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Abstract

Gut bacterial communities are now known to influence a range of fitness related aspects of organisms. But how different
the microbial community is in closely related species, and if these differences can be interpreted as adaptive is still unclear.
In this study we compared microbial communities in two sets of closely related sympatric crater lake cichlid fish species
pairs that show similar adaptations along the limnetic-benthic axis. The gut microbial community composition differs in the
species pair inhabiting the older of two crater lakes. One major difference, relative to other fish, is that in these cichlids that
live in hypersaline crater lakes, the microbial community is largely made up of Oceanospirillales (52.28%) which are
halotolerant or halophilic bacteria. This analysis opens up further avenues to identify candidate symbiotic or co-evolved
bacteria playing a role in adaptation to similar diets and life-styles or even have a role in speciation. Future functional and
phylosymbiotic analyses might help to address these issues.
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Introduction

We are only now beginning to understand that individual

animals are not solely discrete entities, but they in fact host a

plethora of symbiotic microbes that can have significant effects [1–

3]. The realization of the importance of the roles that microbial

symbionts play in eukaryotic life is a source for excitement and is

leading to a more complete understanding of evolution [4–7].

Host-microbiota interactions are essential for many facets of

physiology, ranging from metabolic activity to immune homeo-

stasis [8,9]. In the vertebrate gut, bacteria are known to play

important physiological roles that influence metabolic processes,

such as the digestion of complex carbohydrates [10] and the

regulation of fat storage [11]. It has recently been shown that gut

microbiota composition can also influence behavior and gene

expression in key brain regions in mice, with motor control and

anxiety-like behavior differing between mice with and without

their normal gut microbiota [12]. The importance of this

microbiome-gut-brain-axis is becoming increasingly evident, and

differences in bacterial community composition have been shown

to affect emotional, learning and memory behavior, and problem

solving abilities in mammals [13–15]. Microbes might even play a

role in speciation in eukaryotes [6]. The attention of speciation

research in eukaryotes is mostly focused on the genetic mecha-

nisms of divergence [16–18], and the potential role of symbiosis is

often overlooked [6]. Most studies of vertebrate gut communities

concentrated on mammals and analyses on fish have been few so

far [19].

Cichlid fish are an important model in evolutionary biology as

they have repeatedly formed extremely fast adaptive radiations

[20,21]. Midas cichlids from Nicaragua are one of the few

empirical cases of sympatric speciation, where specialized open

water limnetic and deeper bodied benthic forms have repeatedly

and rapidly evolved in different lakes from a common benthic

generalist ancestor [22–24]. We aimed to characterize the gut

microbial communities of Midas cichlid benthic-limnetic species

pairs in the two well-studied adaptive radiations of Lakes Apoyo

and Xiloá. In each of these lakes, one limnetic species (Amphilophus

zaliosus and A. sagittae, respectively) and multiple benthic species

(here we focus on A. astorquii and A. amarillo) have evolved [25]

(Fig. 1).

Characterizing the Midas cichlid gut microbiota
Next-generation sequencing techniques now permit the fast and

cost-effective characterization of microbial communities based on,

for example, the hypervariable V4 region of the 16S ribosomal

RNA gene [26,27]. These protocols allow consistent, non-biased

characterization of both host-associated and free-living microbial

communities. Taking advantage of these developments we

sequenced the microbial gut community of lab-reared replicates

of benthic-limnetic Midas cichlid species pairs that were collected

as juveniles from two crater lakes in Nicaragua and were fed
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identical diets in the laboratory since then. We aimed to establish a

base line for host-microbiota studies of cichlid fish and to ask

whether the gut microbiota differed between ecomorphs [28]. If

benthic and limnetic species pairs that arose independently, and

live in different lakes [29] show parallel differences across lakes,

this would speak for an adaptive value of a particular microbiota

relating to similarities in their feeding ecology.

Material and Methods

Sample collection and preparation
For the present study, we used a total of 12 fish, three of each of

the four species: A. astorquii (benthic species from Lake Apoyo), A.

zaliosus (limnetic species from Lake Apoyo), A. amarillo (benthic

species from Lake Xiloá) and A. sagittae (limnetic species from Lake

Xiloá). Fish were collected in the wild as fry in 2005 with

permission from MARENA and raised under identical conditions

at the University of Konstanz animal facility.

The 12 fish chosen for the present study were selected from the

above-mentioned wild-caught lab-reared stock based on being as

similar as possible in size (standard length 178615 mm) and being

the same sex (only female specimens were used) to remove

potentially confounding factors from the analysis. Each fish was

sacrificed with an hypothermic treatment and immediately

dissected under a hood. A sample of about 200 mg was excised

from the gut frontal to the junction between the esophagus and the

stomach.

DNA extraction, amplification and sequencing
DNA extractions were performed with the QIAamp DNA Stool

Mini Kit (Qiagen, Valencia, USA) following the manufacturer’s

protocol. The integrity of each DNA sample was assessed using

agarose gel electrophoresis and quantified using a Qubit v2.0

fluorometer (Life Technologies, Darmstadt, Germany). Illumina

libraries were prepared following the method described by

Caporaso et al. [30] using the NEXTflex 16S V4 Amplicon-Seq

Kit (Bioo Scientific, Austin, USA). Briefly, from 50 ng of DNA

template for each sample, the bacterial V4 region of the 16S

ribosomal gene was amplified using the universal primers 515F

and 806R tailed with Illumina barcoded adapters [26] following

the PCR conditions recommended by the manufacturer. PCR

products were purified using the Agencourt XP Ampure Beads

(Beckam Coulter, Inc.) and, subsequently, aspecific DNA frag-

ments were removed using the MinElute Gel Extraction Kit

(Qiagen). The quality of the final products was assessed using a

Bioanalyzer 2100 (Agilent Technologies, Waldbronn, Germany)

and, after their quantification with a Qubit, the samples were

pooled in equal proportions and sequenced paired-end in an

Illumina MiSeq with 312 cycles (151 cycles for each paired read

and 10 cycles for the barcode sequence). To prevent focusing,

template building and phasing problems due to the sequencing of

‘‘low diversity’’ libraries such as 16S amplicons, 50% PhiX

genome was spiked in the pooled library. All sequences have been

deposited in the NCBI’s Sequence Read Archive (SRA accession

number to be provided upon acceptance).

Figure 1. Map of the Nicaraguan main lakes and the two crater lakes, Lake Apoyo and Lake Xiloá. Four typical specimens of A. astorquii,
A. zaliosus, A. sagittae and A. amarillo are shown.
doi:10.1371/journal.pone.0095027.g001

Microbial Community Analysis of Cichlid Fish

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e95027



Sequence processing
SeqPrep (https://github.com/jstjohn/SeqPrep) was used to

remove any reads that were contaminated with Illumina adapters

and to merge overlapping paired-end reads into single longer

reads covering the full 16S V4 region (254 bp). To avoid the

generation of incorrect sequences, the minimum overlapping

length was set to 15 bp. Next, the resulting sets of paired- (merged)

reads were filtered for quality using CLC Genomics Workbench

v6.5 (CLC bio, Aarhus, Denmark). Low quality reads (CLC

‘‘limit’’ set to 0.01) were discarded. To improve taxonomic

assignment, only reads representing the full 16S V4 region (252 to

254 bp) were retained for downstream analyses.

Characterization of the microbial communities of the
studied species

For a general characterization of the main microbial taxa found

in the four cichlid fish species studied here, we used the

Visualization and Analysis of Microbial Population Structures

(VAMPS, http://vamps.mbl.edu/) webservice. Next-generation

processed reads were clustered into Operational Taxonomic Units

(OTUs) using a 97% identity threshold with USEARCH [31] and

then information on the most representative taxa were extracted.

We also performed a principal coordinate analysis based on the

matrix of pairwise Euclidean distances between samples obtained

in MG-RAST [32] using the lowest common ancestor method

(LCA; [33]) for taxonomic annotation.

Analysis of the difference in microbial composition
between benthic and limnetic fish

To test if benthic and limnetic Midas cichlids are characterized

by different microbial communities we used a two-step approach.

First, we tested for overall difference in microbial communities

between ecomorphs, then we identified the relevant bacterial taxa

by performing taxonomical assignment on sequences whose

number of reads were different between benthic and limnetic

species. For the analysis of the overall difference in microbial

communities we performed the permutation test with UniFrac

weighted distances [34] implemented in QIIME [30] both

comparing benthic and limnetic fish pooled between lakes and

performing separate comparisons for A. astorquii vs A. zaliosus and

A. amarillo vs A. sagittae.

To identify bacterial taxa present differentially in benthic and

limnetic fish, we extracted the raw counts of the number of

sequences that were assigned to each of the OTUs obtained with

the USEARCH clustering algorithm at a 97% similarity threshold.

Then, to test which OTUs were differentially represented in each

pre-defined group, we compared benthic and limnetic fish both

pooled between lakes and within each lake, using Metastats [35].

We then used SGoF+ [36] to control for the false discovery rate.

OTUs were deemed significant at the 0.01 false discovery rate

using the above-mentioned procedure. Finally, the consensus

sequence of each OTU that was statistically different between each

group was assigned to the lowest possible taxonomic level using a

BLASTn similarity search against the NCBI 16S ribosomal RNA

sequence database. In the cases where the taxonomic assignment

did not reach the genus level, we also identified the genera with

best-hit BLAST scores.

Ethics statement
The work described here has been conducted according to

German law on animal welfare and specifically approved by the

Regierungspräsdium Freiburg, Abteilung Landwirtschaft, Länd-

licher Raum, Veterinär- und Lebensmittelwesen.

Results and Discussion

Massive parallel sequencing provides an unprecedented oppor-

tunity to define the bacterial types that are broadly shared among

Midas cichlid fish. We analyzed the sequence variation of

3,347,172 complete 16S rRNA V4 regions (an average of

278,931 sequences per individual – standard deviation: 47,399;

Figure 2. Pie chart showing the abundance of the OTUs with a frequency higher than 1% in the pooled sample. Halomonas, the most
abundant OTU, was not reported in a previous survey of teleost gut microbiota.
doi:10.1371/journal.pone.0095027.g002
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complete sequencing statistics in Table S1) and identified members

of the Gammaproteobacteria class (genus Halomonas 52% and also

Shewanella 14% of total reads) as the most common members of the

gut microbiota of adult Midas cichlid fish (see Fig. 2 and Table 1).

Even when analyzed at the individual level, the clusters

corresponding to these two genera are present in all our samples

and constitute a large proportion of their gut microbiota. In fact,

Cluster6060 (assigned to the genus Halomonas, see also Table 1)

ranges between 31.3% (an A. amarillo individual) and 69.9% (an A.

zaliosus individual) of total reads at the individual level.

Cluster8707 (assigned to the genus Shewanella; Table 1) makes up

between 8.4% (in an A. astorquii specimen) and 18.8% (in an A.

zaliosus specimen) of the total reads at the individual level. The

same bacterial phyla (predominantly Proteobacteria, but also

Firmicutes) were found in gut bacterial communities of other

teleost fish in both culture-independent and culture-based surveys

[19,37–44]. This commonality of phylotypes suggests that fish

harbor bacteria that are typical of the fish gut environment –

despite large evolutionary and geographic distances between their

fish hosts – rather than reflecting communities from their

surrounding environment [19,45].

We found one major difference in the composition of the

microbiota of Midas cichlids guts relative to what has been found

in other teleost species [19]: members of the Family Halomona-

daceae (Order Oceanospirillales) were the most common bacteria.

This order was absent in a recent fish bacteria meta-analysis of

teleost gut communities based on 19 different species [19].

Generally this order is reported to be halotolerant or halophilic,

i.e. adapted to or living in conditions of high salinity, and

aerobically heterotrophic [41,46,47], and members of the

Halomonadaceae are almost exclusively halophiles [47]. In this

context it is worth mentioning that the water in the Nicaraguan

crater lakes, and in particular in Lakes Apoyo and Xiloá, is not

potable and has a high concentration of dissolved salts when

compared to the great lakes, Nicaragua and Managua [48].

Further analyses are required to determine the function of these

bacteria, and whether these bacteria perform similar functions to

other Proteobacteria found in other fish and vertebrate hosts.

Whole-genome comparisons of Bacteroidetes species inhabiting

the gut, for example, show that their proteomes have similar

functional profiles despite differing in 16S rRNA pairwise identity

by as much as 12% [49,50]. Reciprocal transplants, for example

between zebrafish and Midas cichlid gut microbiota, would allow

us to examine whether the cichlid gut environment selects or

constrains which members of the microbial populations will

dominate and persist – as illustrated by Rawls et al. [49] who

seeded germ-free zebra fish guts with gut flora from mice.

Do ecotypes differ in their microbiota communities?
The benthic-limnetic axis of adaptive differentiation clearly is

important in many freshwater systems. Divergent benthic and

limnetic forms have been described in many freshwater fishes

including sticklebacks [51–54], whitefish and other salmonids [55–

60], perch [61,62], Neotropical Midas cichlids [63,64] and African

cichlids [65]. The investigation of the genetic basis of this axis of

species differentiation and ecological adaptation has been under-

taken with several approaches [57,66–69]. In general, studies of

species differentiation have centered on the genetics of habitat

specificity [6,70–72]. However, recent evidence suggests that

bacterial symbionts may play a key role in resource exploitation

and specificity, as well [6]. Clearly, there is also a need to analyze

the associations that constitute so-called ‘‘metaorganisms’’ [1].

The two-dimensional representation provided by the principal

coordinate plot (Fig. 3) shows a certain degree of separation

between different species. In particular, within each lake, limnetic

species (A. sagittae and A. zaliosus) show higher scores on the second

principal coordinate axis relative to their benthic counterparts.

We explicitly tested whether benthic and limnetic Midas

cichlids, which are thought to have arisen rapidly in crater lakes

through ecological disruptive selection causing sympatric specia-

tion [23,24], are characterized by different microbial communities

using a permutation test with weighted UniFrac distances – i.e.

distances between environmental samples which take into account

the phylogenetic relationships among bacterial OTUs within each

environmental sample [34]. Because the fish used in this study

were reared under common environments, any shifts in microbial

community would be expected to represent differences in the core

characteristic gut microbes rather than subsequent colonization of

the hosts by environmental bacteria.

Our analyses show that even under a common rearing

environment, significant differences in the microbiota of limnetic

and benthic adult cichlid fish are found (weighted UniFrac test,

p = 0.04). Within lakes, the comparisons between benthic and

limnetic species produced different results. The species pair

inhabiting the older crater Lake Apoyo harbors microbial gut

communities that are significantly different (weighted UniFrac

distance 0.47, p = 0.03). On the other hand, the gut microbiota of

the younger crater Lake Xiloá species pair do not differ

significantly (weighted UniFrac distance 0.46, p = 0.08). This

result is mirrored by the scatterplot of the scores along the first two

principal coordinate axes (Fig. 3) as the clusters of the two species

from Lake Apoyo (A. astorquii and A. zaliosus) do not overlap. On

the other hand, the clusters of the two species from Lake Xiloá,

while distinct, show a certain degree of overlap. Interestingly, the

weighted UniFrac distances between limnetic and benthic fish

from different lakes (0.42 and 0.23, respectively) are lower than the

distances between ecomorphs within lakes. The lack of differen-

tiation between the gut communities of the Xiloá species might be

a consequence of the lake’s younger age (maximum of 6100

years;[73]) in comparison to Lake Apoyo (with a maximum of

24000 years;[73]), and therefore also younger age of the Midas

Figure 3. Scatterplot of the scores along the first two principal
coordinate axes – explaining 25.72% and 18.67% of variance,
respectively – for each sample used in this study.
doi:10.1371/journal.pone.0095027.g003
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cichlid species as bacterial hosts [23,24,29]. The disparity observed

between parallel species pairs inhabiting different crater lakes may

provide a first indication of the rate of differentiation of the core

microbial community of fish. Alternatively, the parallel adaptive

radiations of these fish in different crater lakes may be affected by

different mechanisms, where microbes potentially play a more

significant role only in some cases. Further, the results may point

to an inherent difference among species in the mechanism by

which symbiotic communities assemble within the gut. Future

studies should also test the hypothesis that the relationship of

microbiomes across host species reflect the hosts’ evolutionary

history [6,74].

How do benthic and limnetic gut communities differ?
To identify more precisely gut bacterial taxa that differ between

A. astorquii (benthic) and A. zaliosus (limnetic) we used a bottom up

approach and performed a taxonomical assignment of sequences

where read numbers differed between ecomorphs. A. astorquii and

A. zaliosus were different in the relative frequencies of clusters

assigned to the genera Halomonas, Shewanella, Comamonas, Enhydro-

bacter, Vibrio (see Table S2). A. zaliosus had higher relative sequence

counts in most clusters whose abundances were significantly

different between the two species. In particular, the clusters

identified as belonging to the genera Shewanella and Vibrio had

always higher abundance in A. zaliosus. On the other hand, A.

astorquii had significantly higher abundance for clusters assigned to

the genera Enhydrobacter and Comamonas. Further investigations are

required to test for the possible roles of these different cichlid fish

gut bacteria, and the general mechanisms of symbiosis and gut

community assembly. However, the taxonomic differences iden-

tified here represent the first candidate symbionts that might be

involved in the maintenance and possibly even the origin of

different cichlid species that exploit different ecological niches in

individual crater lakes.

Supporting Information

Table S1 Sequencing statistics. For each individual, number

of sequences before and after the processing steps are shown.

(XLSX)

Table S2 For each of the 25 OTUs differentially
represented in the comparison between benthic (A.
astorquii) and limnetic (A. zaliosus) species of crater
Lake Apoyo, sequence similarity search (BLASTn)
results are reported.

(XLSX)
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(2013) Animals in a bacterial world, a new imperative for the life sciences.
Proceedings of the National Academy of Sciences 110: 3229–3236.

8. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions Between the
Microbiota and the Immune System. Science 336: 1268–1273.

9. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, et al. (2012) Host-

Gut Microbiota Metabolic Interactions. Science 336: 1262–1267.

10. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, et al. (2006) An

obesity-associated gut microbiome with increased capacity for energy harvest.

Nature 444: 1027–1131.
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