
Materials 2010, 3, 1746-1767; doi:10.3390/ma3031746 
 

materials 
ISSN 1996-1944 

www.mdpi.com/journal/materials 
Review 

Injectable, Biodegradable Hydrogels for Tissue Engineering 
Applications 

Huaping Tan 1 and Kacey G. Marra 1,2,3,*  

1 Division of Plastic Surgery, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; 
E-Mail: tanh@upmc.edu (H.T.) 

2 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA 
3 McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA 

* Author to whom correspondence should be addressed; E-Mail: marrak@upmc.edu;  
Tel.: +1 412-383-8924; Fax: +1 412-648-2821. 

Received: 19 November 2009; in revised form: 16 February 2010 / Accepted: 8 March 2010 /  
Published: 10 March 2010 
 

Abstract: Hydrogels have many different applications in the field of regenerative 
medicine. Biodegradable, injectable hydrogels could be utilized as delivery systems, cell 
carriers, and scaffolds for tissue engineering. Injectable hydrogels are an appealing scaffold 
because they are structurally similar to the extracellular matrix of many tissues, can often 
be processed under relatively mild conditions, and may be delivered in a minimally 
invasive manner. This review will discuss recent advances in the field of injectable 
hydrogels, including both synthetic and native polymeric materials, which can be 
potentially used in cartilage and soft tissue engineering applications. 

Keywords: injectable hydrogels; biodegradation; biomaterials; tissue engineering; 
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1. Introduction 

Injectable hydrogels are promising substrates for tissue engineering applications due to high tissue-
like water content, ability to homogeneously encapsulate cells, efficient mass transfer, easily 
manipulated physical properties and minimally invasive delivery [1–3]. The hydrogel precursor loaded 
with growth factors and/or targeted cells can be injected into the wound site and experiences a 
solution-to-gelation transition (sol–gel) in situ due to physical or chemical stimuli [4–6]. The 
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injectable nature of the hydrogels provides the attractive feature of facile and homogenous cell 
distribution within any defect size or shape prior to gelation. Highly hydrated hydrogels can better 
mimic the chemical and physical environments of ECM and therefore are ideally cellular 
microenvironment for cell proliferation and differentiation. Most importantly, injectable hydrogels 
have a similar microstructure to the extracellular matrix (ECM) and allow good physical integration 
into the defect, potentially avoiding an open surgery procedure and facilitating the use of minimally 
invasive approaches for material and cell delivery [7–8]. The encapsulated cells grow within the 
hydrogel and secrete new ECM to restore the damaged tissue [9]. Figure 1 depicts this process. 

Figure 1. Schematic illustration of injectable hydrogel for tissue regeneration approaches. 
Cells are isolated from a small biopsy, expanded in vitro, and encapsulated in hydrogel 
precursors, which are subsequently transplanted into the patient by injection using a needle. 
Hydrogel provide the initial structural support and retain cells in the defective area for cell 
growth, metabolism and new ECM synthesis. The hydrogel is readily degradable when the 
cells secrete ECM. This strategy enables the clinician to transplant the cell, growth factor 
and hydrogel combination in a minimally invasive manner. 
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Over the past decade, a variety of naturally- and synthetically-derived materials have been utilized 

to form injectable hydrogels for tissue engineering applications [1,2,5]. Natural polymers have been 
widely used as hydrogels for tissue engineering approaches due to excellent biocompatibility. A wide 
range of synthetic hydrogels may potentially have suitable physical and chemical properties for tissue 
engineering applications. However, synthetic polymers may lack informational structure for positive 
cell biological response. As a consequence, modification of synthetically derived hydrogels is usually 
required. The reported injectable and biodegradable hydrogels systems derived from natural and 
synthetic materials are listed in the Table 1.  
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Many methods have been employed for preparation of injectable in situ forming hydrogels, 
including thermal gelation, ionic interaction, physical self-assembly, photopolymerization and 
chemical crosslinking with agents such as glutaraldehyde, genipin, adipic dihydrazide and 
bis(sulfosuccinimidyl) suberate [5–7]. Injectable hydrogels with potential applications in tissue 
engineering can be classified into physical and chemical gels, according to their gelation mechanism 
[10]. The hydrogel network crosslinked by physical association between polymeric chains or 
nanoparticles is the so-called physical gel, while the formation of a chemical gel takes place via 
covalent bonds between polymeric chains. Conventional hydrogel synthesis methods are limited by 
operational complexity, involvement of cytotoxic reagents, instability of the functional groups, 
possible side reactions and low coupling efficiency. There is a continuing need to exploit simple, 
specific, and highly efficient conjugation methods which are applicable to a broad class of 
biodegradable hydrogels with full preservation of bioactive function for tissue engineering. 

Table 1. Injectable and biodegradable hydrogels for tissue engineering. 

Hydrogels Polymers Gelation Mechanism 

Natural hydrogels 

Collagen/Gelatin Thermal/Chemical crosslinking 

Chitosan 
Thermal/Chemical/Schiff-base reaction/Free radical 

crosslinking 

Hyaluronic acid 
Thermal/Chemical/Schiff-base reaction/Michael-

type addition/Free radical crosslinking 

Chondroitin sulfate Free radical crosslinking 

Alginate Ionic/Free radical crosslinking 

Agar/Agarose Thermal crosslinking 

Fibrin Thermal crosslinking 

Synthetic hydrogels 

PEG/PEO 
Michael-type addition/Chemical/Free radical 

crosslinking 

PVA Chemical/Free radical crosslinking 

PPF/OPF Free radical crosslinking 

PNIPAAm Thermal crosslinking 

PEO-PPO-PEO 
PLGA-PEG-PLGA 
PEG-PLLA-PEG 

Thermal crosslinking 

Poly(aldehyde guluronate) Chemical crosslinking 

Polyanhydrides Free radical crosslinking 
 

To develop a suitable hydrogel as a cell carrier, the degradation rate and mechanical properties of 
the hydrogel must complement the tissue growth and natural ECM. In general, these properties can be 
fine-tuned through variations in the chemical structure and crosslinking density in hydrogels. For a 
given hydrogel system, activities of seeded cells can be regulated by attaching specific bioactive 
moieties to the polymer matrix backbone. Comprised of various ECM-like macromolecules and 
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proteins, hydrogels control the tissue structure, regulating the function of the cells. In this review, we 
will discuss the structure design of injectable and biodegradable hydrogel systems to be potentially 
used in cartilage and soft tissue (e.g., adipose) engineering applications. 

2. Biodegradable Materials for Injectable Hydrogels 

Natural biomaterials exhibit excellent bioactivity due to their components of ECM, thus containing 
cell-specific domains such as RGD (Arg-Gly-Asp) sequence. However, hydrogels derived from natural 
polymers often undergo rapid degradation upon contact with body fluids or medium. Therefore, 
limitations of natural hydrogels have motivated approaches to modify these polymers as well as to 
utilize various synthetic polymers. An appealing and effective strategy is to incorporate bioactive 
species such as cells, growth factors, peptides and proteins into the material, resulting in biomimetic 
hydrogel scaffolds with bioactive functions for optimal cell response. 

2.1. Natural Materials 

Naturally-derived hydrogel forming polymers have frequently been used in tissue engineering 
applications because they are either components of or have macromolecular properties similar to the 
natural ECMs [11–12]. Representative naturally derived polymers include collagen, gelatin, chitosan, 
hyaluronic acid, chondroitin sulfate, agarose, alginate, and fibrin. 

Collagen is an attractive material for biomedical applications as it is the main component of natural 
ECM and the most abundant protein in mammalian tissues [13–14]. The basic structure of collagen is 
composed of three polypeptide chains, which wrap around one another to form a three-stranded rope 
structure [5,14–15]. Collagen is naturally degraded by metalloproteases, specifically collagenase, and 
serine proteases [16–17], allowing for degradation to be locally controlled by cells present in the 
engineered tissue. Gelatin is a partial derivative of collagen, formed by breaking the natural triple-
helix structure of collagen into single-strand molecules by hydrolysis [18]. Gelatin is less 
immunogenic compared to its precursor and presumably retains informational signals such as the RGD 
sequence, thus promoting cell adhesion, migration, differentiation and proliferation [19]. Collagen and 
gelatin hydrogels can be formed and their mechanical properties enhanced by introducing various 
chemical crosslinkers (i.e., glutaraldehyde, genipin and carbodiimide). 

Chitosan is a linear polysaccharide, which is a partially deacetylated derivative of chitin. This 
polycationic polysaccharide contains glucosamine and N-acetylglucosamine molecules, thus 
structurally similar to naturally occurring glycosaminoglycans (GAGs) [20–22]. Chitosan is 
considered a biodegradable polysaccharide, which can be metabolized by human enzymes such as 
lysozyme [23–24]. Chitosan has been investigated for a variety of tissue engineering applications in 
recent years due to its biocompatibility, biodegradability, low immunogenicity and cationic nature 
[22–25]. However, unmodified chitosan can only be dissolved in acidic solutions due to its strong 
intermolecular hydrogen bonds, which limits its applications as an injectable hydrogel. Water-soluble 
chitosan derivatives support cell growth, and composites of chitosan and GAG or other bioactive 
proteins are able to create suitable biomimetic microenvironments for cell implantation [21–23]. 
Chitosan derivatives have been gelled via glutaraldehyde crosslinking, UV irradiation, and thermal 
variations. Recently, chitosan molecules were also grafted with poly(N-isopropylacrylamide) 
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(PNIPAAm) and N-isobutyryl groups to obtain a thermosensitive chitosan hydrogel, or vanillin or 
hydroxybenzaldehydes to obtain an ultraviolet (UV) crosslinkable chitosan hydrogel with improved 
biocompatibility [21–26]. 

Hyaluronic acid (HA) is a naturally occurring non-sulfated glycosaminoglycan that is widely 
distributed throughout the ECM of all connective tissues in human and other animals [27–28]. 
Hyaluronic acid plays an essential role in many biological processes such as tissue hydration, nutrient 
diffusion, proteoglycan organization, and cell differentiation. HA is especially prevalent during wound 
healing and in the synovial fluid of joints. Hyaluronic acid is a GAG consisting of multiple repeating 
disaccharide units of N-acetyl-D-glucosamine and D-glucuronic acid. Hyaluronic acid is naturally 
degraded by hyaluronidase [29], which is ubiquitous in cells and in serum. Due to its good 
biocompatibility, biodegradability, as well as excellent gel-forming properties, HA and its derivatives 
have been widely explored as hydrogels for tissue engineering [30–31]. Hyaluronic acid hydrogels can 
be formed by covalent crosslinking with hydrazide derivatives, esterification, and annealing [30–35]. 
Additionally, hyaluronic acid has been combined with both collagen and alginate to form composite 
hydrogels [33–35].  

Alginate is a hydrophilic and linear polysaccharide composed of (1–4)-linked β-D-mannuronic acid 
(M) and α-L-guluronic acid (G) monomers, which are derived primarily from brown seaweed and 
bacteria [1–2,36–38]. Simple gelation can be formed when divalent cations such as Ca2+, Mg2+, Ba2+, 
or Sr2+ cooperatively interact with blocks of G monomers to form ionic bridges [5,39–41]. Alginate 
has been used in a variety of medical applications including cell encapsulation, tissue engineering and 
drug delivery, because it gels under gentle conditions, has low toxicity, and is readily  
available [42–46]. Despite its advantageous features, alginate may not be an ideal candidate for tissue 
engineering because it does not specifically degrade. Ionically crosslinked alginate hydrogel degrades 
via an ion exchange process involving loss of divalent ions into the surrounding medium, and 
undergoes an uncontrolled dissolution. Alginate has been covalently coupled with lectin and RGD to 
enhance cell ligand-specific binding properties due to lack of cellular interaction in its molecular 
structure for tissue engineering applications [1,5,44–45].  

2.2. Synthetic Materials 

Synthetic polymers are appealing for hydrogels because their chemical and physical properties are 
typically more controllable and reproducible than those of natural polymers. Synthetic polymers can 
be reproducibly produced with specific block structures, molecular weights, and degradable linkages. 
Compared to natural hydrogels, synthetic hydrogels offer improved control of the matrix architecture 
and chemical composition, but tend to have lower biological activity. One approach to creating an 
ideal hydrogel for tissue engineering applications is to incorporate bioactive elements into synthetic 
hydrogels for increased cellular bioactivity. Synthetically-derived materials include poly(ethylene 
glycol) (PEG), poly(vinyl alcohol) (PVA), poly(propylene fumarate) (PPF), PNIPAAm, Pluronic  
F-127 and polypeptides, which are among the most widely used synthetic polymers for injectable 
hydrogels.  

PEG is currently FDA-approved for several medical applications. Although many variations of 
synthetic biocompatible, biodegradable polymers can form hydrogels via chemical crosslinking, PEG 
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remains one of the most widely investigated systems [47–50]. Biodegradable PEG hydrogels can be 
obtained via copolymerization with degradable polymers such as poly(lactic acid), poly(glycolic acid) 
and poly(propylene fumarate) [51–53]. Furthermore, many naturally occurring biopolymers, such as 
hyaluronic acid, fibrinogen, chitosan, and heparin, are also generally examined in combination with 
biodegradable PEG hydrogels [54–58]. PEG hydrogels have been used as cell scaffolds, adhesive 
medical applications, and delivery vehicles with promising results [59–62]. Particularly, the ability to 
control the crosslinking density provides the flexibility and tailorability to PEG-based hydrogels for 
cell encapsulation and tissue growth. PEG and the chemically similar poly(ethylene oxide) (PEO) are 
hydrophilic polymers that can be photocrosslinked by modifying each end of the polymer with either 
acrylates or methacrylates.  

PVA and PPF are also synthetic hydrophilic polymers that have been widely explored for injectable 
hydrogel using in tissue engineering applications. PVA can be modified into multifunctional 
macromers through the plethora of pendant hydroxy groups, which can be derivatized with a variety of 
substituents [5]. It can be physically and chemically crosslinked to form hydrogels as well as blended 
with other water-soluble polymers [2,63–64]. PVA hydrogels can be formed by physically crosslinking 
through repeated freezing/thawing methods, or chemically crosslinked with glutaraldehyde or 
epichlorohydrin [1,5]. PPF is a linear polyester, which undergoes degradation by hydrolysis of the 
ester linkage. PPF can form hydrogels when synthesized as a block copolymer with hydrophilic PEG 
and crosslinked via UV exposure and chemically [1–2]. 

3. Injectable Hydrogel Systems 

Many methods have been employed for preparation of injectable hydrogels. Among these gelation 
methods, thermal crosslinking is relatively easy without limitation of the injection depth, as is a 
concern with photopolymerization. In many of the natural hydrogels, e.g., collagen and fibrin glue, the 
physical and ionic crosslinking mechanisms are difficult to control, which limit the final network 
structure and properties. In contrast, covalently crosslinked hydrogels offer many advantages such as 
controllable crosslinking density and structure properties. Particularly, the ability to control the 
crosslinking density provides the flexibility to design a wide range of polymeric networks for cell 
encapsulation and tissue growth. 

3.1. Physical Crosslinking of Hydrogels 

Biodegradable hydrogels capable of phase transition in response to external stimuli such as 
temperature represent another method of preparing injectable hydrogels for biomedical applications. 
Thermoresponsive phase transition has been utilized for potential tissue regeneration because gelation 
can be realized simply as the temperature increases above the lower critical solution temperature 
(LCST), which is designed to be below body temperature.  

Recently, a pH-neutral chitosan solution was developed by the addition of a polyol counter-ionic 
dibase salt such as β-glycerol phosphate disodium. Chenite et al. [65] demonstrated that chitosan 
solution neutralized with β-glycerol phosphate disodium form in situ gelling systems, which remain 
liquid for long periods at room temperatures but are transformed into a macroporous gel as 
temperature raised to 37 °C. Solubility of chitosan in aqueous solutions is attained via protonation of 
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its amine groups in acidic environments. Neutralization of chitosan aqueous solutions to a pH 
exceeding 6.2 systematically leads to the formation of a hydrated gel-like precipitate. The combination 
of chitosan and β-glycerol phosphate disodium benefit from several synergistic forces favorable to gel 
formation including hydrogen bonding, electrostatic interactions and hydrophobic interactions [65]. 
The uniqueness also resides in overcoming this pH barrier for chitosan solutions, which has long been 
a major limitation for many applications. This quality allows the material to be injected and to form a 
scaffold [66–67] in situ with minimal surgical destruction. Injection and cultivation of this hydrogel 
loaded with chondrocytes in a mouse model formed a proteoglycan-rich matrix in vivo. These systems 
gelled at body temperature, retained their physical properties over a long period depending on the 
storage conditions, and sustained the release of macromolecules over few hours to a few days [67–68]. 

PNIPAAm is an example of thermosensitive polymers that undergo a coil-to-globule phase 
transition ~32 °C [69–75]. The main mechanism of the aqueous phase separation of PNIPAAm is the 
thermally induced release of water molecules bound to the polymer isopropyl side groups, which 
results in increasing intra- and inter-molecular hydrophobic interactions between the isopropyl groups 
above its LCST [76–78]. The thermosensitivity of hydrogels can be achieved by incorporating 
PNIPAAm into the backbone of biodegradable polymers. Over the past decade, various 
thermosensitive and injectable polymers including PEG, chitosan, gelatin, hyaluronic acid, and 
PNIPAAm copolymers have been developed and employed in a variety of settings [71–84]. An 
effective method to combine the PNIPAAm with biodegradable polymers is copolymerization by free 
radical polymerization using 2,2-azobisisobutyronitrile (AIBN), 4,4’-azobis(4-cyanovaleric acid) 
(ACA), benzyl peroxide (BPO) and ammonium persulfate (APS) as initiators [76–79]. The procedure 
involves the synthesis of a carboxyl- or amino-terminated NIPAAm copolymer, which is then coupled 
onto biomacromolecular or peptide sequences. For example, hyaluronic acid was aminated and 
partially grafted with PNIPAAm-COOH (Figure 2), in which the desired degree of grafting are 
obtained under mild reaction conditions. The potential application of the thermoresponsive hyaluronic 
acid as a functional injectable scaffold in soft tissue engineering was studied by encapsulation 
behavior of human adipose-derived stem cells (ASCs). A preliminary in vitro and in vivo study 
indicates that the thermosensitive hyaluronic acid copolymer hydrogel with 53% PNIPAAm may have 
potential uses in adipose regeneration and other soft tissue engineering applications.  

Triblock copolymers have been widely studied by many researchers in injectable cell delivery 
systems as an inverse thermogelling polymer by micelle formation. The block copolymers such as 
PEO-PPO-PEO (Pluronic), PLGA-PEG-PLGA, PEG-PLLA-PEG, PCL-PEG-PCL, PCLA-PEG-PCLA 
and PEG-PCL-PEG are typical thermosensitive biodegradable polymers exhibiting sol-gel transitions 
in water with increase of temperature [85–88]. The amphiphilic block polymer chains assemble first 
into micelles and bridged micelles at low temperatures, and then the ordered packing of bridged 
micelles is triggered at a higher temperature and a macroscopic gel forms [85–86]. These 
thermogelling copolymer hydrogels have been successfully applied in cell therapy, tissue regeneration, 
and wound healing due to their biocompatibility and long persistence in the gel form in vivo.  
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Figure 2. Synthetic route of PNIPAAm-grafted aminated hyaluronic acid (AHA-g-PNIPAAm). 
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In addition to the traditional hydrogels, with smart response to pH, temperature, ions, and stresses, 
self-assembled hydrogels containing peptide domains present a novel advance in terms of their 
structural similarity to natural ECM, and their bioactivity to cartilage and soft tissue regeneration have 
been reported [89–90]. Some hydrogels can be crosslinked by interaction between or among self-
assembled α-helix structures, and others may self-assemble to form nanofibrous structures such as 
DNA sequences and molecules [91].  

3.2. Chemical Crosslinking of Hydrogels 

3.2.1. Free radical polymerization  

Photopolymerization is a process that enables in situ formation of crosslinked networks at 
physiological pH and temperature [92–93]. The mild gelation conditions allow for cells to be 
encapsulated within photocrosslinked hydrogels and remain viable. The unique advantage of chain 
polymerization is the ease with which a variety of chemistries can be incorporated into the hydrogel by 
simply mixing derivatized macromers of choice and subsequently copolymerizing [93–95]. 
Furthermore, photopolymerized hydrogel systems can provide better temporal and spatial control over 
the gelation process, are injectable in nature, and can polymerize in situ to fill defects of any shape.  

Many researchers are interested in exploiting the photoinitiated polymerization of PEG-based 
macromolecular monomers to create hydrogels as cell delivery vehicles for tissue regeneration [96–99]. 
An extensively studied PEG hydrogel system is to employ ultraviolet irradiation to generate radicals 
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from appropriate photoinitiators, which will further react with the active end group on modified PEG 
to form a covalent crosslinked bond. Poly(ethylene-glycol)-diacrylate (PEGDA) and poly(ethylene 
glycol)-dimethacrylate (PEGDMA) are modified PEGs with unsaturated C=C double bond groups, 
rendering them as photopolymerizable hydrogel candidates for UV exposure. Previous studies have 
demonstrated that PEGDA and PEGDMA can be used to photoencapsulate chondrocytes and bone 
marrow stromal cells (MSCs) [98–101]. Cell suspensions in PEGDA and PEGDMA solution can be 
injected into the body and be polymerized with UV exposure to form a crosslinked PEG gel that 
functions as a tissue scaffold. Furthermore, copolymerization of PEG with other synthetic macromers 
such as PVA enables additional control of functionality and properties that are especially important 
from a tissue engineering perspective. For cell delivery purposes, PEG is composed of a biochemically 
inert polymer that lacks the ability to adhere to cells. Hybrid artificial scaffolds that combine the 
physical characteristics of the PEG gels and bioactive features of natural collagen in the hopes of 
creating a scaffold, which is photopolymerizable and at the same time provides an ideal 
microenvironment for encapsulated cells. In addition to PEG, alginate, chitosan, hyaluronic acid and 
chondroitin sulfate were also methacrylated and hydrogels were prepared by photopolymerization and 
other free radical polymerizations [98–104].  

Photo-crosslinkable poly(propylene fumarate) (PPF) and oligo(poly(ethylene glycol) fumarate) 
(OPF) hydrogels have been extensively developed for use in tissue engineering applications [105–111]. 
The mechanical properties and degradation rates of the PPF and OPF hydrogels are controlled in 
macromer formation as both are biodegradable. PPF and OPF macromers are composed of 
biocompatible blocks such as PEG and fumaric acid, which can be crosslinked through the unsaturated 
C=C double bond in the fumarate group and hydrolytically degraded through its ester bonds. In 
addition, at neutral pH and body temperature, the three-dimensionally crosslinked PPF and OPF 
hydrogels have been formed by polymerization of the C=C bonds under the initiation of a redox 
system, ammonium persulfate (APS)/N,N,N’,N’-tetramethylethylenediamine (TMEDA). Analyzed by 
in vitro cytotoxicity assay and in vivo implantation, the PPF and OPF hydrogels have shown minimal 
or negligible cytotoxicity and is histocompatible. Therefore, these materials can provide appropriate 
properties for an ideal injectable cell carrier. 

3.2.2. Michael-type addition reaction hydrogels  

Michael-type conjugate addition reaction can be used for the gelation of injectable hydrogels. For 
example, the thiol and vinylsulfone on peptides or polymeric macromolecules such as hyaluronic acid 
can conjugate and form synthetic extracellular matrices as hydrogels for tissue engineering [112–113]. 
Vinylsulfones with low molecular weights are known to demonstrate toxicity because they can easily 
enter into the cell’s cytoplasm, resulting in toxic reactions with glutathione and DNA [114]. An 
effective method to prevent the toxicity of small vinylsulfone molecule is coupling to the backbone of 
watersoluble biomacromolecules. For example, in situ crosslinkable hydrogels based on thiol-modified 
hyaluronic acid satisfy many of the design criteria for in vitro and in vivo tissue engineering [114–117]. 
It was shown that cells can survive polymerization of hydrogel and maintain their viability in 
hyaluronic acid hydrogels containing covalently linked gelatin or RGD peptides. In addition, Michael-
type conjugate addition reaction has been applied to the methacrylate HA-based hydrogels, but a 
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longer gelation time is required for hydrogel formation due to its relatively lower reactivity of the 
methacryl group. To further accelerate the gelation of the hydrogel for cell delivery procedure, an 
alternative system based upon the conjugate addition crosslinking between thiol-modified HA and 
PEGDA was developed, which satisfies most key requirements for injectable in vivo tissue engineering 
applications [115–116]. 

Figure 3. The reaction scheme of amino PEG-genipin hydrogel. 
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3.2.3. Genipin crosslinked hydrogels 

Genipin is a natural product extracted from the gardenia fruit, which overcomes the toxicity 
inherent in most commonly used synthetic cross-linkers [118–119]. Recent studies identified that 
genipin can be utilized to crosslink functional amine groups present in natural tissues and biomaterials 
with very minimal cytotoxic effects, compared to studies performed with glutaraldehyde, a commonly 
used crosslinker [119–123], resulting in materials with a deep blue color. The utilization of genipin 
(0.5~3.5 wt %) to crosslink natural biocompatible polymers, such as chitosan and gelatin, to form 
biodegradable hydrogels has the potential to produce novel scaffolds for various tissue engineering 
applications. Our laboratory has recently examined the synthesis of novel amino-terminated multi-arm 
PEG based hydrogels utilizing genipin as a crosslinking agent [124–127]. We examined 2 PEG 
structures: 4-arm PEG, a molecule with 4 PEG chains attached at a central point, and 8-arm PEG, a 
molecule with 8 PEG chains attached to a central molecule (Figure 3). The gelation time, swelling, 
water uptake and weight loss were dependent on the structure of the PEG hydrogel. Due to the 
molecular architecture, the 8-arm PEG hydrogel showed a much slower gelation reaction, more 
compact structure and lower water uptake than those of the 4-arm PEG hydrogel, as well as a better 
stability in vitro with a 35.2 mM genipin. Furthermore, human adipose derived stem cell study results 
indicated that both the 4-arm and 8-arm PEG hydrogels are able to support cell adhesion. This study 
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represents the potential opportunity to use genipin cross-linked, multi-arm PEG-genipin hydrogels, 
especially the 4-arm PEG-genipin, as an injectable scaffold in a variety of tissue engineering 
applications.  

3.2.4. Schiff-base crosslinked hydrogels 

More recently, we have developed a new injectable, in situ forming biocompatible and 
biodegradable hydrogel as cell carriers for tissue engineering applications [128]. The polysaccharide 
hydrogel derived from water-soluble chitosan and oxidized hyaluronic acid gel upon mixing, without 
employing any extraneous chemical crosslinking agents. The gelation is attributed to the Schiff-base 
reaction between amino groups of N-Succinyl-chitosan and aldehyde groups of oxidized hyaluronic 
acid (Figure 4). N-Succinyl-chitosan, a water soluble chitosan derivative, was synthesized via 
introduction of succinyl groups at the N-position of the glucosamine units of chitosan. Hyaluronic acid 
can be oxidized, and the carbon-carbon bonds of the cis-diol groups in molecular chain are cleaved and 
generate reactive aldehyde functions, which can develop chemical crosslinking action with amino 
functions via Schiff-base linkage. This polysaccharide hydrogel creates a biomimetic 
microenvironment with improved biocompatibility and biodegradation for tissue regeneration. Several 
other polysaccharides such as dextran, gum arabic and chondroitin sulfate can be partially oxidized 
and employed for Schiff-base linkage [129–134]. 

Figure 4. The scheme of N-succinyl-chitosan and aldehyde hyaluronic acid composite 
hydrogel via Schiff’s base cross-linking reaction. 
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4. Applications of Injectable Hydrogels 

4.1. Clinical Applications 

The need for injectable, biodegradable hydrogels in biomedical applications is immense. One 
example is the utility of hydrogels in cartilage regeneration. The physical properties of the hydrogel 
can be designed to easily match those of articular cartilage in addition to matching mechanical 
properties of the scaffold with the native tissue. Further applications for hydrogels include soft tissue 
regeneration after tumor removal or trauma. A number of researchers have studied the combination of 
injectable hydrogels and biodegradable microspheres for controlled drug delivery in tissue 
engineering, including our own laboratory [135–139]. The following sections describe the pre-clinical 
and clinical studies of hydrogels for these applications. 

4.2. Cartilage Repair 

The need for tissue-engineered cartilage is immense and of great clinical significance. Traumatic 
and degenerative lesions of articular cartilage are leading causes of disability [140]. It is estimated that 
over 40 million Americans currently suffer from osteoarthritis [141]. Tissue engineering methods, 
including the use of injectable hydrogels, to improve cartilage repair and regeneration will therefore 
have high clinical impact. The advantage of injectable therapies for cartilage repair is that the implant 
is not only maintained within the defect, but also allows immediate weight-bearing due to the stiffness 
and strength that is achieved almost instantly. Additionally, a general advantage of injectable therapies 
is the utilization of minimally invasive surgery as compared to open surgery. As such, there have been 
numerous studies involving the use of injectable hydrogels for cartilage repair.  

4.3. Soft Tissue Regeneration 

Soft tissue reconstruction is a significant challenge in reconstructive surgery. There are several 
reasons for a lack of soft tissue, e.g., adipose tissue, such as congenital (e.g., in Parry-Romberg 
syndrome [142] or Poland syndrome [143], both of which can result in lipoatrophy), traumatic, or 
oncologic surgery. Due to a lack of better alternatives, transplantation of autologous adipose tissue has 
been used for soft tissue reconstruction for the past century. However, the clinical outcome of adipose 
tissue transplantation is unpredictable as there is variable graft resorption due to a lack of 
vascularization [144]. A desirable strategy to repair soft tissue is to induce adipogenesis in situ. One 
method to accomplish this is to utilize cells that can differentiate to form adipose tissue, and seed those 
cells into a scaffold, resulting in adipose tissue formation. Another strategy is to utilize injectable 
systems. As such, many injectable hydrogels based on both synthetic and natural biomaterials have 
been examined. For example, Hemmerich et al. reported the reconstruction of small defects using 
injectable hyaluronic acid-based gel which were mixed with undifferentiated adipose-derived stem 
cells (ASCs). Adequate adipose tissue formation was observed using ASCs and hyaluronic acid as the 
scaffold [145]. Hyaluronic acid, therefore, is applicable for generating adipose tissue in gels, 
displaying adipogenic as well as angiogenic properties [146].  
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Other injectable scaffold matrices include biodegradable, polymeric microspheres. For example, 
Yuksel et al. reported the release of insulin-like growth factor-1 (IGF-1) as well as insulin from PLGA 
microspheres enhanced de novo adipose tissue formation [147]. Their study demonstrated the potential 
of long-term local IGF-1 and insulin delivery to induce adipogenic differentiation to mature lipid-
containing adipocytes from non-adipocyte cell pools (e.g., ASCs) that were administered directly to 
the deep muscular fascia of the rat abdominal wall.  

In addition to PLGA microspheres, the use of extracellular matrix (ECM) particles for injectable 
systems for adipose tissue engineering has been studied [139,148]. We have previously reported the 
assessment of ASC attachment, proliferation, and differentiation on gelatinous microparticles, termed 
CultiSphers [139]. These results demonstrated the potential of using biodegradable particles as cell 
carriers for soft tissue repair. 

5. Conclusions 

Injectable scaffolds are promising substrates for tissue engineering with the advantage that drugs 
and cells can be readily integrated into the gelling matrix. Many efforts have been developed to 
improve injectable hydrogels and thus, support the development of more natural and functional tissues. 
The success of injectable tissue constructs is highly dependent on the design of the hydrogel scaffolds 
including physical, chemical and biological properties. An ideal injectable hydrogel would potentially 
mimic many roles of ECM found in tissues, resulting in the coexistence of both physical and chemical 
gels. Current biomaterials are unable to meet all the design parameters simultaneously  
(e.g., degradation, biocompatibility or mechanical properties). Furthermore, injectable hydrogel 
development will likely have a significant impact on the advancement of tissue engineering. An 
objective in future work is to design bioactive materials that would be readily injectable at or below 
room temperature, would form gels with relatively appropriate biodegradable properties under 
physiological conditions, and would support cell induction. Novel crosslinking methods should be 
developed, both to enhance the material biocompatibility as well as control the mechanical properties. 
In addition, cell induction ligands such as growth factors and genes can be incorporated into the 
injectable scaffolds such that specific signals could be delivered in an appropriate spatial and  
temporal manner. 
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