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T cell receptor (TCR) recognition of antigenic peptides bound and presented by class
I major histocompatibility complex (MHC) proteins underlies the cytotoxic immune
response to diseased cells. Crystallographic structures of TCR-peptide/MHC complexes
have demonstrated how TCRs simultaneously interact with both the peptide and the
MHC protein. However, it is increasingly recognized that, beyond serving as a static
platform for peptide presentation, the physical properties of class I MHC proteins are
tuned by different peptides in ways that are not always structurally visible. These include
MHC protein motions, or dynamics, which are believed to influence interactions with
a variety of MHC-binding proteins, including not only TCRs, but other activating and
inhibitory receptors as well as components of the peptide loading machinery. Here, we
investigated the mechanisms by which peptides tune the dynamics of the common
class I MHC protein HLA-A2. By examining more than 50 lengthy molecular dynamics
simulations of HLA-A2 presenting different peptides, we identified regions susceptible
to dynamic tuning, including regions in the peptide binding domain as well as the distal
α3 domain. Further analyses of the simulations illuminated mechanisms by which the
influences of different peptides are communicated throughout the protein, and involve
regions of the peptide binding groove, the β2-microglobulin subunit, and the α3 domain.
Overall, our results demonstrate that the class I MHC protein is a highly tunable peptide
sensor whose physical properties vary considerably with bound peptide. Our data
provides insight into the underlying principles and suggest a role for dynamically driven
allostery in the immunological function of MHC proteins.
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INTRODUCTION

T cell receptor (TCR) recognition of antigenic peptides bound and presented by class I major
histocompatibility complex (MHC) proteins underlies the cellular immune response to diseased
cells. Crystallographic structures of TCR-peptide/MHC complexes have demonstrated how TCRs
simultaneously interact with both the peptide and the MHC protein [recently reviewed in (1)].
Accordingly, along with the peptide, amino acids within the class I MHC peptide binding domain
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directly impact TCR recognition. However, it is becoming
increasingly recognized that, beyond serving as a static platform
for peptide presentation, the properties of MHC proteins are
modulated by different peptides. For example, peptides can
change how the TCR interfaces with the α helices of the MHC
protein, influencing their contribution to receptor binding and
leading to what we have termed an “extension of antigenicity”
from the peptide to the MHC (2–7).

Beyond TCRs, class I MHC proteins interact with numerous
other proteins of the cellular immune system. These include
components of the peptide-loading machinery, such as the
chaperones tapasin and TAPBPR (8–12), as well a range of
activating and inhibitory receptors, including the CD8 coreceptor
(13) as well as a variety of natural killer (NK) receptors that
serve as a “check” on MHC loss in infection and cancer (14).
Surprisingly, some of these MHC-protein interactions show a
peptide dependence, even though the protein-protein interfaces
exclude the bound peptide. For example, the inhibitory Ly49C
NK receptor in mice distinguishes between peptides bound to
the class I MHC protein H-2Kb, despite the fact that it binds at
a location “underneath” the H-2Kb peptide binding groove (15,
16). Other classes of NK receptors also show peptide selectivity
(17). In other cases, proteins that interact with class I MHC
proteins distinguish between the presence or absence of tightly
bound peptides, as seen with tapasin and TAPBPR (9, 10, 18–23).

As expansive architectural changes in class I MHC proteins
with different peptides have not been observed, peptide-
dependent tuning of class I MHC motional properties has
been suggested as a mechanism through which peptide-selective
binding of various proteins can be achieved (3–5, 20, 24–
28). Indeed, experiments that assess protein motion, including
fluorescence anisotropy, hydrogen/deuterium exchange, and
NMR, have indicated the presence of dynamic communication
from the peptide binding domain to other regions of the
molecule, including the α3 domain and the non-covalently
associated β2-microgloublin subunit (29–31). Thus, different
peptides appear to tune the dynamics of not only the peptide
binding domain, but regions throughout the molecule. This is
consistent with the concept of dynamically driven allostery, in
which motional changes in proteins triggered by ligand binding
influences other binding interactions at distant sites (32, 33).

Recently, we described a library of extensive molecular
dynamics simulations of 52 different nonameric peptides
bound to the class I MHC protein HLA-A2 using available
crystallographic structures for starting coordinates (34). In our
previous work, we assessed how peptide composition influenced
peptide motion within the HLA-A2 binding groove. Here,
we used this simulation library to ask how different peptides
influence the motion of the HLA-A2 protein. We found that,
consistent with suggestions from experimental data, different
peptides significantly impact the dynamics of the helices of the
peptide binding groove, with the short arm of the α2 helix (also
referred to as the α2-1 helix) showing particular susceptibility,
with potential to alter recognition by TCRs and other receptors
of the immune system that engage the peptide binding domain.

We also observed regions outside the peptide binding groove
whose motional properties displayed a peptide dependence,

highlighting that different peptides can alter the protein’s entire
energy landscape. Regions impacted include the α3 domain,
which lies at the opposing end of the molecule from the peptide
groove. Following experimental validation of this observation,
we identified residues within the β2m subunit which were
consistently utilized in propagating dynamics. The regions
impacted overlap with binding sites for the CD8 coreceptor,
tapasin, and various NK receptors, potentially contributing to a
peptide-dependence to their binding.

Overall, our analysis suggests that the class I MHCmolecule is
a highly tunable peptide sensor whose biophysical properties vary
considerably with the nature of the bound peptide. Potentially
significant consequences from this tunability include an influence
on TCR recognition or degeneracy, a peptide dependence to
the strength or kinetics of the interactions with other activating
and inhibitory receptors that bind class I MHC proteins, and an
influence on how the ER-resident chaperones select peptides for
eventual presentation.

RESULTS

Peptides Alter HLA-A2 α1 and α2
Helix Dynamics
Multiple studies have demonstrated that different peptides can
modulate class I MHC peptide binding groove motions (3–
5, 24, 25, 35, 36, 40). To investigate peptide and MHC motions,
we recently described a library of extensive molecular dynamics
simulations of nonameric peptides bound to the class I MHC
protein HLA-A2. The library consisted of 97, one microsecond
simulations of different peptide/HLA-A2 complexes in explicit
solvent using available crystallographic structures for starting
coordinates (34). After accounting for repeats, validation
simulations, and discarding unstable simulations, the final
curated library consisted of 52 simulations of HLA-A2 bound to
different nonameric peptides (Table S1).

To assess whether and how peptide-dependent motions of the
HLA-A2 binding groove were recapitulated by our simulations,
we examined α carbon root mean square (RMS) fluctuations
for every residue of the HLA-A2 α1 and α2 helices in each
simulation (Figures 1A,B). These values indicate the magnitude,
in Ångstroms, of the motions present for each amino acid and
thus provide a snapshot of peptide dependent motion. A large
range of fluctuations was observed for both helices, with the N-
and C-terminal ends of each helix showing more mobility than
the centers. Across the helices, the α2 helix displayed a greater
variance, consistent with experimental observations showing that
α2 helix dynamics are more dramatically impacted by peptide
(4). The shorter arm of the α2 helix (also referred to as the α2-1
helix, adjacent to the peptide C-terminus) possessed particularly
elevatedmobility.Mobility or conformational variation of the α2-
1 helix has been noted several times and has been implicated
in influencing recognition of the peptide/MHC complexes by
TCRs and other immunoreceptors, as well as playing a role
in peptide loading and exchange (2, 3, 6, 9, 10, 18, 35, 36).
We also observed a large variance in RMS fluctuations of the
310 helical segment of the α1 helix, which much like the α2-1
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FIGURE 1 | Peptide-dependent fluctuations of the HLA-A2 peptide binding groove. (A) RMS fluctuations were calculated for each Cα atom of the α1 and α2 helices
of the HLA-A2 molecule for all 52 simulations. The solid black line represents the by-residue averages value across all simulations. The standard deviation for each
residue is indicated by the gray shading. The 310 portion of the α1 helix and the α2-1 arm of the α2 helix are highlighted. The overall average across each helix is
shown by the dashed line. (B) Average fluctuation data from panel A mapped to the structure of the HLA-A2 peptide binding groove. High values are indicated in red;
low values are indicated in blue (peptide amino acids are colored separately; peptide colors do not indicate fluctuations). (C) Correlations between peptide RMS
fluctuations and HLA-A2 α1/α2 helix RMS fluctuations across all 52 simulations. Only the fluctuations of the peptide N- and C- terminal residues displayed appreciable
correlations with fluctuation of the α helices, with only seven residues of the α1 helix and one residue of the α2 helix generating possessing correlation coefficients
>0.6 (indicated by black boxes).

helix, has been implicated as serving a function in peptide
loading (27).

In studying how peptide properties were correlated with
binding groove dynamics, we first asked if peptide motions
were correlated with the motions of the α1 and α2 helices.
We generated linear regression models between peptide and α

helix RMS fluctuations and observed generally weak correlations.
Only seven residues of the α1 helix and one residue of the α2
helix had correlation coefficients of 0.6 or greater with peptide
positions (Figure 1C). These and other weaker correlations were
restricted to regions near, and correlated with, N- and C-terminal
peptide positions. There were no correlations between α helix
fluctuations and the presence or absence of optimal anchor
residues (i.e., leucine or methionine at position 2 and valine
at position 9). Indeed, thermal stability assessments of peptide
binding affinity are available for 18 of the 52 simulated complexes
(37). Using these, we were unable to find any significant models
that related α1 or α2 helix motions to peptide binding affinity.
These results suggest that the impact of peptide on binding

groove dynamics is a complex phenomenon that incorporates
more than the strength of binding, as shown experimentally in
previous studies (5, 38) and diagrammed in Hawse et al. (4).

Peptides Modulate Helical Geometry
Across the Binding Groove
We next asked how peptides alter HLA-A2 binding groove
geometry. From each simulation, we determined the average
distance for each pair of α carbons of the α1 and α2 helices. This
resulted in an array of 1,102 pairs of distances for each simulation.
From these we selected those most noticeably impacted by
peptide, defined as those pairs whose coefficients of variation (i.e.,
the ratio of the standard deviation of the distance divided by the
mean) were in the top 10%. This yielded 113 α carbon pairs whose
distances were highly modulated by peptide. Rather than being
focused in one region, these peptide susceptible distances were
distributed across the binding groove, indicating that different
peptides alter the dynamic breathing of the entire peptide binding
groove (Figure 2A). The regions most susceptible to peptide,
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FIGURE 2 | Peptide modulation of HLA-A2 binding groove geometry.
(A) Binding groove geometry is differentially modulated by peptide, as shown
by peptide dependent variances in Cα–Cα distances. Distances whose
coefficients of variation were in the top 10% are shown and colored according
to the inset (standard deviation [σ] greater relative to the indicated percent of
the mean [µ]). The region adjacent to the C-terminal end of the peptide shows
the most variation, primarily including distances involving the α2-1 helix.
(B) 208 frames from the 52 simulations representing the least to the most
divergent relative to the Tax/HLA-A2 reference structure. The reference
structure is in dark blue and the 20 frames with the highest deviations are
shown in gold.

however, were the ends of the helices in proximity to the peptide
C-terminus, which again included the short α2-1 helix.

To visualize the binding groove structural variations across
the 52 simulations, for every 500 picoseconds of each simulation
we computed α1 and α2 helix α carbon RMS deviations relative
to the crystallographic structure of the HTLV-1 Tax peptide
presented by HLA-A2 (39). The list of 104,000 RMS deviations
ranged from 0.7 to 2.5 Å. For each simulation, we extracted
the frames corresponding to the minimum and maximum RMS
deviation, as well as frames representing the 33rd and 66th
percentile RMS deviation. This yielded a total of four frames
per simulation. These 208 frames yielded a distribution of
conformations sampled during the simulations, from the least
to most divergent relative to the reference structure for each
simulation. The extracted structures were then mapped onto
the reference (Figure 2B). Consistent with the pairwise analysis,
we observed that increases in the α helix RMS deviations were
associated with an overall broadening of the peptide binding
groove. While we observed substantial broadening at the ends of

each helix, we also observed a broadening of the central region
of the binding groove, as well as substantial motions of the linker
connecting the long and short arm of the α2 helix, recapitulating
what has been observed experimentally.

HLA-A2 Helix Dynamics Are Modulated by
Peptide Fluctuations and Volume
We next asked if we could identify peptide features correlated
with differential HLA-A2 α helix motion. We previously found
a positive correlation between the volume of C-terminal peptide
residues and greater fluctuations in peptide binding width
(34). Drawing on this finding, we focused on differences in
peptide volume at each position of the peptide. We also
focused on peptide RMS fluctuations, which we previously
showed incorporated chemical features such as side chain
charge and hydrophobicity. We constructed multiple linear
regression models for each of the 1,102 α1 and α2 pairwise
distances described above. For each of the distances, we
constructed multiple linear regression models which considered
combinations of peptide residue volume and RMS fluctuations
as predictors for that distance. In total, we tested ∼600,000
different linear models. Following rejection criteria described in
the methods, models in which the correlation coefficients were
above 0.6 were retained as instances in which the variation in α

carbon distance could be reliably predicted. In total, we found
that 328 pairs of distances could be well-predicted based on the
chosen features. Of these 328, 201 were modulated by volume
and motional properties of the N-terminal region of the peptide
(positions 1–4; blue lines in Figure 3A), 72 were modulated by
properties of the central region of the peptide (positions 4–6; red
lines in Figure 3A), and 55 were modulated by the properties
of the C-terminal region of the peptide (positions 7–9; green
lines in Figure 3A). For the models which utilized the N-terminal
region, the modulated distances span regions near the peptide N-
terminus to the central region of the peptide binding groove. For
the models which utilized the volume at positions 4 through 6,
the modulated distances are focused on the middle of the α1 and
the α2 helices, yet also stretch from the middle of the α1 helix to
the N-terminal end of the α2 helix. For the models which utilized
the volume at positions 7 through 9, the modulated distances are
primarily those between the short α2-1 helix and the middle of
the α1 helix.

For all the models, increases in peptide RMS fluctuation are
associated with a broadening of the groove for the predicted
distance, indicated by the positive weights given to the RMS
terms in the linear models (Figure 3B). In contrast, residue
volume results in varied effects depending on the position and
model. On average, increases in peptide volume result in an
increase in binding groove width for positions 1, 3, 5, 7, 8, and
9. Conversely, increases in peptide volume result in a decrease
in binding groove width for positions 2, 4, and 6, possibly due
to larger residues strengthening peptide interactions with the
HLA-A2 peptide binding groove.

Overall, these results suggest a general mechanism of how
different peptides modulate HLA-A2 binding groove dynamics.
Increased volumes at or near the peptide termini enhance the

Frontiers in Immunology | www.frontiersin.org 4 May 2019 | Volume 10 | Article 966

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ayres et al. Dynamic Allostery in MHC Proteins

FIGURE 3 | Linear regression models predict fluctuations in binding groove distances. (A) Linear regression models were constructed to predict the average α helix
Cα-Cα distance in each of the 52 simulations using terms which described physical and chemical differences in the peptides. The final models all have a correlation
coefficient >0.6 and were constructed using differences in residue volume and RMS fluctuation. Distances utilizing peptide volume at position 1 through 3 are
indicated in blue, peptide volume at positions 4 through 6 indicated in red, and peptide volume at positions 7 through 9 in green. (B) Weights of the final models for
peptide volume and RMS fluctuations for each peptide position as indicated by the x axis. RMS fluctuations at intermediate positions (i.e., 2.5) indicate the averaged
RMS fluctuations of those two positions. RMS fluctuations are indicated in blue and volumes indicated in red. Darker colors represent greater sampling at that weight
for each term.

breathing of adjacent regions of the α1 and α2 helices, particularly
near the N-terminal end of the α1 helix and the short arm
and connecting linker region of the α2 helix. This effect is
strengthenedwith peptide fluctuations in these regions, which are
also impacted by volume, as well as hydrophobicity as previously
demonstrated (34).

Peptides Alter Protein Fluctuations at Sites
Distal From the Peptide Binding Groove
Various experimental and computational studies have shown that
peptides can modulate class I MHC protein dynamics at sites
other than the peptide binding groove, potentially serving as an
indirect signaling mechanism by impacting MHC interactions
with NK receptors, coreceptors, and elements of the peptide
loading machinery (4, 15, 16, 28–31, 40, 41). We thus asked to
what extent our simulations recapitulated these observations. We
first compared RMS fluctuations with crystallographic B-factors,
which were used recently to identify regions of class I MHC
proteins whose motions may be particularly peptide-dependent
(40). We compared α carbon RMS fluctuations averaged across
all simulations to averaged normalized crystallographic B-factors
from the structures used for the simulations. The two datasets
were in good agreement, with a correlation coefficient of 0.80 for
the entire complex. As seen previously (42), there was a greater
spread to the data at higher flexibilities, although the general
correlation between high B-factor and high fluctuations held
across the entire range (Figure 4A).

Mapped to the structure, the average RMS fluctuations
highlighted various regions of the protein which were particularly
mobile (Figure 4B). To better distinguish between sites that
were simply highly mobile in all simulations vs. those whose
mobility was more peptide dependent, we examined the standard
deviations of the RMS fluctuations (Figure 4C). Regions of
interest that showed high variance included loops of the binding
groove near the peptide termini, portions of the β2m subunit, and

a variety of regions within the α3 domain, including the “220s
loop” at the distal end of the molecule. These regions are of note,
as the binding groove loops and the α3 domain interact with
molecules other than TCR, including NK receptors, coreceptors,
and peptide loading chaperones. Additionally, regions of β2m
have been implicated in communicating the influence of peptide
from the groove to other parts of the molecule (29, 43).

As the residues of the 220s loop all exhibited high flexibility
but lay above the trendline in Figure 4A, we investigated whether
crystallographic contacts could have led to artificially depressed
B-factors. Using a cutoff of 5 Å we observed only spurious and
inconsistent symmetry related contacts at no greater frequencies
than other regions of the protein, suggesting motions here are
likely not impacted by crystallographic contacts.

Dynamic communication from the class I MHC peptide
binding groove to the α3 domain has been demonstrated
experimentally, most recently using hydrogen/deuterium
exchange, in which peptide-loaded and peptide-receptive
molecules displayed altered exchange behavior in peptide
fragments adjacent to a polymorphic site in the 220s loop
(Gln224 in HLA-A2) (30). Given the long distance between
the binding groove and the 220s loop (∼55 Å) we sought to
further experimentally assess the extent of intra-protein dynamic
communication and how this varies with peptide. We replaced
Asp220 near the apex of the 220s loop of the HLA-A2 α3
domain with cysteine, and generated peptide/HLA-A2 samples
(Figure 5A). Five tight binding nonameric peptides with ideal
primary anchor residues were chosen to allow comparison with
the simulations and help ensure that peptide dissociation did not
impact the experimental results. We labeled the free cysteine with
fluorescein-5-maleimide and measured nanosecond dynamics
using steady state fluorescence anisotropy. After removing
excess label, we observed small but statistically significant
peptide-dependent differences between the measurements with
our reference Tax peptide and three peptides (the Wilm’s tumor
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FIGURE 4 | Comparison of peptide-dependent HLA-A2 fluctuations and crystallographic B-factors. (A) By-residue average of the Cα RMS fluctuations for the 52
simulations vs. the average normalized crystallographic B-factors from the 52 peptide/HLA-A2 structures. The two sets of data corelate with a coefficient of 0.80.
Values for the residues of the 220s loop (amino acids 220-226) are shown in red. (B) Average RMS fluctuations from the 52 simulations (left) and average normalized
B factors from the 52 structures (right) mapped onto the structure of HLA-A2. (C) Standard deviations of the RMS fluctuations from the 52 simulations mapped onto
the structure of HLA-A2.

FIGURE 5 | Experimental validation of peptide-modulation of HLA-A2 α3 domain motions via steady state fluorescence anisotropy. (A) The HLA-A2 protein and the
fluorescent label in the 220s loop of the α3 domain (loop in green; residues 220–226). The binding of the CD8 coreceptor is illustrated to show its relationship to the
α3 domain and the 220s loop (44). (B) Fluorescence anisotropy (reported in millianisotropy values) measured for D220C-labeled HLA-A2 bound to five different
nonameric peptides. For calibration, a fully rigid molecule has a theoretical value of 400, and free fluorescein had a value of <10. Measurements are the averages and
standard deviations from analysis of three independently prepared samples. A single asterisk indicates differences between the Tax sample and the WT1 and Flu M1
samples with p < 0.05. The double asterisk indicates a difference between the Tax sample and the gp1002M with p < 0.0005. (C) Comparison of the measurements
for the five peptide/HLA-A2 samples in panel A with the RMS fluctuations at position 220 from the molecular dynamics simulations.

1 antigen, the influenza M1 antigen, and an anchor-modified
variant of the gp100 melanoma antigen) (Figure 5B). Consistent
with our selection of tight binding peptides, incubation of
samples with excess peptide did not alter the results (e.g.,
Tax samples without excess peptide yielded an average value
of 117mA; separately prepared Tax samples maintained in
100-fold excess peptide yielded an average value of 116mA).
The anisotropy values correlated with the computed RMS
fluctuations at this site (Figure 5C). These results are consistent
with different peptides impacting fluctuations in the α3 domain
on the nanosecond timescale.

Pathways of Motion From the Binding
Groove to the α3 Domain
To explore how different peptides can allosterically alter HLA-
A2 protein fluctuations at sites remote from the peptide binding
groove, we used our simulation data to perform suboptimal
pathway analysis between the peptide and the 220s loop (45–
47). We calculated normalized covariance matrices for the side
chain dynamics for every residue in each of the 52 simulations,
focusing on side chains to limit bias from regular backbone
secondary structure. Each normalized covariance matrix was

filtered to only include values of 0.4 or greater in order to
select pairs of residues which were at least moderately correlated,
as previously performed (48). Further, correlations were only
included if the average Cα distance was within 12 Å in order
to exclude covariance resulting from global domain movements.
For each simulation, up to 500 pathways were calculated between
Asp220 and each residue of peptide, yielding amaximum of 4,500
total pathways per simulation. These pathways were dispersed
across the HLA-A2 molecule (Figure 6A), consistent with the
notion that altering the protein’s energy landscape with different
peptides has consequences for global protein motion.

The various pathways identified from each simulation were
compared to identify regularly participating, or shared, pathway
residues. Residues were considered shared if they were utilized in
at least 40% of the multiple pathways found in each simulation.
This cutoff was selected to identify residues which were at
least moderately conserved in propagating covariant dynamics,
yielding a list of residues which displayed high utilization in
individual simulations for propagating covariant dynamics from
peptide residues to Asp220. From this list we then identified those
conserved across multiple simulations. This led us to identify
49 residues with moderate to high conservation across multiple
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FIGURE 6 | Pathways of covariant side chain dynamics from the peptide to Asp220. (A) Representative structure displaying 500 computed pathways from each
residue of the peptide to Asp220. Pathways were calculated from a normalized covariance matrix of side chain dynamics. The matrix was filtered to only include those
values in which the normalized covariance was >0.4 and if the average Cα distance between pairs of residues was <12 Å. Paths which have a higher percent
utilization are in red with thicker rods, whereas paths which have a lower utilization are in blue with thinner rods. Spheres show Cα atoms of participating residues. (B)
As in panel A, but composited pathway information from all 52 simulations, highlighting residues which consistently propagate covariant side chain dynamics from the
peptide to Asp220 among all 52 simulations. Lists of pathways were composited on a by residue basis for each residue of the peptide. Residues utilized in all nine of
these datasets are indicated in blue, whereas residues utilized in fewer datasets are indicated in red, with increasing transparency indicating less frequent usage.
Trp60 and Tyr26 are indicated as they were found to be structurally important bridge residues which propagate dynamics across the domains of the protein.

simulations responsible for propagating correlated dynamics
from the peptide to Asp220 of the α3 domain. Mapped to the
structure (Figure 6B), the list of residues originates from the
peptide and connects to most of the neighboring residues in
the short arm of the α2 helix, as well as residues of the peptide
binding groove floor, notably Ala117, Tyr123, and Ala125. The
residues in the binding floor connect to the DE loop of β2m
and travel through the B strand of the β2m protein, ultimately
connecting to the α3 domain, the 220s loop, and converging
on Asp220.

We examined these conserved residues in detail to determine
key sites for propagating dynamics from the peptide to the 220s
loop. The most stand-out amino acid was Trp60 of β2m. Trp60
lies at the apex of the β2m DE loop and interacts with Ala117 in
the floor of the peptide binding groove (Figure 6B). NMR studies
have previously identified the Trp60 side chain as sensitive to
subtle perturbations caused by different peptides bound to the
same class I MHC protein (29). A second stand-out residue was
Tyr26 of β2m, which lies in the interface between the β2m B
strand and the α3 domain.

To examine the predicted roles of Trp60 and Tyr26 in the
pathway of covariant dynamics, we performed new simulations
in which either Tyr26 or Trp60 was mutated to alanine and the
pathway analysis repeated. Four peptide/HLA-A2 structures were
chosen for these simulations, comprising the two that showed the
minimum and maximum fluctuations at Asp220 (3MRK [high]

and 1DUZ [low]) as well as two that showed intermediate Asp220
fluctuations (3H7B and 3TO2), for a total of eight new 1 µs
simulations. Although the proteins remained stable during the
simulations, when performing suboptimal pathway analysis no
pathways could be identified from the peptide to Asp220 in the
α3 domain for seven of the eight simulations. In the remaining
simulation (3H7B with the Y26A mutation), the pathways were
only partially conserved, either traversing the peptide binding
groove and bypassing β2m to reach the α3 domain, or bypassing
Trp60 by jumping from the peptide to β2m via the α1 helix and
then traversing the conserved pathway described above. Thus, in
all but one case, in silico mutation of the key residues eliminated
the most conserved connectivity between the peptide and the tip
of the α3 domain. We attempted to experimentally validate these
observations beyond what has been shown by NMR (29), but
consistent with previous reports (49), we found that mutations
in the β2m-heavy chain interface impaired class I MHC protein
stability (as this defect manifests as weaker β2m-heavy chain
association, we would not expect it to observe it in traditional
molecular dynamics simulations of the pre-formed complex;
indeed, in either wild-type or mutant simulations we observed
no dissociation of β2m from the heavy chain).

We next sought potential correlations between peptide
properties and fluctuations at the tip of the α3 domain. We
performed multiple linear regressions of RMS fluctuations
of various peptide positions and those of Asp220. We also
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considered linear energies between the peptide and residues of
the peptide binding groove (50). These terms included counts,
averages, standard deviations, and median values of electrostatic
and van der Waals interaction energies from the peptide to any
residue of the peptide binding groove, resulting in a total of 1,026
terms. Key terms that emerged from the analysis were peptide
fluctuations at positions 8 and 9, as well as peptide van der Waals
or electrostatic interactions with helical positions 69, 144, and
147. Notably, the latter two amino acids are in the short α2-1
helix and lie adjacent to the peptide the C-terminal end. These
observations further implicate the C-terminal half of the peptide
and the α2-1 helix in influencing peptide-dependent class I MHC
dynamics. We also found though that energetic interactions
between the peptide and 23 other HLA-A2 residues could be
incorporated into models with statistical significance (p ≤ 0.05).
Linear models generated with the four terms mentioned above as
well as with any of these 23 interaction terms yield final models
with correlation coefficients ranging from 0.79 to 0.81. Thus,
although peptide fluctuations near and interactions with the α2-
1 helix are particularly important in communicating correlated
dynamics through the protein (average p < 0.0001), distributed
interactions with numerous residues throughout the groove also
play a role. As with α1/α2 helix motions, we could not identify
correlations between peptide binding affinity and motions in the
220s loop.

DISCUSSION

Crystallographic structures of peptides presented by class I
MHC proteins have provided considerable insight into immune
recognition and function. While much work has focused on how
peptides bind and how TCRs recognize the resulting composite
peptide/MHC surfaces, it is increasingly recognized that rather
than serving as a static platform for peptide presentation and
molecular recognition, the properties of class I MHC proteins
are tuned by different peptides in functionally significant ways.
However, the mechanisms by which different peptides exert their
effects are not well-understood. Structural studies have typically
revealed, at most, minor conformational adjustments to class I
MHC proteins with different bound peptides (2, 3, 6, 25, 40,
51, 52). Consistent with these small conformational changes,
evidence is now mounting that one way peptides alter class I
MHC proteins is by modulating motional properties, both within
the peptide binding groove as well as in more distal parts of the
protein [as reviewed in (7, 36, 40, 53)]. This concept, sometimes
referred to as dynamically driven allostery, is now recognized as
a fundamental mechanism of biological regulation (32, 33).

We explored here the peptide-dependent tuning of class
I MHC motional properties using molecular dynamics
simulations, relying on a large library of lengthy simulations of
the class I MHC protein HLA-A2 bound to different peptides.
From 52 independent simulations, we observed substantial
peptide-dependent effects, and postulated mechanisms for how
peptides tune the motion not only of the TCR-facing α helices
that form the peptide-binding groove, but also more distant

regions of the molecule, including the non-covalently bound
β2m subunit and the distal α3 domain.

In assessing peptide-mediated effects on the dynamics of
the peptide binding groove, we observed a large range of
fluctuations, particularly at the N- and C- termini of each helix.
The greatest impact was seen at the short arm of the α2 helix
(also referred to as the α2-1 helix, adjacent to the C-terminal part
of the peptide). Peptide-dependent motions here contributed
to large fluctuations in the width of the HLA-A2 binding
groove. α2-1 helix structural or dynamic changes have been
regularly implicated in peptide-dependent immune functions.
For example, different peptides influence the propensity for
the α2-1 helix to structurally adapt to incoming TCRs, either
favorably or unfavorably influencing TCR binding and resulting
in what we have termed an “extension of antigenicity” from
the peptide to the MHC (2–6). Adaptations of the α2-1 helix
are also believed to be key in promoting peptide exchange by
tapasin and the TAPBPR chaperones (9, 10, 18–22, 54). Peptide
binding and release from class I MHC proteins is also thought
to incorporate motions in this region (25, 30, 36, 55, 56). The
motional sensitivity of the α2-1 helix arm thus appears to be a
key component of class I MHC biology.

A particularly intriguing observation is the degree to which
peptides influence class I MHC motions at regions other than
the peptide binding groove, including the α3 domain and the
β2m subunit. The observation of globally tuned class I MHC
protein dynamics has functional implications. For example,
peptide-dependent motions can explain the intriguing peptide-
sensitivity of inhibitory NK receptors that do not contact the
class I MHC peptide binding groove (15, 16). Components of
the peptide loading machinery interact not only with the α2-
1 helix, but also the α3 domain, and recent data indicates the
tip of the α3 domain dynamically responds to peptides (28, 30,
57). A peptide dependence to these interactions, as opposed
to a simpler sensitivity to the presence or absence of peptide,
suggests the existence of finer control mechanisms influencing
immunogenicity and peptide processing and selection than
currently recognized.

Our analysis suggests that although communication of
correlated dynamics throughout the protein can occur via
multiple pathways, a small number of amino acids are
preferentially utilized. Two standouts were found in the interface
between the base of the peptide binding groove and β2m (Trp60),
and in the interface between β2m and the α3 domain (Tyr26).
Both Trp60 and Tyr26 are highly conserved across species and
form similar interactions in different class I MHC structures
(58, 59). The sensitivity of β2m to peptide, and its role in
communicating correlated dynamics throughout the protein, can
explain findings of enhanced β2m association when motions
within the peptide domain are restricted via a disulfide linker
(60). Consequently, the β2m molecule is implicated in sensing
and communicating information from the peptide binding
groove, elevating its importance above an architectural subunit
necessary for class I MHC complex stability.

Our findings support additional roles for polymorphic MHC
residues beyond directing peptide selection and influencing TCR
binding, as the communication of peptide-dependent dynamics
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throughout and from the binding groove will be impacted by
amino acid composition. Indeed, polymorphisms within the
groove have been shown to influence peptide dynamics, as well as
motions in the α3 domain (29, 41, 55, 61, 62). Modulation of the
motional sensitivity of class I MHC proteins to peptides through
polymorphisms suggests roles for class I MHC diversity beyond
what is typically considered (i.e., influences on peptide selection
and TCR binding).

Lastly, it is likely that the dynamics and thus functions of
antigen presenting proteins other than class I MHC proteins
are similarly tuned by peptides. For example, the motion and
geometry of the binding groove in class IIMHCproteins has been
shown to be peptide-dependent (40, 63, 64), and comparisons
between peptide-loaded, sub-optimally loaded, and empty class
II MHC proteins revealed peptide-dependent fluctuations that
influence the stability and chaperone-receptiveness of the protein
(65–68). Furthermore, changes in class II MHC-presented
peptides induce conformational alterations not only in the
binding groove (69–72), but also in distal regions of the protein
(63, 72), suggesting the existence of similar through-protein,
dynamic allostery in class II proteins as we found in class I
MHC proteins.

In conclusion, our results provide new insights into the
molecular principles governing peptide-dependent effects on
MHC proteins. The data indicates that peptide-dependent
impacts not only include but extend well-beyond static changes
at the peptide-binding groove surface and suggest that MHC
proteins in general are highly tunable sensor proteins primed to
modulate immunobiology in sophisticated, dynamic fashions.

MATERIALS AND METHODS

Molecular Dynamics Simulations and
Analysis
The majority of the molecular dynamics data analyzed here
were described previous previously (34). Additional simulations
unique to this report were performed identically. Briefly, all
simulations were generated with the GPU-accelerated version
of the AMBER 14 molecular dynamics suite utilizing the ff14SB
force field (73–75). Starting coordinates for each simulation were
obtained from the Protein Data Bank; when multiple molecules
were present in the asymmetric unit, coordinates from the first
were used. Terminal residues of the peptide weremodeled in their
charged state. Missing side chains and residues, usually localized
to the α3 domain of the heavy chain, were modeled in using
the crystal structure of HLA-A∗0201 presenting the Tax peptide
(PDB accession code 1DUZ) (39) via Chimera (76). All systems
were charge neutralized with sodium counter ions and explicitly
solvated with an isometric box of SPC/E water (77) to aminimum
of 10 Å from peptide/MHC atoms. Following this, each system
was energy-minimized then heated to 300K using a Langevin
thermostat and solute restraints. Following minimization and
heating, solute restraints were gradually relaxed from 25 to 0 kcal
mol−1 Å−2 in the NPT ensemble. Volume was then fixed at the
average volume of a 100 ps NPT simulation with no restraints.
Following a brief 50 ps simulation in the NVT ensemble,

production trajectories were then calculated for each system.
Production trajectories were calculated in the NVT ensemble
with a 2 fs time step. Short range non-covalent interactions
were calculated with a 10 Å cutoff, and long-range electrostatic
interactions were treated via particle mesh Ewald (78). All bonds
involving hydrogen were constrained with the SHAKE algorithm
(79). Trajectories were calculated for a total simulation time of
1 µs, with data output every picosecond. Initial velocities for
each trajectory were assigned from Maxwellian distribution at
the starting temperature utilizing a random seed generated by the
date and time.

Multiple Linear Regression Models
Describing Peptide Modulation of the
Binding Groove
Multiple linear regression models that related peptide features
to HLA-A2 binding groove dynamics were constructed in
MATLAB. Terms examined included total residue volume and
Cα RMS fluctuations for individual peptide residues and averages
of consecutive pairs of residues, as reported previously in our
analysis of peptide motions (34). Models were constructed to
predict every average pairwise distance between the 29 and 38
α carbons of the α1 and α2 helices, respectively, for a total of
1,102 distances for each simulation. Distances were calculated
with the “distance” functionality of cpptraj in the AMBER suite
(80). Models for each distance were constructed by considering
every permutable combination of peptide residue volumes, up to
a total of four individual volume terms, as well as a single peptide
RMS fluctuation term (with the RMS fluctuation term reflecting
Cα RMS fluctuation for a single residue, or the average of Cα

RMS fluctuations for adjacent residues) (34). In total, 613,814
models were constructed, and the correlation coefficient of each
model determined. For simplification, these models were pruned
to only include those which incorporated consecutive peptide
positions. For example, a model in which the volumes of peptide
positions 2 through 6 were incorporated was accepted, however
a model in which the volumes of positions 1 through 2 and 4
through 5 was not. Further, only models in which the fluctuation
term was within or adjacent to the peptide volume range were
allowed. This process reduced the total number of models to
336,110, for a total of 305 potential models for each Cα distance.
Correlation coefficients for each of these models were extracted
and compared for each individual Cα distance in order to identify
the best model for each. We found that increasing the number
of volume terms for each distance from 3 to 4 only increased
the correlation coefficient for that distance by an average of
0.01. Accordingly, final models were limited to those which only
incorporated volumes for three residues. Thus, all final models
constructed followed the general equation:

Distance = Model.Constant +
(

Vol.Weight1
)

Volume1

+
(

Vol.Weight2
)

Volume2+
(

Vol.Weight3
)

Volume3

+
(

RMSF.Weight
)

RMSF

Following this, the best performing three-volume/single RMS
fluctuation model was extracted for each distance, and models
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for which the correlation coefficient was <0.6 were excluded
from further analysis, resulting in 346 identified distances.
Of the remaining distances, we investigated the terms which
comprised the best models. In total, 298 of the 346 distances
were constructed from one of eight models which were composed
of the same terms with different weights. To further reduce
complexity, we reduced the permitted combination of peptide
volumes and RMS fluctuations (referred to as templates) from
26 to 7. These seven were chosen given that 20 or more
distances utilized that particular template. In one instance, we
gave preference to a single template over the other as the
RMS fluctuation term was within the range of residues in
which the volumes were incorporated vs. adjacent. The analysis
was performed again while only considering one of the 7
templates for each distance. The correlation coefficient for each
distance was extracted for each template, and only the best
model for each distance was retained, once again excluding
those distances in which the best performing correlation
coefficient was <0.6.

Suboptimal Pathway Analysis
Pathways were determined as described previously (45–47). Prior
to suboptimal pathway analysis, dynamical cross-correlation
matrices were calculated for all 52 simulations via the “matrix
correl” function in cpptraj for the side chain atoms from each
residue to every other residue in every HLA-A2 simulation (using
HA2 and HA3 for Gly) following global Cα superimposition
to the initial crystallographic coordinates. Values were averaged
for each residue from all 52 matrices, resulting in 52 by-
residue side chain average dynamical cross-correlation matrices.
Using R, these matrices were further processed, omitting
values below 0.4 to identify pairs of residues which were at
minimum moderately correlated. Further, values were omitted
if the Cα atoms of those pairs of residues did not lie within
an average of 12 Å throughout the simulation. From this,
for each matrix, up to 500 paths of correlated motion were
calculated from each residue of the peptide to Asp220 via
the “cnapath” function of Bio3D, resulting in a total of 4,500
identified pathways for each simulation partitioned into nine
datasets of 500 pathways. We observed that pathways were
more frequently present from the peptide C-terminus than any
other position (39/52 had no pathways for P1 and P2, 25/52
had no pathways for P3, 35/52 had no pathways for P4 and
P5, 27/52 had no pathways for P6, 19/52 had no pathways
for P7, 18/52 had no pathways for P8, and 2/52 had no
pathways for P9).

For those cases in which pathways from a peptide residue
to Asp220 were identified, output for each 500-pathway dataset
included residues involved in the identified paths, as well as the
percentage of those paths in which those residues were utilized.
The output of each 500 pathway dataset was further processed
to only include residues in which that particular residue was
utilized in at least 40% of the identified paths in order to
identify those residues which were highly utilized within that
simulation. These processed datasets were then compiled on a
by residue basis, for a total of 9 datasets composed of pathways
for the 52 individual simulations. Following this, counts of each

residue were tallied for each of the 9 datasets to identify those
which were not only highly utilized in each simulation via
the 40% criterion, but also had a conserved utilization across
multiple simulations. A particular residue was considered to
have conserved utilization across simulations within a single
dataset if the count for that residue was greater than or equal
to 10% of the total number of successfully identified pathways
for that particular dataset. For example, a residue had to be
identified in two simulations in the P1 dataset given that
only 13 simulations had identified pathways but had to be
identified in 5 simulations in the P9 dataset given that 50
simulations had identified pathways. The conserved residues
for each of the 9 datasets were then compiled to identify
those which were even further conserved across the 9 datasets,
omitting those residues which were only identified in 1 of the
9 datasets. Counts of each residue across the 9 datasets were
calculated and then subsequently mapped onto the reference
Tax/HLA-A2 structure.

Protein Expression and Purification
Recombinant HLA-A2 heavy chain and β2m were expressed
as inclusion bodies in Escherichia coli and denatured in
8M urea. The D220C mutation was made via site-directed
mutagenesis and confirmed by sequencing. Synthetic peptides
were purchased from AAPPTec. Each peptide/HLA-A2 complex
was refolded and purified following established procedures (81).
Briefly, inclusion bodies were diluted at a 1:1 ratio in the
presence of excess peptide in refolding buffer (100mM Tris
(pH 8), 400mM L-arginine, 2mM EDTA, 6.3mM cysteamine,
3.7mM cystamine, 0.2mM PMSF). Complexes were incubated
at 4 ◦C for 24 h. Solutions were then desalted by dialysis
against water at room temperature for 48 h. Protein was
then purified by anion exchange followed by size-exclusion
chromatography. Protein concentrations were determined by
measuring absorbance at 280 nm.

Fluorescence Anisotropy Measurements
For labeling, purified peptide/HLA-A2 complexes were
combined with 10-fold excess fluorescein-5-maleimide and
20µM TCEP-HCl in 10mM HEPES, 150mM NaCl (pH 8.3).
Labeling reactions were allowed to continue for in the dark for
2 h at room temperature. Samples were then dialyzed for 18 h in
the dark at room temperature against 20mM Na2HPO4, 75mM
NaCl (pH 7.4), then purified by size-exclusion chromatography
to remove excess label. Labeling was confirmed through
UV visualization of SDS-PAGE gels. Labeling efficiency was
determined via the ratio of absorbance at 494 nm and 280 nm
and reached 80%. The fluorescence intensity of a wild-type
control (Tax/HLA-A2 lacking the free cysteine at position 220)
was typically <5% of the intensity of the labeled, experimental
complexes. Steady-state fluorescence anisotropy experiments
were performed on a Beacon 2,000 instrument. Measurements
were performed at 25◦C with protein concentrations between 50
and 100 nM, averaging at least 50 readings after samples attained
thermal equilibrium. Measurements were performed with three
independently prepared peptide/HLA-A2 samples. Values are
the averages and reported errors are the standard deviations
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of the three measurements. Control experiments with excess
peptide used freshly prepared samples with 100-fold excess
peptide added immediately after removal of excess label.
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