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We are overwhelmed by experimental data, and need better ways to understand large interaction datasets.
While clustering related nodes in such networks—known as community detection—appears a promising
approach, detecting such communities is computationally difficult. Further, how to best use such
community information has not been determined. Here, within the context of protein function prediction,
we address both issues. First, we apply a novel method that generates improved modularity solutions than
the current state of the art. Second, we develop a better method to use this community information to predict
proteins’ functions. We discuss when and why this community information is important. Our results should
be useful for two distinct scientific communities: first, those using various cost functions to detect
community structure, where our new optimization approach will improve solutions, and second, those
working to extract novel functional information about individual nodes from large interaction datasets.

R
ecently, network science has been used to provide a framework for investigating the structure and dynamics
of complex systems in various biological and social sciences1–3. Typical real-world networks adopt hier-
archical structures, including communities composed of more densely inter-connected subgraphs.

Uncovering the hidden community structure of a network, known as community or module detection, has been
a subject of active research in mathematical, social and physical sciences4–8. Nodes in a community likely share
common characteristics, so proper community detection in principle allows extraction of hidden information
from the network, without additional a priori knowledge. Biologically, a group of proteins or genes in the same
community, within a larger protein interaction network, often coincides with known functional modules and/or
protein complexes9,10. Similar functional correspondence is observed in gene co-expression networks11. In meta-
bolic networks, nodes can be classified according to their topological characteristics in the community, which
allows one to predict the roles of metabolites12.

Such communities are thus in principle invaluable in understanding biological networks, but the utility of this
information has been limited both by the difficulty in accurately detecting the communities, and also by the lack of
formal optimized ways to use this community information. Thus, to date, module-assisted methods have been
inferior to simple neighbor-assisted approaches for protein function prediction13–15.

Community detection involves two parts: first, definition of what constitutes a ‘community’, typically mea-
sured by some cost function, and second, computationally partitioning the elements into subgroups (communit-
ies) such that the value of the cost function is either maximized or minimized (depending on the function). While
significant attention has been paid to details of the cost function, much less has been paid to its implementation.
Nonetheless, the actual partitioning of the group into sub-groups is computationally challenging (NP-hard), and
in practice, a cost-function is only useful if appropriate communities — that optimize it — can be found.

Among various definitions of a community, modularity is most widely used6,16. The modularity (Q) measures
the relative density of intra-community connectivity, compared to a randomly re-wired counterpart with the
same degree of nodes. Maximization of Q recasts the community detection problem into a global optimization
problem. As the network size increases, the computational complexity of Q-maximization increases more rapidly
than exponential growth, so simple enumeration is impractical. Rather than attacking the difficult problem of
developing methods to find the optimal solution, many fast heuristic methods have been employed. Therefore,
despite its popularity, little is known about the utility of a community detected via Q-maximization. A fun-
damental assumption is that the quality of community structure correlates with its Q, and that from higher quality
communities one can ultimately derive more accurate insights, but the actual validity of this hypothesis in the
context of real-world applications has not been shown.

Here, we present a new community detection approach based on Q-maximization, using the global optim-
ization technique called conformational space annealing (CSA)17,18 (Fig. 1). CSA is quite efficient in solving
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difficult combinatorial optimization problems, with recent success in
protein structure prediction19–22. The similarity between community
detection and protein structure prediction is that both are computa-
tionally challenging. Here, we show that applying CSA to community
detection via Q maximization provides higher Q and more con-
verged solutions, displaying far less variability than the usually used
simulated annealing (SA) — considered to be the most accurate
method so far12,23,24. Secondly, we demonstrate that partitioning with
a higher Q value does indeed result in a more coherent organization
of a biological network, and that such a community structure allows
extraction of additional hidden information. Thirdly, building on
this improved detection of community structure, we developed a
systematic approach to integrate this community information with
neighbor information, which significantly enhances protein function
prediction. Finally, we note that CSA can also be used to improve
partitioning based on other cost functions.

Results
Benchmark tests for Q optimization on synthetic networks. We
first apply CSA-based Q-maximization to LFR graphs25, test graphs
used to simulate real-world networks, with known pre-defined
properties. These artificially generated graphs use a total of 1000
nodes, by assigning 4000 edges between them. Nodes are grouped
into pre-determined communities, and various mixing probabilities
(abundance ratio between inter- and intra-community edges) are
used. Thus, the actual communities are known by construction,
allowing one to quantitatively assess the efficacy of specific approa-
ches in computationally detecting them. How representative are
these test graphs? In networks with higher mixing probabilities, it
is expected to be more difficult to use Q optimization to detect the
actual community structure. While each biologically relevant net-
work will have somewhat different parameters, many (like those
below) have between a few hundred and a few thousand nodes,
and a modularity Q in the range of 0.4 to 0.8. Thus, the range of
test graphs used here spans many relevant conditions. To compare
the optimization efficiency in a statistically relevant manner, we
performed 50 independent runs of CSA and SA.

As summarized in Table 1, CSA outperforms the current state-
of-the-art SA. As the optimization problem becomes difficult
(increased mixing) the community structure generated by CSA
is of higher Q, and critically, is more consistent with the pre-set
community structure, represented by the higher value of recovery
accuracy (ACC). As an added benefit, regardless of optimization
difficulty, the computational cost of CSA is significantly less than
that of SA. Unlike SA, in addition to running faster, CSA can be
efficiently operated in a parallel fashion26. Thus, CSA using 8 CPU
cores can generate SA-equivalent results using less than 1% of
wall-clock time. Maximization of Q by CSA also worked well with
other benchmark networks27.

Application to biological networks. We next applied community
detection to three biological networks: metabolic networks of
Treponema pallidum and Escherichia coli, and the protein-protein-
interaction (PPI) network of Saccharomyces cerevisiae. For the T.
pallidum study, we generated the network according to the
previous study7; details are provided in Supplementary Materials.
The other two networks and related meta data were kindly
provided by Ahn, Bagrow and Lehmann7. The results from these
three networks are summarized in Fig. 2.

We observe that CSA-generated community structures are of
higher modularity than SA-generated ones, as judged by Q-value.
How useful are the detected communities? Despite many modular-
ity-based studies6,12, it has not yet been clear whether a higher Q
partition is more meaningful. To determine the effectiveness of the
partitioning, we used two measures. First, we looked at the number of
enriched functional clusters, i.e. those that belong to a particular
community in a significantly non-random fashion (see Supple-
mentary Materials). In all cases, relative to SA, the CSA-generated
community structure has a larger number of enriched functional
clusters (Fig. 2, left), suggesting that the sub-groups are more mean-
ingful. We emphasize that the result is insensitive to the variation the
P-value threshold (Fig. S4–S9). As a particular example, for the E. coli
metabolic network, from the P-value analysis on functional clusters
of the KEGG pathway annotation, the average numbers of enriched
functional clusters of CSA and SA solutions respectively were found
to be 27.0 and 22.3, with a P-value threshold of 1024. The entire list of
enriched functional clusters of E. coli metabolic and S. cerevisiae PPI
networks is provided in the Supplementary Materials.

We also looked at the quality of the partitioning, E, which mea-
sures the extent of common features shared between nodes in
the community (see Methods). In general, we found a correlation
between increased modularity Q and increased quality E (Fig. 2,
right). Thus, two distinct criteria suggest that relative to SA, the
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Figure 1 | Schematic representation of the CSA algorithm is shown. The

x-axis shows the schematic representation of the solution space, and y-axis

represents the objective function: energy for physical systems or -Q for

community detection. For the first stage of CSA (top panel), a bank of

initial solutions are randomly generated, minimized (black dots) and

initial distance cutoff, Dcut, is set to the half of average distance between

solutions. Middle panel: For each generation of CSA, trial solutions (green

and blue dots) are generated by perturbing a subset of solutions using

others in the bank. Four update rules are used to find good solutions while

keeping the diversity of bank. First, if a trial solution (c) is worse than the

worst solution (C) in the bank, it is discarded immediately. If a trial

solution is better than C, it is compared with its nearest neighboring

solution in the bank. If the distance between the trial solution and its

nearest neighbor is less than Dcut (a and b), the solution with better

objective function value remains: a replaces A, B remains and b is

discarded. If a trial solution (d) is away from others further than Dcut, it is

considered as a novel solution and replaces the worst solution (C). Dcut

decreases gradually as the simulation proceeds. When no better solutions

are found, CSA terminates, and the final bank solutions correspond to

various local minima (bottom panel).
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communities detected by CSA — with increased modularity — are
likely to capture more useful ‘hidden’ information.

To build intuition into how the partitioning differed between
CSA and SA, we looked in more detail at partitioning of the E. coli
metabolic network. While the Q values of the detected community
structures between the best SA (Q 5 0.3989) and CSA (Q 5

0.4021) solutions might not appear that different, at the level of
partitioning there is an obvious difference (Fig. 3). In the SA-
generated partitioning, we observe a large single community

(larger purple squares, top) that, in the CSA solution, is actually
divided into three smaller communities (two indicated by red and
blue shaded areas, and the other by large squares, bottom). These
smaller communities are useful in that they represent additional
functional modules. In the CSA solution, four additional enriched
functional modules (Phenylalanine, tyrosine and tryptophan bio-
synthesis; Aminosugars metabolism; Peptideoglycan biosynthesis;
D-glutamate and D-glutamate metabolism) are identified with P-
value of 1024.

Table 1 | Benchmark results on LFR graphs with 1,000 nodes and 4,000 edges are summarized. Entries in bold indicate improved accuracy
of one method relative to the other

Mixing Prob. ,QCSA./,QSA. ,ACC1
CSA./,ACC1

SA. CSA time (sec) SA time (sec) Time (CSA 5 SA)2

0.05 0.9045/0.9045 1.0000/1.0000 63.5 2199.5 –
0.10 0.8638/0.8638 0.9994/0.9994 107.5 2422.4 –
0.15 0.8115/0.8115 1.000/1.000 103.7 2563.2 –
0.20 0.7585/0.7585 0.9990/0.9990 100.4 4095.3 –
0.25 0.7090/0.7090 1.0000/1.0000 104.0 2994.3 –
0.30 0.6641/0.6641 0.9974/0.9974 128.1 3596.5 –
0.35 0.6141/0.6140 0.9952/0.9946 142.8 4417.5 35.2
0.40 0.5641/0.5639 0.9936/0.9926 175.1 4784.9 40.9
0.45 0.5118/0.5114 0.9811/0.9794 219.6 6442.2 44.4
0.50 0.4675/0.4665 0.9705/0.9675 276.4 8350.1 54.3
0.55 0.4209/0.4190 0.9367/0.9342 405.0 24408.8 70.8
0.60 0.3711/0.3691 0.8671/0.8545 699.2 94170.1 126.5
1ACC measures the accuracy of the identified community structure against the preset arrangement.
2Average wall-clock time of CSA using 8 cores reaching to the average modularity obtained by SA is shown.

Figure 2 | For three biological networks we display the relationship between modularity Q and two quality measures, the number of enriched
functional clusters (left) and quality E (right). We used P-value thresholds of 1022, 1024 and 1027 for T. pallidum, E. coli and S. cerevisiae, respectively. For

all three networks, CSA results (o) are showing higher Q values and better qualities in both measures than SA ones (1). Note that CSA runs all converged

into identical solutions for metabolic networks of T. pallidum and E. coli.
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One important feature of CSA-mediated community detection is
that it is more reproducible. This can be seen in Fig. 2: for the smaller
T. pallidum and E. coli networks, CSA repeatedly found a single
solution (red circle), better than any of the many solutions (blue
crosses) found by SA. Similarly, for the more challenging S. cerevisiae
network, the multiple solutions found by CSA (red circles) are both
better than the multiple solutions found by SA (blue crosses), and
more closely grouped.

In principle, there could be degeneracy in Q values, that is, differ-
ent community structures could have the same Q. We therefore
wanted to test whether the similarity or identity in Q-values found
for the different CSA runs in Fig. 2(top) actually reflected true sim-
ilarity or identity in partitioning. To answer this question, we more
deeply investigated the T. pallidum test case, a network containing
411 nodes of metabolites. After carrying out 50 independent CSA
and SA runs, the highest Q solution from each run was chosen. These
100 solutions—sorted in Q—are shown in Fig. 4, along with pair-
wise normalized mutual information (NMI) score. NMI measures
the similarity between two partitions, with unity corresponding to
identical partitions. Notably, all 50 CSA runs generated the identical
solution with Q 5 0.5477, which indicates that this is likely the global
maximum Q solution, considering both the stochastic nature of the
method, and the relatively small size of the network. Because the

NMI between these solutions was 1, they represent the same parti-
tioning, suggesting that here, degeneracy is not an issue. On the other
hand, the 50 SA runs produced 50 separate solutions where Q ranges
between 0.5426 and 0.5341, and for these, the average NMI between
SA solutions was 0.913, suggesting that indeed, each time SA is
applied to the same network, it results in a somewhat distinct
partitioning.

Recently, the difficulty of Q-maximization by SA was suggested to
originate from the highly degenerate nature of Q24. However, the
current study with the LFR networks and the metabolic networks
of T. pallidum and E. coli, as tested by NMI, suggests that this is not a
problem: finding a reproducible globally optimal Q partition—lead-
ing to a unique partitioning of a network with about 103 nodes—
appears to be possible with CSA. If so, at least for small to moderate
networks, the community detection problem by Q-maximization is
essentially solved, and future advances will be based either on optim-
izing functions other than modularity Q, or, on better use of the
detected community data.

Using community information to improve protein function pre-
diction. Protein function prediction is one of the most important
issues in the current post-genomic era. Biological interaction
networks are modular, so finding the community structure of a

Figure 3 | A comparison of community structures of metabolic network of E. coli from CSA (Q 5 0.4021) and SA (Q 5 0.3989) is shown. Nodes

of one community by SA are split into three communities by CSA (two indicated by red and blue shaded areas and the other one by the other large

squares). Meaningful functional clusters of KEGG pathway annotations with P-value less than 1024 are listed.
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PPI network has been regarded as a promising approach to improve
function prediction over existing methods. Surprisingly, however,
attempts to incorporate community structure for function pre-
diction have been somewhat limited and not very successful,
especially compared to simple neighbor-assisted methods13–15,28,29.
We suggest that this failure of community-based methods reflects
both a failure in correct detection of the underlying communities (see
above), combined with an over-simplified way of utilizing commu-
nity information (see next).

In most community-based approaches to date, if a function from a
community is signified by a low P-value, the function is assigned to
all nodes in the community. This approach is likely to induce large
false-positives, leading to low prediction accuracy, and makes such
approaches of limited utility14,15.

As an alternative to such a low-resolution assignment of function,
we employed a random forest (RF)30 machine learning technique.
We applied it on the yeast PPI network by carrying out leave-one-out
cross-validation with GO annotations31. That is, for each protein, we
assumed that its function(s) were unknown. We then made predic-
tions of its function(s) based on a set of input features generated only
from the network topology (including e.g. which communities its
neighbors were in, their functions, etc.). By completely deleting a
node/protein and considering the network and GO annotations from
the other 2728 proteins, an RF consisting of 500 classification trees
was trained to maximize the function prediction for 2728 proteins.

The trained machine was then used to predict the function of the
deleted protein. This procedure was repeated independently for all
2729 proteins. Community structure was used as one of the inputs
into the prediction by including it in the feature vector for RF. To
determine the importance of this information, this feature vector was
constructed with and without community information (see
Supplementary Materials). In addition, for comparison, we also car-
ried out all currently available outstanding methods including major-
ity voting28, neighborhood enrichment14,15 and two Markovian
random field (MRF) methods29,32,33 which all utilize only local
information such as the ranking of functional frequency present in
the neighboring proteins. These methods are currently the state of
the art in the field of protein function prediction34.

When making predictions, two aspects are important: what per-
centage of the time a prediction is correct (precision), and overall,
how many correct predictions are made relative to the total number
that in principle could be made (recall). Obviously, there is a
trade-off: one can make only those few predictions about which
one has high certainty, or one can strive to make more predictions,
at the cost of increased error. In practice, this can be summarized

by a Precision-Recall curve, where Precision~
TP

TPzFP
and Recall~

TP
TPzFN

, with TP the number of correctly predicted functions, FP

the number of incorrect predictions, and FN the number of anno-
tated functions predicted not to exist. Overall, the integrated area

Figure 4 | Q and pair-wise NMI are shown for 100 community structures (the first 50 from CSA and the second 50 from SA). Solutions are sorted

according to their Q values. 50 independent CSA runs generated the identical solution with Q 5 0.5477 while SA solutions (,1% worse in Q) are

rather diverse24. Average computational times for CSA and SA are 31 s and 2004s, respectively, and the average CSA time to obtain an equivalent SA result

is 16.3 s.
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under this curve (AUC)35 is a quantitative measure of a particular
method, with increased AUC corresponding to increased precision
for a particular amount of coverage (recall) on average.

In Table 2, we use this AUC metric to compare the efficiency of
various methods. MRF methods are currently considered to be the
most efficient, and indeed MRF by Karaoz et al.33 performs better
than other existing methods in our hands. However, for all three GO
domains (biological process (BP), cellular component (CC) and
molecular function (MF)), our new implementation of the RF
method (RF-comm-CSA), utilizing the best CSA solution performed
the best overall. While not as good as RF-comm-CSA, the AUC
values of RF-local (without community information) were still bet-
ter than MRF on average. Importantly, when the community
information was properly used, the improvement of RF-comm-
CSA over MRF by Karaoz et al. was 15.9%/4.4%/8.7% for BP/CC/MF.

Armed with RF-local and RF-comm, as well as better and worse
partitioning (from application of CSA vs. SA), we are now able for the
first time to address the question: ‘when is community information
useful in protein function prediction, and what aspects of the com-
munity structure are important?’. RF-local performed slightly better
than MRF by Karaoz et al.33, by 2.8% on average for three GO
domains. Thus, using RF with only local information is already quite
good, better than the current gold standard. When we use RF-comm,
as input we give it either the SA- or CSA-determined community
structure. There is indeed an improvement of RF-comm over

RF-local for both SA- or CSA-determined solutions (Table 2),
answering part of the question: properly used, community informa-
tion is valuable.

Intriguingly, the improvement of RF-comm-CSA and that of RF-
comm-SA was roughly similar to each other for prediction of cellular
component (CC) information (7.8% improvement in AUC using
CSA, and 6.9% improvement using SA), but the improvement of
RF-comm-CSA over SA was more pronounced for both biological
process (BP) prediction (3.9% for CSA vs. 0.9% for SA) and for
Molecular Function (MF) prediction (8.6% for CSA vs. 2.2% for
SA). Thus, the additional information in the CSA-determined com-
munity was useful for both BP and MF prediction, but particularly
important for MF prediction. Why is this so? We reasoned that there
are likely some ‘easy’ aspects of community detection that both CSA
and SA do reasonably well, that are useful for CC, and some harder
aspects of community detection that CSA does better at than SA, and
that matter for BP and especially MF.

In general, if nodes are close by, they are easy/likely to be together
in a community; the further apart two nodes are in a network, the
harder it is to accurately place them in a community. Thus, we
hypothesized that perhaps proximity is a relevant factor to consider,
and the improvement in MF and to a lesser extent BP came from the
fact that non-local information—as summarized by correctly
detected extended community structures—was useful in those cases.
To test this idea, we calculated two node similarity measures: p(n),
the probability of sharing a common feature between two nodes
separated by n edges, and the Jaccard coefficient, defined as the size
of the intersection divided by the size of the union of the annotations
(see Fig. 5).

With both measures, we observed that the node similarity for CC
decays monotonically as a function of n, while the similarity for MF
increases for n . 5. The similarity for BP is about constant for n . 3.
The behaviors of BP and CC are consistent with a previous study36,
whereas the increase of MF beyond n 5 5 has not been reported. To
test the statistical significance of the increase of MF, we performed t-
tests of Jaccard measures between the n 5 5, 6 and n 5 6, 7 of MF
results. The obtained t-values are 23.03 and 16.38, respectively,
which indicates that the increase of correlation is statistically highly
significant and that the distribution of MF annotations is qualita-
tively different from that of BP and CC.

Thus, for CC, most common features are shared between small
n pairs, and one might expect that the differences between two

Table 2 | The efficiency of protein function prediction methods are
summarized. RF-comm/neigh refers to the random forest method
with/without community information. MRF and MCL refer to
Markovian random field and Markov clustering algorithm

Methods

AUC

BP CC MF

RF-comm-CSA (Q 5 0.7737) 0.343 0.528 0.201
RF-comm-SA (Q 5 0.7684) 0.333 0.524 0.189
RF-comm-MCL 0.255 0.362 0.139
RF-local 0.330 0.490 0.185
MRF by Karaoz et al. 0.296 0.506 0.185
MRF by Deng et al. 0.266 0.436 0.165
Neighborhood enrichment 0.273 0.379 0.146
Majority voting 0.159 0.389 0.131

Figure 5 | Correlations between node-to-node distance and similarities of function annotations in the PPI network are displayed. (a) Fraction of

protein pairs sharing a common GO term of biological process (red), cellular component (blue) and molecular function (green) domains is shown.

(b) Jaccard coefficient is used as a similarity measure.
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community structures are not crucial. However, for MF, large n pairs
contribute relatively more, and therefore details of community struc-
tures are important. This matches the improvement we see from
incorporating community structure—when long-range relationships
are not negligible, correct community-partitioning capturing these
relationships correctly can be especially useful. Thus, our data sug-
gest that although community information is in general useful,
accurate community structure is particularly important for predic-
tion of molecular function and to a lesser extent biological processes,
where non-local community information is relevant

The above data suggest that long-range non-local data is particu-
larly present for MF, and therefore may under specific conditions be
a significant contributor to accuracy of prediction. Intuitively, its
utility will likely depend not only on how well such long-range
information is captured (by appropriate community structure) but
also how much local information there is to use in its place—if local
information is lacking, non-local information should be particularly
important. To test this idea, we calculated the improvement of AUC
values separately, considering nodes within a range of a number of
neighbors. That is, we considered separately nodes that had only a
few local inputs (k ,5 3) to nodes with many local inputs (k . 20).
The result is shown in Table 3.

Community information was most useful in predicting functions
of sparsely connected proteins with less than ten interacting proteins
for MF. Not only does this conceptually make sense, it is encouraging
from a practical point of view, since newly investigated unannotated
proteins are likely to have a small number of edges/connections to
other proteins.

With this new validated approach, we thus attempted to predict
functions of unannotated proteins. We find results that are quite
consistent among domains (Table S1, Supplementary Materials).
One example is YBR190W which is predicted to have BP of ‘‘RNA
splicing’’, CC of ‘‘Prp19 complex’’ and MF of ‘‘first spliceosomal
transesterification activity’’. Prp19 complex is involved in the trans-
ition from the precatalytic spliceosome to the activated form that
catalyzes step 1 of splicing37. Another example is YOR379C whose
BP and MF are predicted to be ‘‘regulation of transcription, DNA-
dependent’’ and ‘‘sequence-specific DNA binding transcription fac-
tor activity’’. The entire list of prediction results is provided in
Supplementary Materials.

Discussion
Overall, our study shows that for small to moderate networks, CSA
not only maximizes Q, but also in addition finds a unique commun-
ity partitioning that is likely Q-optimal. This is faster, more repro-
ducible, and more accurate than partitioning via SA. We
demonstrate that the Q measure is indeed correlated with the qual-
ity/coherence of a community structure in the context of real-world
data, providing direct support for the importance of devising an
efficient Q optimization method. Combined with an RF-based pre-
diction approach, a high quality community structure resulted in
improved prediction of function (Fig. S10–12 and Table 2). This
implies that many other existing community-based studies, such as
a gene-disease network38, a disease-drug network39,40 and cancer dia-
gnosis41,42, can possibly benefit from using a more accurate commun-
ity structure without additional information.

A large advantage of CSA is that because it is a general global
optimization algorithm, it can be readily used with other cost func-
tions such as finding overlapping community structure43; various
objective functions have already been proposed to detect overlapping
communities of networks6,44,45. To demonstrate the generality of
CSA, we applied it to the measure proposed by Shen et al.45, and
assessed its performance on a word association network (see Fig. S2).
The result shows that CSA generates more optimal solutions also for
overlapping communities in terms of the measure used. Note that
this was a ‘proof of concept’ study, and while it demonstrates the
utility of CSA, it should still be determined whether the improved
partitioning achieved by CSA for overlapping communities actually
corresponds to a higher utility community structure. Our results
suggest that extensive search by CSA can be used as a starting point
to assess the relative utility of various suggested measures for the
overlapping communities, following the quantitative comparative
approach used in this work.

The Markov Clustering (MCL) algorithm is one of the most pop-
ular algorithms in bioinformatics5,6. It simulates a stochastic flow
through a network by alternating dissipation and reinforcement
steps. MCL is simple to implement and works efficiently even for
large networks. However, the application of MCL clustering of the
yeast PPI network for function prediction resulted in relatively poor
performance (RF-comm-MCL in Table 2), which could be attributed
to many small communities generated by MCL (Fig. S3). Thus, for
moderate size networks where a Q-maximization/CSA approach can
be used, the current approach is preferred. Computationally, the
increased speed of CSA relative to SA should allow its application
to larger networks (see below).

Our approach is the first network-based method for protein func-
tion prediction utilizing community information which clearly
outperforms local-information based methods28,32,33. We show that
the community structure itself contains useful information, and that
it can be combined with a machine learning approach by using the
purely topological properties of nodes as input features, which has not
been reported. There are several studies, which employed machine-
learning approaches to combine the network information with the
external information to enhance the prediction quality13,14,46–49.
It is promising that with only computational efforts, without addi-
tional information, the quality of prediction can be significantly
enhanced.

To identify the origin of the improvement of MF prediction, using
the PPI network, we measured the amount of improvement in
each subclass of molecular function. The largest improvement was
observed in the prediction of ‘DNA binding’ function, GO:0003677,
and more specifically, 4 out of the 6 most improved proteins were
involved in DNA repair processes. In general, analysis of a PPI-
network might not reveal much information about MF, since, typ-
ically, proteins of different molecular functions interact with each
other to accomplish a particular biological goal. For example, a typ-
ical ribosomal protein complex consists of proteins with separate
molecular functions, which work properly only when the complex
is formed. For this reason, most network analyses consider only BP
and CC annotations. However, many proteins with the function of
‘DNA binding’ work in a sequential fashion, rather than forming a
large direct complex. For example, DNA repair involves a series of

Table 3 | AUC values and relative improvements of prediction of molecular function by using community information are displayed. AUC
values are calculated considering nodes with k in the range shown

Number of neighbors (k) Number of proteins RF-comm-CSA RF-local Improvement (%)

K # 3 1358 0.114 0.103 10.7
3 , k # 10 689 0.229 0.192 19.1
10 , k # 20 343 0.340 0.334 1.8
K . 20 340 0.360 0.368 22.2
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biological processes executed sequentially by different complexes;
initial damage recognition, opening of DNA double helix, DNA
exonuclease, DNA polymerase and DNA ligase. After each complex
finishes its function, it recruits and interacts only with the proteins of
the subsequent complex on the queue. In this case, each complex
needs at least one ‘DNA binding’ protein but not all participants need
to have the ‘DNA binding’ function. Therefore, proteins with ‘DNA
binding’ function are likely to have a small number of direct neigh-
bors sharing the function. Neighbor-assisted methods are not effi-
cient to predict such cases. However, by considering community
structure, the indirect relevance can be captured by calculating stat-
istical significance of the function within the community. For
instance, ‘YOL090W’: MSH2 protein, which forms heterodimers
with Msh3p and Msh6p in order to bind at a DNA mismatch location
to initiate the mismatch repair, possesses 12 MF annotations. By
using an MRF method, only one function (DNA binding) is correctly
predicted because the majority of its direct neighbors do not share the
other functions. However, in our method, nine additional annota-
tions are correctly predicted due to their highly enriched character-
istics signified by the community information.

Our approach, data-mining from global and local topological fea-
tures of a network, can be a general framework for predicting hidden
properties from social as well as biological networks. In particular, we
believe that the conceptual advance clarifying when local vs. longer-
range community information is important—and how to approach
such a question—will have ramifications for many disciplines where
network science is used.

The limitation of CSA method is its scalability, which makes it
hard to be applied to very large networks27. Previously, we estimated
the complexity of CSA as O(n2:6), where n is the number of nodes.
This is better than that of SA, O(n4:3), but worse than that of MCL,
O(nk2), where k is the pruning parameter (k = n). This limitation
can be overcome in two ways: 1) by using a fast heuristic for local Q
maximization and 2) with the help of parallel computing. In this
work, for local Q maximization, we used quenching, equivalent to
SA at T 5 0, which is quite slow but explores solution space more
thoroughly. Replacing it with a fast heuristic can significantly reduce
the computational cost. Unlike SA, CSA can be implemented in a
parallel way, which makes it applicable to large networks that are
inaccessible by SA.

All data used and generated in this work including networks and
identified community structures are available by request. In addition,
we developed a web server to provide an automated way for research-
ers interested in using community detection to analyze their network
data. For networks containing up to 2,000 nodes, our server will
perform Q optimization and return the generated community struc-
tures.

Methods
CSA is a global optimization method, which combines essential ingredients of three
methods: Monte Carlo with minimization (MCM)50, genetic algorithm (GA)51, and
SA23. As in MCM, we consider only the solution space of local minima; i.e., all
solutions are minimized by a local minimizer. As in GA, we consider many solutions
(called ‘bank’ in CSA) collectively, and we perturb a subset of bank solutions using
others in the bank. This procedure is similar to mating in GA. Finally, as in SA, we
introduce a parameter Dcut, which plays the role of the temperature in SA. In CSA,
each solution is assumed to represent a hyper-sphere of radius Dcut in the solution
space. Diversity of sampling is directly controlled by introducing a distance measure
between two solutions and comparing it with Dcut to deter two solutions from coming
too close to each other. The value of Dcut is slowly reduced just as in SA, hence the
name CSA.

In CSA for modularity optimization, a community structure is represented by
assigning an index to each node, where nodes with an identical index belong to the
same community. We start with 50 random partitions which are locally optimized by
quench procedures; this is equivalent to SA at T 5 0. We call this set the first bank,
which remains unchanged and works as a reservoir for future perturbations. We make
a copy of the first bank and call it the bank. The partitions in the bank are updated by
better ones found during the search. The initial Dcut value is set as half of the average
distance between solutions in the first bank, Dave. The distance between two com-
munity structures is measured by the variation of information52 defined by,

V(X,Y)~{
X

xy

P(x,y) log
P(x,y)

P(x)
{
X

xy

P(x,y) log
P(x,y)

P(y)
with P(X~x)~nx=n and

P(X~x,Y~y)~nxy
�

n. nx is the number of nodes included in the community x and
nxy is the number of nodes included both in the community x in partition X and
community y in partition Y .

For each generation of CSA, 30 partitions are selected as seed partitions. With each
seed partition, 20 trial partitions are generated by cross-over between the seed and a
randomly chosen partition from the bank, and 5 trial partitions are generated by
random mutation of the seed. For a cross-over, we use two operators: a convergent
copy and a divisive copy. In both operators, one community structure from a source
partition is copied to a target partition. For the convergent copy, the new index is
chosen from one of the neighboring indices of the copied nodes from the target in a
random fashion. For a divisive copy, a new index not present in the target is chosen.
The rationale of using these operators is that the community index itself has no
particular meaning, while a well-defined community structure from one solution can
serve as an advantageous feature that should be preserved to generate a better solu-
tion. Mutations are performed by random merge and split operations. The random
merge consolidates two neighboring communities. The random split divides a
community into two groups by randomly assigning new indices. All trial partitions
are locally optimized by quench, and compared with the existing partitions in the
bank.

Four update rules are used to find good solutions while keeping the diversity of
bank. First, if a trial solution is worse than the worst solution in the bank (C in
Figure 1), it is discarded immediately. For trial solutions better than the worst one in
the bank, the following procedure is carried out. A trial solution is compared with its
nearest neighboring solution in the bank. If the distance between the trial solution and
its nearest neighbor is less than Dcut, the solution with better objective function value
remains (the other is discarded). If the trial solution is away from others further than
Dcut, it is considered as a novel solution and it replaces the worst solution in the bank.
Dcut decreases gradually as the simulation proceeds until it reaches to the lower bound
of the cutoff, Dave/5. When no better solutions are found, CSA terminates. The pseudo
code for the CSA procedure is provided in Supplementary Materials (Fig. S1).

Below, we compare community structures as determined by SA and CSA. To do so,
we need measures —independent of how well Q was minimized—to assess the utility
of the communities. To quantify the usefulness of the detected communities, we used
a metadata-based approach7. Metadata of network nodes are separately constructed,
independent from the network itself. Properties of each node of a network are col-
lected and assigned into its tag. The Quality (E) of a community’s structure is

expressed as: E~

P
C

mc ncP
c

nc
, where mc is the average metadata similarity of all pairs in

community c containing nc nodes. The metadata similarity between two nodes is
defined as unity if they share a tag.

Another quality measure used is the hyper-geometric P-value, which is especially
useful when analyzing biological networks. If f is the total number of proteins
associated with a particular function out of n proteins, the probability of observing at
least k proteins with the same function inside a module containing m proteins can be

computed as: P~1{
Pk{1

i~0

f
i

� �
n{f
m{i

� �

n
m

� � . The P-value corresponds to the probability

that a number of proteins sharing the same function are grouped into a module by
chances.

In this case, a function associated with a lower P-value is statistically more
meaningful, and the P-value can thus be used to measure the functional enrichment
by community detection.
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