed points.

The statistics of reversal length and frequency change
drastically across multiple timescales during the life of a
C. elegans. Our nonlinear control model is able to reproduce
three very distinct changes in state distribution and switching
frequencies seen in these experimental studies via modulation
of a single parameters. The first well-studied change in these
dynamics is the switch between dwelling and roaming states
(Pierce-Shimomura et al., 1999; Wakabayashi et al., 2004; Arous
et al., 2009; Flavell et al., 2013). Specifically, the frequency
of reversals is much lower in the roaming state, which
facilitates the exploration of a larger geographical area. Several
neuromodulators (Flavell et al., 2013) and individual neurons
(Wakabayashi et al., 2004) have been implicated in this behavioral
change; some function of these chemicals or neuron activity levels
might directly correspond to the model’s control signal onsets
and strengths u3,4 and u5,6.

2.3. Distinct Behaviors May Be Controlled
by a Shared Mechanism
Two additional behaviors that are not known to be related can
be explained using the same mechanism: spontaneous reversal
bouts, and an increase in reversals in an aversive oxygen
environment. We use calcium imaging data from Skora et al.
(2018) to create distributions for C. elegans low-dimensional
activity during a reversal bout and when in different controlled
oxygen states (Figure 4). The reversal bout behaviors, observed
in immobilized animals and shown in Figures 4D,E, are long-
lived behaviors that begin in a reversal state, move into a
forward motion state but then fail, and return to a reversal
state several times in succession. This can be clearly related
to a change in the parameter β , which controls the stability
of the fixed points corresponding to forward and backward
motion. A known method for experimentally destabilizing the
forward state in C. elegans is through a modification of their
environment. In an environment with a preferred oxygen level
of 10%, C. elegans tend to have stable forward swimming
behavior, Figures 4F–H. When the oxygen in their environment
is increases to 21%, they exhibit more transient forward
swimming behavior, Figures 4I–K, similar to the observed
“reversal bouts.”

Increasing β , as shown in Figures 4B,C, reproduces this
unstable forward behavior by retaining the stochastic control
signals that would normally transition the system to a forward
motion state, but by reducing the stability of that fixed point so
that the neural trajectory immediately falls off and returns to a
reversal state. We hypothesize that β may also have a biologically
correlated neuromodulator or set of neuromodulators and that
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FIGURE 3 | Timeseries of dominant mode of C. elegans neural activity [v1(t)] and corresponding model variable [x(t)]. Models are fit to each C. elegans by minimizing

the error [E(t)] between the PCA and model timeseries. Trajectories are colored by behavioral state.
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FIGURE 4 | (A–C) Phase plane, nonlinear stochastic activity, and state distributions of Equation (4) with increasing β values. (A) β = 0 generates equally stable fixed

points. (B) β = 0.6 generates a less stable fixed point which turns into a slow point as the fixed points merge. (C) β, r2 ∈ C and the right fixed point is lost. (D)

C. elegans PCA trajectory during a reversal bout and (E) the corresponding distribution. The forward fixed point is unstable during this interval. (F–H) C. elegans

activity in a preferred 10% oxygen environment which promotes stability in the forward state compared with (I–K) C. elegans activity in an aversive 21% oxygen

environment which destabilizes the forward state. (F,G) PCA activity and distribution of a single C. elegans in the preferred oxygen environment compared with the

activity of this same C. elegans in the aversive oxygen environment (I,J). Average distribution for 10 C. elegans in the preferred environment (H) compared to the

aversive environment (K).
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stabilization of this modulation system would remove the
reversal bout phenomenon.

An additional testable prediction is that some subset of
neurons correlated with forward motion (e.g., the AVB and
RIB pairs) or the ending of reversals (e.g., the SMDD, SMDV,
and RIV pairs) may be responsible for stabilizing the forward
state and others may be key for initializing the state. Opto-
genetic manipulation of the “initiating” neurons without the
“stabilizing” neurons should simply produce a failed forward
initialization, as seen in the natural reversal bout. Similarly,
inhibition of the stabilizing neurons should make forward
motion an inaccessible state.

3. DISCUSSION

We have produced the first global, nonlinear control model that
can capture the dominant features of low-dimensional neural
data. Our work demonstrates how the C. elegans neural network
could control its global dynamics via perturbations to fixed point
stability and feed-forward control signals. This model provides
a control theory mechanism for switches in stochastic switching
models. Our model also extends previous work by explaining
incomplete or unsuccessful switching seen in reversal bouts as a
change in the stability of the underlying fixed point. This model
is minimally parameterized and changes in several parameters
can reproduce changes in behavioral distributions akin to that of
known neuro-modulators, thus producing a unifying framework
for analyzing various changes in distributions of behavior at
multiple timescales. In addition, the framework for building this
model can be extended to other complex systems with more
behavioral states which are defined by fixed points as discussed
in Morrison and Kutz (2020).

Several modeling strategies have been used tomodelC. elegans
behavioral and neural dynamics, and they can be classified in
two ways: direct models of the trajectories in neuron space
(Linderman and Adams, 2014; Linderman et al., 2016, 2019;
Fieseler et al., 2020), and abstract Markov models (Roberts
et al., 2016). The former has the advantage of describing
neuron-level dynamics at the cost of many parameters, generally
hundreds. On the other hand, Markov models do not make
specific predictions about neurons or trajectories on the low-
dimensional manifold, but generally have a small number of very
interpretable parameters. Our model combines the strengths of
both approaches, producing a model of dynamics that is both
directly connected to neural activity and fits only 6 parameters.
It is unclear if these parameters have biological correlates, but the
fact that modulating them produces known behavioral outcomes
suggests areas for future experimental work.

This modeling strategy has a few limitations. In particular,
the entire model was constructed and fit using the first two
PCA modes, which only account for 18–23% of the variance
in the data. The dominant modes capture the dominant
global dynamics; however, there are many secondary structures
captured by the later modes such as transient or sparse activity.
The fast-timescale signals that control the global dynamics
may be captured in the activity of these higher modes. It is

almost certainly true that important activity is contained in
higher PCAmodes, particularly when trying to incorporate more
complex behaviors. In addition, it is unclear that PCA modes
are the correct basis for producing models whose behaviors have
biological correlates. Work regarding an interpretable choice
of basis is ongoing, with nonlinear embeddings offering more
flexible possibilities (Lusch et al., 2018; Champion et al., 2019).

Connected to this issue, the model does not differentiate
between ventral and dorsal turns or between transitions rev 1
and rev 2. Transition paths are not clearly separable in the first
two PCA modes, even though they are clearly mutually exclusive
at the level of muscle activation. A model with more variables
would be able to differentiate between these different transition
paths from the forward to reversal state and from the reversal
to forward state. Extending our framework to incorporate more
subtle and complex behaviors is the subject of ongoing work.

The modeling strategy proposed in this paper used
polynomials to design fixed points and the transitions
between them. Even if the “true” function form is more
complex, polynomials can be considered a Taylor expansion
approximation of those dynamics. However, no attempt was
made to explicitly derive this functional form from neuron-level
non-linearities, or to include information from the known
connectome (White et al., 1986). A derivation from first
principles would be an exciting advance and we hope that our
model, as one possible macro-scale model, can facilitate this type
of theoretical development.

4. METHODS

We construct a nonlinear control model for C. elegans by fitting
the parameters of a general dynamical systems model with
control to low-dimensional C. elegans neural activity. We reduce
the dimension of the neural trajectories with PCA and use non-
convex optimization to fit the trajectory of the dominant PCA
mode to the corresponding dynamical systems model variables.

4.1. Dimension Reduction
C. elegans have been proposed to have seven different behaviors—
forward motion, forward slow, dorsal turn, ventral turn, reversal
1, reversal 2, and sustained reversal (Kato et al., 2015). Further
references to the forward behavior denote both the forward
motion and forward slow states, and references to the reversal
behavior denote the sustained reversal state. We used C. elegans
calcium imaging data collected for Kato et al. (2015) to produce
the low-dimensional activity shown in Figure 1 and the model
fits shown in Figures 2, 3. We used calcium imaging data
collected for Skora et al. (2018) to produce the low-dimensional
activity and distributions shown in Figure 4. We used data from
five different C. elegans from Kato et al. (2015), as their neural
patterns expressed activity corresponding to different labeled
behaviors. We achieved a low-dimensional representation of the
activity by performing principal component analysis (PCA) on
the time series data and focusing on the activity of the first two
PCA modes.

Each of the five C. elegans datasets contains calcium imaging
from 107 to 131 neurons. We performed PCA on the timeseries
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of each C. elegans neural activity, which is calculated as the
time derivatives of the normalized Ca2+ traces (1F/F) (Kato
et al., 2015). We used the first two PCA modes to construct
a dynamical systems model. The first two PCA modes capture

18–23% of the total variance in each dataset meaning that
our model only represents the dominant neural activity and
is excluding secondary activity. Bleaching causes the calcium
imaging signals to dampen over time in each timeseries (Kato

FIGURE 5 | Principal component analysis of neural activity. (A) Calcium imaging timeseries mean centered (time in seconds). (B) Timeseries of first principal

component with moving average. (C) Timeseries of second principal component with moving average. (D) Neural activity in PCA space using uncorrected PCA. (E)

Timeseries of first principal component with moving average subtracted. (F) Timeseries of second principal component with moving average subtracted. (G) Neural

activity in PCA space using corrected PCA.

TABLE 3 | Features exhibited by C. elegans neural activity paired with corresponding dynamical system features.

C. elegans Dynamical System

Two stable fixed points Globally stable system with two sinks

System functions with variability System behavior remains qualitatively constant under small parameter

perturbations

Trajectories contain stochasticity System behavior remains qualitatively constant with the addition of noise

Fixed point locations drift Behavior remains qualitatively constant despite deformations and shifts to the

system

Trajectories tend to follow set paths System path variability set with damping term
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et al., 2015). Because we are only interested in transitions
between behaviors that are known to be faster timescale (Kaplan
et al., 2020), we correct for this by subtracting a long-timescale
moving average from each principal component. Figure 5A

shows the mean centered neural activity of a single C. elegans.
Figures 5B–D shows the first two principal components of
the neural activity without drift correction while Figures 5E–G

shows the first two principal components with drift correction.

4.2. Nonlinear Dynamical Systems Model
Nonlinear dynamical systems are ubiquitous in the engineering,
physical and biological sciences for describing many complex
phenomena observed in a diverse number of settings. Often,
simple qualitative models with polynomial non-linearities
are capable of providing remarkable insight into dynamical
behaviors. The nonlinear pendulum, for instance, can be
approximated by a Taylor series expansion to characterize the
effects of frequency shifts and harmonic generation that is
observed in practice. Inspired by well-studied non-linearities, we
consider dynamical systems of the general form

ẋ = f (x,β , γ )+ Bu(t). (6)

We restrict our focus to polynomial equations with fixed points
that can be determined analytically:

x′ = y

y′ = f (x)+ γ y+ u(t)

f (x) = a

n∏

i=1

(x− ri)

(7)

where f (x) is a polynomial with a leading coefficient a and
roots ri. γ is the damping parameter. This is a second order
nonlinear differential equation which can be expressed as
x′′ − f (x)− γ x′ = 0. If γ = 0, the system is undamped and the
differential equation becomes x′′ = f (x) which has an analytical
solution. Often however, the solutions are exceedingly complex
and it is preferable to take a qualitative approach. We choose a
system of this form as the fixed points can be easily placed and
assigned a stability type (e.g., saddles, sources, sinks, or centers)
through parameter selection. All fixed points lie on the x-axis and
are placed and manipulated by varying our polynomial roots ri,
while fixed point stability types are assigned by manipulating γ

and a for a given set of roots ri. Two stable fixed points have
been identified in the C. elegans dynamics, suggesting a cubic
dynamical system. Additional features of the data and how they

FIGURE 6 | State distributions of nonlinear models for various parameter regimes. (A) Fixed point relative locations affects their stability. (B) Increasing levels of

Brownian motion (σ ) increases the variation about the fixed points. (C) More frequent control signals more evenly distributes the time spent in stable vs. transitional

states. (D) Stronger damping in the system keeps trajectories close to fixed points.
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can be translated into a nonlinear dynamical system are described
in Table 3.

4.3. Model Fitting
We fit the parameters (P = [β γ σ u3,4 u5,6 dt]) of our general
model (Equation 4) to each C. elegans low-dimensional activity
by minimizing the error

∫
|E(t)|dt where E(t) = v1(t)− x(t).

Parameter β is the location of the saddle fixed point and controls
the relative stability of forward and reversal states, γ is the
damping parameter, and σ is the level of stochasticity in the
system. Control signal u(t) = u3,4 during states 3 and 4 (dorsal
and ventral turns) and u(t) = u5,6 during states 5 and 6 (rev
1 and rev 2 transitions). The behavioral state timeseries has
been determined by Kato et al. (2015). Parameter dt scales the
model timesteps so that they fit the measurement intervals of
the calcium imaging data. This is a non-convex optimization
problem. We first perform a random search over the parameter
space until the model performs most transitions. We then
continue optimizing via MATLAB’s fminsearch function. The
random search resulted in parameters P = [0.1 −1.5 0.06 0.5 −

0.7 0.3] which we used as the initial condition for the fminsearch
function.We optimized for> 200 interactions for eachmodel fit.
While this method finds a suitable collection of parameters that
execute the transitions observed in the data (Figure 3), it does not
guarantee the optimal solution will be found.

4.4. Robustness of Results to Parameter
Variations
We observe how modifying other system parameters affect
the state distribution of the nonlinear system’s activity under
randomly generated control signals. In Figure 6A, we vary the
right fixed point’s region of stability by moving the location of the
middle fixed point β . We observe the system spends less time at
the right fixed point with a smaller stability region. In Figure 6B,
we increase the level of Brownian motion (σ ) in the system
and observe the variability increases in the distributions as a
result. In Figure 6C, we observe that increasing the control signal

frequency increases the amount of time spend in a transitional
state. Figure 6D shows that increasing the damping strength
decreases the distribution variability. Observing these parameter
variations holistically, we see that the nonlinear model is able
to perform the task of switching between fixed points under a
wide range of parameter values which insures the integrity of the
system and indicates that C. elegans dynamics, if comparable to
this model, should be able to operate robustly and stably under a
diverse array of environments and internal states.
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