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Abstract: Asymptomatic and pauci-symptomatic presentations of COVID-19 along with restrictive testing
protocols result in undetected COVID-19 cases. Estimating undetected cases is crucial to understanding
the true severity of the outbreak. We introduce a new hierarchical disease dynamics model based on the
N-mixtures hidden population framework. The new models make use of three sets of disease count data
per region: reported cases, recoveries and deaths. Treating the first two as under-counted through binomial
thinning, we model the true population state at each time point by partitioning the diseased population
into the active, recovered and died categories. Both domestic spread and imported cases are considered.
These models are applied to estimate the level of under-reporting of COVID-19 in the Northern Health
Authority region of British Columbia, Canada, during 30 weeks of the provincial recovery plan. Parameter
covariates are easily implemented and used to improve model estimates. We compare two distinct methods
of model-fitting for this case study: (1) maximum likelihood estimation, and (2) Bayesian Markov chain
Monte Carlo. The two methods agreed exactly in their estimates of under-reporting rate. When accounting
for changes in weekly testing volumes, we found under-reporting rates varying from 60.2% to 84.2%. The
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Résumé: Le recours à des protocoles de tests restrictifs et l’existence de formes asymptomatiques et
paucisymptomatiques de la COVID-19 contribuent à la non détection de cas COVID-19. Pour comprendre
la véritable gravité de l’épidémie, il est primordial d’estimer correctement le nombre de cas non détectés. A
cette fin, les auteurs de ce travail proposent un nouveau modèle hiérarchique des dynamiques de la maladie
basé sur l’approche de N-mélanges de population cachée. Ces modèles utilisent trois types de données
régionales, à savoir, les nombres de cas déclarés, guéris et décédés. En faisant appel à l’amincissement
binomial (binomial thinning) et en traitant les nombres de cas déclarés et guéris comme étant sous-évalués,
les auteurs proposent une modélisation de l’état réel de l’épidémie basée sur une partition de la population
malade en trois catégories : cas actifs, cas guéris et cas décédés. Cette partition tient compte des cas
de propagation intérieure et des cas importés. Les auteurs ont utilisé les données recueillies durant les
trente semaines du plan de rétablissement provincial de la région de l’Autorité sanitaire du Nord de
la Colombie-Britannique, Canada pour illustrer leur approche et estimer le niveau de sous-déclaration
COVID-19 associé. Des covariables peuvent être facilement incorporées au modèle proposé et améliorer
la qualité des estimations. Deux méthodes d’ajustement sont retenues: (1) l’estimation par maximum de
vraisemblance, et (2) la méthode de Monte Carlo par chaînes de Markov. Les estimations du taux de
sous-déclaration obtenues par ces deux méthodes concordent exactement et varient entre 60,2% et 84,2%
après ajustement des variations des volumes de tests hebdomadaires. La revue canadienne de statistique
49: 1018–1038; 2021 © 2021 Société statistique du Canada
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1. INTRODUCTION

The ongoing COVID-19 pandemic has already led to around 147,000 confirmed cases and 1,700
deaths [Correction added on 11 November 2021, after first online publication on 1 November
2021: “17,000 deaths” was changed to “1,700 deaths”] in British Columbia (BC), and around
3.9 million deaths worldwide as of the end of June 2021. Disease analytics allow us to estimate
the extent of unreported cases. Case counts are available from many government sources.
In British Columbia, Canada, the BC Centre for Disease Control releases periodic surveil-
lance reports, which often include COVID-19 case counts for each of five Health Authority
regions. However, cases of COVID-19 can go unreported because of controllable factors such
as refusal to test or low volumes of virus testing, as well as uncontrollable factors such as
asymptomatic or pauci-symptomatic cases, incorrect self-diagnosis or failure to disclose. This
poses problems in disease control. For example, it leads to under-reported case counts and
thus an underestimate of the severity of the pandemic. Undetected cases also drive community
transmission, reducing the effectiveness of contact tracing, quarantine and isolation. In this
article, we aim to estimate the true size of an epidemic, given the observed case counts and
outcomes.

There is substantial evidence for the existence of unreported cases of COVID-19. For example,
Buitrago-Garcia et al. (2020) performed a systematic review and found a 95% confidence interval
of 17%–25% for the proportion of truly asymptomatic cases. Several seroprevalence studies have
also been conducted to estimate the proportion of unreported cases (Song et al., 2020; Bendavid
et al., 2021; Saeed et al., 2021). In particular, Skowronski et al. (2020) found that in May 2020
the number of undetected cases in British Columbia was between 2.25 and 20.5 times greater
(a 95% confidence interval) than the reported number of cases. Low ascertainment rates could
potentially have been improved using more effective testing strategies (Lawless & Yan, 2021).
However, the number of testings required to have only a small percentage of unreported cases
would be prohibitive.

Several inter-related models have been developed in recent years to address the problem
of estimating abundance in the presence of under-reporting using only case-count data. For
example, the INAR (integer autoregressive) hidden population model of Fernández-Fontelo
et al. (2016) was used to estimate weekly cases of human papillomavirus in Girona.
More recently, Moriña et al. (2021) used a Bayesian hierarchical model to estimate the
under-reporting rates of COVID-19 in Spain and found that their results matched seropreva-
lence data (Spanish Ministry of Health, 2020). Fernández-Fontelo et al. (2020) developed a
hidden INAR(1) model designed to analyze the COVID-19 pandemic using only COVID-19
case counts as observed data to inform model-fitting. Their model was used to estimate
the under-reporting rates of COVID-19 in several small regions of Spain, and they used
susceptible-infectious-removed (SIR) modelling to account for population dynamics. The under-
lying process was Xt = 𝛼 ∘Xt−1 + Wt(at), where Xt is the actual number of new cases at time t, 𝛼 is
the binomial thinning probability, at is the new active cases modelled using SIR and Wt is a Poisson
process.

The N-mixture model is a hierarchical model that can be seen as a series of related models
ordered by their conditional probability structure (see Kéry & Royle, 2015, Section 2.3). Often,
these models are fitted to data using maximum likelihood estimation (MLE). The N-mixture
models can also be viewed from the Bayesian modelling perspective as hierarchical Bayesian
models. Kéry & Royle (2015) used an N-mixture Bayesian approach to analyze Swiss Great
Tits data. They found that the posterior means from a Bayesian analysis (using vague priors)
numerically agreed well with the ML estimates.

Hidden INAR models can be viewed as a special case of N-mixture models in which there
is only one site and, with the addition of a mixture distribution for detection, allowing for
occasional perfect detection. N-mixture models have been used extensively since their inception
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(Royle, 2004) and have been extended to allow for open population dynamics (Dail & Madsen,
2011). The application of the open N-mixture modelling framework to disease analytics has been
discussed by DiRenzo et al. (2019).

Alternative methods such as capture–recapture (see, e.g., Xu et al., 2014; van Dam-Bates,
Fyfe & Cowen, 2016) can produce more precise estimates of detection probability but require
more extensive data-gathering (including unique identifiers for tracking, such as personal health
numbers), which is not possible during the early stages of a public health crisis such as the
COVID-19 pandemic.

Unlike classical MLE, Bayesian methodology can remove the task of integrating the
latent abundance parameters (Nt, for t ∈ {1, 2,… ,T}) from the model likelihood and avoid
computational complexity associated with maximizing the likelihood function. Comparisons
between Bayesian and ML N-mixture estimates were made by Toribio, Gray & Liang (2012);
however, these comparisons were done only for the closed population models. In this article, we
compare MLE and Bayesian Markov chain Monte Carlo (MCMC) model-fitting approaches for
an open population model.

We propose a novel model to estimate the levels of under-reporting in regions affected by
COVID-19. The model is built on the open population N-mixtures framework (Royle, 2004;
Dail & Madsen, 2011) as well as the hidden INAR framework (Fernández-Fontelo et al., 2016),
with the population dynamics modified to allow for domestic spreading of the virus as well as
importation of new cases from other regions. We also incorporate a multinomial component in
the models to account for active cases, deaths and recoveries. These models are ideally suited to
estimate the detection rates when limited data are available.

We applied the new model to data from the Northern Health Authority region of BC
and improved the model by incorporating parameter covariates. We found in our applications
that the MCMC and the MLE gave comparable results for estimating the probability of
detection.

2. METHODS

2.1. Model Development
The classical N-mixture model developed by Royle (2004) allows estimation of the population
abundance N (which is a latent variable in the model) using under-counted observations n,
which are conditional on N through a detection thinning process. The abundance Nit at site i,
time t, is modelled as Nit ∼ Poisson(𝜆). A detection thinning process is used to generate
observed counts nit, which is modelled as nit ∼ Binomial(Nit, p). Here, 𝜆 is the initial mean
site abundance, and p is the detection probability at time t. The model extensions of Dail &
Madsen (2011) allow for population dynamics, removing the closed population assumption of
the original N-mixture model. The standard dynamics assumption is Nit+1 = Sit + Git, where
Sit models population survival, and Git models new population gains (immigration) between
t and t + 1.

The form of the N-mixture model affords many distributional choices, making it flexible for
studying different sorts of populations. To develop a disease analytic version of the N-mixture
model, several modifications are necessary. We will consider only the single-site case, and thus
we drop the site subscript i; however, we note that under a conditionally independent sites
assumption, it is easy to extend these models to multiple sites. We let T denote the number of
sampling occasions: t ∈ {1, 2,… ,T}. We make several additions and modifications to the open
population N-mixture models. We specify the model in Equation (1), with the variables defined
below, and refer to this specification as we detail the model throughout the remainder of this
section.
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Initial Abundance: N1 ∼ Poisson(𝜆)
State Process: {At,Dt,Rt} ∼ Mult

(
Nt; pa, pd, pr

)
Observed Active Cases: at = nt + at−1 − rt−1 − Dt−1, a0 = r0 = D0 = 0

Domestic Spread: St ∼ Poisson
(
𝜔Nt−1

)
, for t > 1

Imported Cases: Gt ∼ Poisson(𝛾), for t > 1
Abundance Updates: Nt = At−1 + St + Gt, for t > 1

Observation Process:
nt ∼ Binomial

(
Nt − at−1 + rt−1 + Dt−1, p

)
{at − Dt − rt,Dt, rt} ∼ Mult

(
at; pa, pd, pr

)

(1)

Similar to standard N-mixtures models, we make the assumption that the initial (start of
study) active cases is the unknown random variable N1. We use a Poisson distribution with mean
𝜆 to model this initial population size (Eq. 1: Initial Abundance). This can be thought of as the
random state of the dynamic system at the start of data collection.

To model population changes with time, we consider the three possible future states of any
individual from time t to time t + 1. An individual who is currently infected at time t can remain
an active case, recover, or die by time t + 1. Thus we partition the total infected individuals Nt at
time t into the three categories relative to t + 1: cases who will remain active At; cases who will
recover Rt; and cases who will die Dt. The partitioning is done using a multinomial distribution,
with probability of mortality pd, probability of recovery pr, and probability of remaining an
active case of pa = 1 − pd − pr (Eq. 1: State Process). Using this multinomial model assumes
that (i) there are exactly three categories, (ii) all individuals are independent and have the same
probabilities for each category, and (iii) the probabilities are constant over time. Assumption
(i) seems reasonable (and if another category were to be considered, it could be added to the
model without difficulty). Assumption (ii) is a large simplification, since many factors will
influence an individual’s probability of recovery and death (such as age, genetics, access to
health care, etc.). This simplification is necessary due to a lack of individual-level information,
and could be alleviated somewhat using, for example, supplementary demographic data such
as age along with stratified modelling techniques. Finally, assumption (iii) may be true over
short periods; however, the probabilities of recovery and death may change over the course of a
pandemic because of such factors as improved understanding of the disease and increased access
to treatment. Fortunately, assumption (iii) can be relaxed by including time-varying parameter
covariates for pr and pd. We note that because of the relationship pa = 1 − pd − pr, including a
covariate for pd and not for pr would imply that any change in pd would be reflected entirely
in pa. So in normal use cases, it would make sense to include the same covariate for pr as for
pd, to allow for some of the deaths to shift into the recovered category rather than remain in
the active category. The parameter pd could change over time owing to factors such as local
hospitals reaching their capacity. We note that for our Northern Health Authority case study, we
do not expect assumption (iii) to be a significant factor.

We have established a partitioning of the active cases into categories allowing for deaths and
recoveries. We now consider three pathways for producing active cases over time. First, we have
from our partitioning the set, At, of cases that will remain active from time t to time t + 1. Second,
we consider simple importation of cases Gt (Eq. 1: Imported Cases). We consider importation
of cases to be caused by the immigration of external active cases from other regions. We model
Gt as a Poisson random variable, with mean value 𝛾 . Thus we have defined 𝛾 as the average
number of new imported active cases occurring between time t and time t + 1. Third, we consider
domestic spread via community contact St (Eq. 1: Domestic Spread). Since the rate of domestic
spread should be proportional to the current number of active cases (hence exponential growth
in active cases is possible), we use the number of active cases at t − 1 to moderate the mean new
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infections due to domestic spread. We model St using a Poisson distribution with expected value
𝜔Nt−1. Thus, we have defined 𝜔 as the average number of new infections per active case during
one sampling period. To determine the number of active cases at time t (for t > 1), we sum the
three sources of active cases: Nt = At−1 + St + Gt (Eq. 1: Abundance Updates).

The observation process in Equation (1): Observation Process has two components: a bino-
mial thinning, and a multinomial partitioning. The observed data for this model are the
sets of newly observed active cases {nt} for t ∈ {1, 2,… ,T}, newly recovered from previ-
ously observed active cases {rt} for t ∈ {1, 2,… ,T − 1} and newly deceased cases {Dt} for
t ∈ {1, 2,… ,T − 1}. The term “newly observed” means observed since the previous sampling
occasion, so that in our case study nt+1 represents the total cases reported during week t + 1 that
have been observed after the cases reported during week t. The newly observed active cases nt are
assumed to be under-counted. We use binomial thinning to model the under-counting; however,
unlike with N-mixtures, we need to subtract the currently active previously observed cases
at−1 − rt−1 − Dt−1 from the total Nt prior to thinning. This is because all active cases that have
been observed are tracked through time until they either recover or die; they remain active, and
cannot be “re-observed” while still active. We calculate the observed active cases at time t > 0
as at = nt + at−1 − rt−1 − Dt−1, with a0 = 0; at can be understood as “new active cases at time t”
plus “previous active cases at time t − 1” minus “previous active cases which are no longer active
at time t.” The quantities at and At are subtly different; At are the total cases remaining active
from time t to time t + 1, while at are the observed cases which are currently known to be active
at time t. The observed active cases at are partitioned using a multinomial similar to the one used
to partition Nt. The primary difference is that all three categories are fully observed: rt are the
currently active observed cases who will recover between t and t + 1; Dt are the observed deaths
between t and t + 1; and at − rt − Dt are the observed active cases which remain active from t
to t + 1. We use the same three probabilities as in the first multinomial. Thus, rt is the observed
subset of Rt, Dt is fully observed, and at − rt − Dt is the observed subset of At. This adds the extra
assumption that the observed active cases are equally likely to recover as are the unobserved
active cases. This is a critical assumption, as it allows identifiability of the unobserved quantities
At and Rt through the observed data. Relaxing this assumption would require the addition of
a known relation between the probability of recovery for observed individuals and that for
unobserved individuals. A plate diagram specifying our model is shown in Figure 1, illustrating
the data/model interactions. The model has six estimable parameters: 𝜆, 𝛾 , 𝜔, p, pd and pr.

2.2. Maximum Likelihood Approach
The original approaches to inference for N-mixture models used MLE (Royle, 2004; Dail &
Madsen, 2011), in which the latent variables Nt are removed from the likelihood via integration
over states (summation of the likelihood over Nt ∈ {nt, nt + 1, nt + 2,… ,K}, for some suitable
upper bound K). The computation times involved in this method become problematic for very
large K, since the summations dominate the computing time, which has complexity (K3).
There are several advantages to using MLE: it is not dependent on correctly specified prior
distributions (this can be a disadvantage when reliable prior information exists), and it has
excellent large-sample properties, such as consistency, asymptotic normality, and asymptotic
efficiency (Bain & Engelhardt, 1992, p. 316). MLE also has the benefit of being deterministic
(provided that the optimization method is deterministic, as is the case with the BFGS optimization
algorithm; Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970).

We build the likelihood function from the model described in Section 2.1. In classical
N-mixtures models, integration is done over the possible states of the latent variables Nt. In
our model, we have a second set of latent variables Rt, necessitating a second integration
over states (summation over Rt ∈ {rt, rt + 1, rt + 2,… ,Nt − Dt}). This leads to the likelihood
function shown in Equation (2). We note that the likelihood function is written as ℒ for brevity,
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FIGURE 1: The data generating process assumed for our COVID-19 model. Top: the population
dynamics are illustrated as a plate diagram (Koller & Friedman, 2009). The t = s labels indicate
the variables defined at time t = s, while the a < t < b labels indicate processes which occur
between observation time a and observation time b. Bottom left: the model detection mechanism,
along with the recursive definition for calculated quantity at. Bottom right: the shift in time
for recoveries and deaths between the reported data used in practice, and the model data
matrix definition is illustrated. Recoveries and deaths associated with active cases at time t
are reported at the next reporting period, t + 1, rather than at time t (since they occur between

reporting periods).

and should be understood as shorthand for ℒ (𝜆, 𝛾, 𝜔, p, pd, pr|{nt}, {Dt}, {rt},K). This model
can also be extended to allow for under-counted deaths, in which case a third integration over
states would be necessary: Dt ∈ {dt, dt + 1,… ,Nt − rt}, where dt would be the observed deaths
and Dt would be the latent variable for new deaths; in this case, “Observed active cases” from
Equation (1) would have Dt replaced with dt.

ℒ =
K∑

N1=n1

· · ·
K∑

NT=nT

{
Pois(N1; 𝜆) ⋅

(
T∏

t=1

Binom
(
nt;Nt − at−1 + rt−1 + Dt−1, p

))

⋅

(
T∏

t=2

PNt−1,Nt

)
⋅

(
T−1∏
t=1

Mult
(
at − Dt − rt,Dt, rt; at, pa, pd, pr

)

⋅
Nt−Dt∑
Rt=rt

Mult
(
At,Dt,Rt;Nt, pa, pd, pr

))}
. (2)

Pa,b =
m=min{a,b}∑

c=0

Pois(c;𝜔a) ⋅ Pois(b − c; 𝛾).

Here, Pa,b is the transition probability for transitioning from an active number of cases a to
an active number of cases b. We implemented this model using the R software (R Core Team,
2020). The likelihood function as specified in Equation (2) was programmed in R (archived code
is available at http://dx.doi.org/10.5281/zenodo.5502191), and optimization was done using the
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BFGS optimization algorithm employed by the R function optim. The value for K, the upper
bound on summations, was chosen by optimizing the model likelihood with increasing values
of K until the estimated parameter convergence was observed at K = 200. Computation time for
these models, run on a 4.0 GHz AMD Ryzen 9 3900X with 24 logical processors, varies from
several hours to several days depending on the model complexity (number and type of parameter
covariates). The likelihood function may have large flat regions, especially when no additional
covariates are used to inform model fitting. This is important for the estimability of the correlated
parameters 𝛾 and 𝜔, which both inform population growth.

2.3. Bayesian Approach
The Bayesian approach to parameter estimation of our COVID-19 model is different from the
standard MLE approach beyond the inclusion of priors. Specifically, summations over latent
variables are not required for parameter updates; instead, the values of the latent variables are
re-sampled. As well, the transition probability calculation Pa,b from Equation (2) is replaced with
the distributions for St and Gt. These changes necessitate the use of stochastic methods such as
MCMC for parameter estimation.

If we let 𝜋𝜏 be the prior distribution for parameter 𝜏, then the full joint distribution over the
data and parameters is given in Equation (3), where the abundance updates are still given by
Nt = At−1 + St + Gt for t ∈ {2,… ,T}. Details regarding the dependence between the variables
in these models are described in Figure 1.

The Bayesian models were implemented using JAGS (Plummer, 2003) through the RJags
package (Plummer, 2019) using the R software (R Core Team, 2020). Computation for these
models took several hours when fitting the base model. The full joint distribution 𝑓 is given by
the following:

𝑓 (𝜆, 𝛾, 𝜔, p, pr, pd, nt, rt,Dt) = ℒ̃ ⋅ 𝜋𝜆 ⋅ 𝜋𝛾 ⋅ 𝜋𝜔 ⋅ 𝜋p ⋅ 𝜋pd
⋅ 𝜋pr

ℒ̃ = Pois(N1; 𝜆) ⋅

(
T∏

t=1

Binom
(
nt;Nt − at−1 + rt−1 + Dt−1, p

)

⋅ Mult
(
At,Dt,Rt;Nt, pa, pd, pr

))
⋅

(
T−1∏
t=1

Mult
(
at − Dt − rt,Dt, rt; at, pa, pd, pr

))

⋅

(
T∏

t=2

Pois(Gt; 𝛾) ⋅ Pois
(
St;𝜔Nt−1

))
. (3)

2.3.1. Posterior predictive checking
Posterior predictive checking is useful for finding discrepancies between the observed data and the
data that can be described by the fitted model. It is a popular Bayesian model-checking approach
used by ecologists (see, e.g., Kéry & Schaub, 2011; Gelman et al., 2013). In this paradigm, model
fitness is checked by simulating data generated under a fitted model and comparing the simulated
data with the observed data. If the observed data is substantially different from the simulated
data, then the model must be unable to effectively describe the observed data. Posterior predictive
checks can be conducted by examining histograms of the simulated data and comparing them
with the observed data, or by computing the posterior predictive P-values (Gelman et al., 2013).
Since our model assumes fully observed Dt, we generated the simulated observations of Dt
using Equation (1): State Process, and used a binomial rather than a multinomial to generate rt:
rt ∼ Binomial(at − Dt; pr). This was necessary to avoid dual specification of Dt. As well, we

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11664



2021 UNDER-REPORTING COVID-19 1025

require at to be non-negative, and we accomplish this by rejecting simulated data for which at is
negative.

To run the Bayesian models, the adaptation period was 1.4 million iterations. We discarded
1.2 million initial samples as the burn-in, and ran 200,000 additional iterations to obtain the
posterior estimates. In order to avoid issues with parameter auto-correlation, we used thinning to
keep 1 out of every 200 iterations.

3. CASE STUDY

3.1. Data Modalities
The Northern Health Authority region of British Columbia, Canada was chosen for this prelim-
inary study because of the relatively small number of cases, allowing for faster model-fitting.
Figure 2 shows the three sets of observed data: {nt}, {rt} and {Dt}, for t ∈ {1, 2,… , 30}.

We gathered publicly available data from the BC CDC Surveillance Reports (BC Centre
for Disease Control, 2020). For the 30 weeks starting 26 March 2020 and ending 15 October
2020, we used weekly counts aggregated on Thursdays. The 30-week time period was chosen
because the data definitions in the public reports were relatively stable over this period, making
data comparable between weeks. We note that the reporting period shifted from Thursdays to
Fridays after the 15 October 2020 reporting date. The start dates for each phase of the provincial
recovery plan are shown in Table 1. The end of each phase of the provincial recovery plan
caused changes/reductions in the provincial protective measures (such as reopening of local
businesses in Phase 2), which led to inhomogeneity in the dynamics parameters. To account for
this inhomogeneity, we fitted the parameters dependent on time-varying covariates using link
functions. A summary of the public health measures taken for each phase is shown in Table 1.
Additional data used as covariates include the number of new COVID-19 tests administered per

FIGURE 2: Plots of the three datasets: case counts {nt} (top), recoveries {rt} (middle) and deaths
{Dt} (bottom). Data are for the 30 weeks from 26 March 2020 to 15 October 2020 for the

Northern Health Authority region of British Columbia, Canada.

DOI: 10.1002/cjs.11664 The Canadian Journal of Statistics / La revue canadienne de statistique



1026 PARKER, LI, ELLIOTT, MA AND COWEN Vol. 49, No. 4

TABLE 1: Summary of the BC recovery plan phases and associated measures.

Recovery plan phase Summary of measures

Phase 1: “Implementation”
Start date: 26 March 2020

• Public health emergency declared
• Mandated physical distancing
• Banned gatherings of more than 50 people
• Closed dine-in service at bars and restaurants,

and non-essential personal services
• Closed all BC provincial parks
• US/Canada border closure

Phase 2: “Initial relaxation”
Start date: 21 May 2020

• Part time return to school for K-12 students
• Businesses and sectors reopened with extra

safety precautions and physical distancing
measures

•Employers required to develop COVID-19 safety
plans

Phase 3a: “Further relaxation”
Start date: 25 June 2020

• Allowing non-essential travel in BC
• Reopening of hotels and movie theatres

Phase 3b: “Start of school year”
Start date: 17 September 2020

• Same as 3a, plus start of school year

Note: See Government of British Columbia (2020) and the BC Centre for Disease Control (2020) for complete lists of
enacted measures and protocols.

week (Province of British Columbia, 2020)—which is a strong indicator of the detection rate
p—and Google regional mobility data (Google LLC, 2020)—which is a potential indicator of
the domestic spread (𝜔). The phase boundaries were used to demarcate categorical covariates
for each phase.

Publicly available data are often intensely aggregated, poorly reported (Barone, 2020), or
susceptible to technical issues such as data loss (Fetzer & Graeber, 2020). In the case of the
Surveillance Report data, there are several shortcomings to consider. Reporting dates may be
delayed from the date of detection, or from the date of infection. Reporting delays are also
not necessarily the same between case counts, recovery counts and death counts. The number
of observed cases is dependent on the testing methodology (number of tests administered,
effectiveness of tests, etc.), and this testing methodology can change over time. The data also
suffer from ad hoc reporting times, so that counts are not always available for each day, and
some days contain lump sum data dumps. Owing to these particular data issues, we chose to use
weekly aggregated counts rather than daily counts. These data limitations are concerning, and
more reliable data could improve the accuracy of our results.

3.2. Results
3.2.1. Base model comparison MLE versus MCMC
To compare the MLE and MCMC methods, we fitted base models with no covariates. Both the
MLE and the MCMC base models were run on Compute Canada’s WestGrid. The fitted model
parameters are shown in Table 2. For both methods, pd was estimated to be essentially zero, as
the Northern Health Authority region of BC had no deaths until Phase 3b. Several parameter
estimates are dissimilar between the MLE and MCMC methods. The estimates for 𝛾 and 𝜔 are
significantly different, with no overlap in their uncertainty intervals. This is likely due to the
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TABLE 2: Parameter estimates for the base model (with no parameter covariates) fitted to the Northern
Health Authority COVID-19 data.

Parameter MLE MCMC

𝜆 52.58 (38.91, 71.05) 29.36 (16.44, 47.71)

𝛾 4 × 10−9 (0,∞) 1.60 (0.14, 4.00)

𝜔 1.01 (0.96, 1.08) 0.62 (0.54, 0.70)

p 0.30 (0.21, 0.41) 0.30 (0.22, 0.41)

pd 0.0024 (0.0012, 0.0048) 0.0037 (0.0012, 0.0080)

pr 0.48 (0.46, 0.50) 0.62 (0.58, 0.66)

Note: Included for comparison are classic N-mixture maximum likelihood estimates (MLE) and Bayesian model estimates
(MCMC), with 95% confidence intervals shown in parentheses for MLE parameter estimates, and 95% credible intervals
shown for MCMC estimates. Parameters are initial mean abundance parameter 𝜆, mean imported cases parameter 𝛾 ,
mean domestic spread parameter 𝜔, probability of detection p, probability of mortality pd , and probability of recovery pr .
We note that p (in bold) is our primary parameter of interest for estimating under-detection.

similarity between models with small population growth (when both parameters 𝛾 and 𝜔 are
small, this may cause a non-identifiability issue for these parameters). However, the Bayesian
estimate of the detection probability, p̂ = 0.30, is identical to that of the classic N-mixture
estimate, p̂ = 0.30. Parameter errors are estimated using the estimated Hessian matrix for the
MLE method, and using the posterior credible intervals for the MCMC method.

The Bayesian approach requires specification of prior distributions for each parameter in
the model. The prior distributions we used are summarized in Equation (4). For the parameter
𝜆, we use the gamma distribution with mean 15. For the parameter 𝛾 , we chose to use the
uniform distribution with lower bound equal to 0 and upper bound equal to 30. For the detection
probability parameter p and the probability of death pd, we used the Uniform(0,1) distribution to
place equal probability on all possible values. Since pr and pd are dependent, we use pd as the
upper bound for the uniform distribution of pr. We chose a weakly informative prior for 𝜔, the
uniform distribution with lower bound 0 and upper bound 5.

For the Bayesian approach we used the mean as the test quantity for posterior checking
(see Figure 3). The red lines indicate the observed means, which are close to the middle of the
simulated distributions, showing a good fit. The posterior predictive P-values for observed cases,
recovered cases, and deaths are 0.37, 0.42 and 0.42, respectively. Each of the P-values is close
to 0.5, which also shows that the model has a good fit.

Prior Distributions:

𝜋𝜆 = Gamma(shape = 15, rate = 1) 𝜋p = Uniform(0, 1)

𝜋𝛾 = Uniform(0, 30) 𝜋pd
= Uniform(0, 1)

𝜋𝜔 = Uniform(0, 5) 𝜋pr
= Uniform(0, pd) (4)

3.2.2. Bayesian sensitivity analysis
We performed a sensitivity analysis to determine the impact of the 𝜆 and 𝛾 prior distributions
on parameter estimates. Since the parameter 𝜆 informs the initial population size, it is crucial
that the prior not be overly informative; therefore, we performed a sensitivity analysis for 𝜋𝜆.
We also performed a sensitivity analysis for 𝜋𝛾 , since the discrepancy between the MLE and
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FIGURE 3: Posterior model checking for COVID-19 cases in the Northern Health Authority
region showing (a) observed cases, (b) observed recoveries and (c) observed deaths. The posterior

means are depicted as vertical red dashed lines.

MCMC estimates for 𝛾 led to the concern that the prior may be overly informative. Both prior
distributions were found to have low impact on the parameter estimates.

For the parameter 𝜆, we set the mean of the gamma distribution to be 5, 10 and 20 in the
analysis. We set the variance of the prior distribution to 200 in order to have large variation in 𝜆.
The medians and the relative 95% credible intervals for the parameter estimates are shown for
each 𝜆 prior distribution in Table 3.

For the parameter 𝛾 , we used a uniform distribution with minimum 0 and the maximum
varying from 5 to 30. The medians and the relative 95% credible intervals for the parameter
estimates are shown for each 𝛾 prior distribution in Table 4.

3.3. Bayesian Simulation Study
In order to ascertain the ability of the model to provide adequate parameter estimates, we
performed a simulation study by setting ground truth values for the model parameters. We set
the parameter values close to the parameter estimates for the Northern Health Authority region
Bayesian model, and we set the number of sampling occasions to be the same, i.e., 30.
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TABLE 3: Sensitivity analysis for the 𝜆 prior 𝜋𝜆 in the base model (no parameter covariates) fitted to the
Northern Health Authority COVID-19 data.

Lambda prior Mean 5 variance 200 Mean 10 variance 200 Mean 20 variance 200

�̂� 29.91 (16.81, 49.24) 29.62 (16.65,48.27) 29.09 (16.93,46.25)

�̂� 1.66 (0.13,4.01) 1.65 (0.15, 4.01) 1.59 (0.11,3.89)

�̂� 0.62 (0.54, 0.70) 0.62 (0.54, 0.70) 0.62 (0.54, 0.71)

p̂ 0.31 (0.22, 0.41) 0.30 (0.21, 0.40) 0.31 (0.23, 0.41)

p̂d 0.0049 (0.0036, 0.0057) 0.0037 (0.0014, 0.0056) 0.0046 (0.0018, 0.0076)

p̂r 0.62 (0.58, 0.66) 0.62 (0.58, 0.66) 0.62 (0.58, 0.66)

Note: Parameters are initial mean abundance parameter 𝜆, mean imported cases parameter 𝛾 , mean domestic spread
parameter 𝜔, probability of detection p, probability of mortality pd , and probability of recovery pr . The 𝜆 parameter
was given a gamma prior distribution. The posterior medians and 95% credible intervals for the parameter estimates are
shown.

TABLE 4: Sensitivity analysis for the 𝛾 prior 𝜋𝛾 in the base model (with no parameter covariates) fitted to
the Northern Health Authority COVID-19 data.

Gamma prior Uniform(0, 5) Uniform(0, 10) Uniform(0, 30)

�̂� 29.86 (16.69, 48.09) 29.26 (16.37, 48.44) 30.04 (1.68, 48.53)

�̂� 1.64 (0.13, 4.14) 1.64 (0.13, 3.99) 1.58 (0.15, 3.99)

�̂� 0.62 (0.54, 0.70) 0.62 (0.54, 0.71) 0.63 (0.55, 0.71)

p̂ 0.30 (0.21, 0.40) 0.31 (0.22, 0.41) 0.30 (0.21, 0.76)

p̂d 0.0024 (0.0009, 0.0044) 0.0040 (0.0024, 0.0056) 0.0026 (0.0007, 0.0044)

p̂r 0.62 (0.58, 0.66) 0.62 (0.58, 0.66) 0.62 (0.58, 0.66)

Note: Parameters are initial mean abundance parameter 𝜆, mean imported cases parameter 𝛾 , mean domestic spread
parameter 𝜔, probability of detection p, probability of mortality pd , and probability of recovery pr . The 𝛾 parameter was
given a uniform prior distribution. Posterior medians and 95% credible intervals for the parameter estimates are shown.

We generated random populations and observations based on the ground truth parameter
values and the model structure shown in Figure 1. The randomly generated observation data
included observed cases, recoveries and deaths. We used the generated observations to fit the
base model using JAGS (Plummer, 2003) via the RJags package (Plummer, 2019) and the prior
distributions in Equation (4). We repeated the process 150 times, calculating the mean of the
150 posterior medians (Table 5). The coverage probability for the 150 credible intervals for
the detection probability is close to 0.95, indicating good model performance. For the other
parameters, the coverage probabilities are smaller; however, considering the small number of
replicates, the coverage is reasonably close to 0.95. The simulation study was conducted on
Compute Canada’s WestGrid.

3.3.1. Best fitted model results
We incorporated parameter covariates into our model, and we considered several nested models,
starting with a base model with no covariates. MLE was used to fit each of the nested models.
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TABLE 5: Results of the Bayesian model simulation study with 150 independent replicates to compare
parameter estimates with true values.

Parameter Ground truth Parameter estimates Coverage probability

𝜆 10 9.07 0.93

𝛾 2 4.03 0.89

𝜔 0.5 0.44 0.90

p 0.5 0.48 0.97

pd 0.005 0.0053 0.85

pr 0.5 0.50 0.91

Note: Parameters are initial mean abundance parameter 𝜆, mean imported cases parameter 𝛾 , mean domestic spread
parameter 𝜔, probability of detection p, probability of mortality pd , and probability of recovery pr . Parameter estimates
are simulation means of the 150 posterior medians, with 95% coverage probability.

TABLE 6: Model covariates, log-likelihood (𝓁), number of parameters (Q), Akaike information criterion
(AIC), ΔAIC, and small sample AIC (AICc).

Model covariates Q 𝓁 AIC ΔAIC AICc

(pha, vol) 10 −270.45 560.90 0 572.47

(pha) 9 −274.19 566.39 5.49 575.39

(mob, vol) 13 −270.74 567.49 6.59 590.24

(mob, pha, vol) 16 −268.31 568.61 7.71 610.46

(mob) 12 −273.36 570.72 9.82 589.08

(vol) 7 −290.92 595.83 34.93 600.92

(No covariates) 6 −298.07 608.14 47.24 611.79

Note: Parameter covariates are indicated by shorthand: mob for Google mobility data as covariates for 𝜔 (+6 covariates);
vol for testing volume as covariate for p (+1 covariate); and pha for BC Recovery Plan phase as covariates for 𝜔 (+3
covariates).

Covariates were incorporated into the model using log transforms (to limit the parameter range
from 0 to ∞) for parameters 𝜆, 𝛾 and 𝜔, and logit transforms (to limit the parameter range from 0
to 1) for parameters p, pd and pr. For example, consider the model with normalized weekly test
volumes Vt as a covariate for the probability of detection p. This would be included in the model
using the logit transform logit(pt) = 𝛽0 + 𝛽1Vt. In this way, 𝛽0 would be the baseline coefficient
for pt, 𝛽1 would be the effect on probability of detection due to number of tests administered, and
pt would be constrained to take values between 0 and 1. We used Akaike’s information criterion
(AIC; Akaike, 1974) to compare models (Table 6). We also considered the small-sample version
of AIC, the AICc, which produced the same top model as AIC. The nested models were all run
on a 4.0 GHz AMD Ryzen 9 3900X with 24 logical processors.

We considered several possible sets of parameter covariates, indicated by the following
shorthand: mob for Google mobility data as covariates for 𝜔 (+6 covariates); vol for testing
volume as covariate for p (+1 covariate); and pha for BC Recovery Plan phase as covariates
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for 𝜔 (+3 covariates). The best fitted model was (pha, vol), which included a total of 10 model
parameters.

Since the covariates for p and 𝜔 are time-varying, the parameters themselves are also
time-varying. For this reason, the parameter estimates for pt and 𝜔t are summarized graphically
for each week t in Figures 4 and 5. The remaining parameter estimates are summarized in
Table 7. The estimated weekly probability of detection was used to estimate Nt through a
Horvitz–Thompson-type estimator, N̂t = nt∕p̂t (Figure 6).

FIGURE 4: Estimated probability of detection p̂ from the best fitted model (pha, vol), as chosen
by AIC. Top: weekly detection probability, along with weekly 95% confidence intervals. Bottom:
covariate weekly testing volume. Trends in weekly testing volume can be seen to match trends
in probability of detection, since they are related through logit(p) = 𝛽0 + 𝛽1Vt, where Vt is the

normalized weekly testing volume, and 𝛽i are the covariate coefficients.

FIGURE 5: Estimated average weekly infections per infected individual �̂� from the model (pha,
vol) per week, with 95% confidence intervals. BC Recovery Plan phases are indicated by shaded
and labelled regions. Phase covariates are related to 𝜔 through log(𝜔) = 𝛽1I1 + 𝛽2I2 + 𝛽3aI3a +
𝛽3bI3b, where Ii are indicator variables indicating Phase i, and 𝛽i are the covariate coefficients.
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TABLE 7: Parameter estimates and 95% confidence intervals for the best fitted model (pha, vol).

Parameter Estimate CI

𝜆 64.87 (43.98, 95.67)

𝛾 4 × 10−9 (0,∞)

pd 0.0020 (0.0010, 0.0042)

pr 0.48 (0.46, 0.50)

Note: Parameters are initial mean abundance parameter 𝜆, mean imported cases parameter 𝛾 , probability of mortality pd ,
and probability of recovery pr . Time-varying parameters p and 𝜔 are not included.

FIGURE 6: Estimated active cases N̂t per week from the best fitted model (mob, vol), as chosen
by AIC. Bottom line (red): newly observed active cases. Top line (blue): estimated active cases
with 95% confidence intervals. N̂t are calculated from the estimated probability of detection p̂t

and newly observed active cases by N̂t = nt∕p̂t.

We note that all fitted models had �̂� ≈ 0, which is on the boundary of the parameter space.
This led to 95% confidence intervals of (0,∞) and an inability to estimate uncertainty for 𝛾 .

4. DISCUSSION

We developed a novel model for disease analytics, accounting for population dynamics and
under-detected cases, by incorporating three datasets that are commonly available publicly during
a pandemic. The model also incorporates parameter covariates, which allow for time-varying
parameters and parameter change points. We have estimated the level of under-detection of
COVID-19 cases in the BC Northern Health Authority region, and found that there is substantial
evidence of undetected COVID-19 cases during the first 30 weeks of the pandemic in BC
We have compared two methods of implementing a base model with no covariates, and found
that both the MLE and the MCMC approaches are able to describe the population dynamics
and estimate levels of under-reporting. We then improved upon the parameter estimates by
incorporating several parameter covariates for the MLE implementation. The best fitted model,
(pha, vol), as chosen by AIC, was found to have the probability of detection dependent on the
volume of weekly tests administered, and domestic spread dependent on changes in phase for
the BC Recovery Plan.

Choosing the best fitted model using AIC has the benefit of parsimony: we selected the
model with the smallest number of model parameters, which explained the most variability
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in the observed data. The AIC approach did not select the full model (mob, pha, vol) over
the best fitted model because of this parsimony. This is not surprising, since a likely effect
of the different BC Recovery Plan phases should be to affect changes in population mobility.
Thus, some of the information contained in the mobility data is likely accounted for in the
phase data.

Estimates of weekly probability of detection for the model (pha, vol) can be seen to closely
follow the trend in weekly administered tests (Figure 4). We can see clearly that under-reporting
was the lowest at the end of the 30-week period (minimum of 60.2% at week 28) and the highest
between weeks 3 and 20 (maximum of 84.2% at week 4).

As illustrated in Figure 6, there is a period (weeks 13–17) with zero observed new active
cases. This leads to estimates of N̂t = 0 for that time period. However, it is important to
note that it is unlikely that Nt is actually zero; rather, we had insufficient data for that
period. This is a period with testing volume insufficient to detect the smaller number of
active cases adequately. The bottom plot of Figure 4 indicates the low testing volume from
week 13 to week 16.

An additional goal of this study was to identify any change in 𝜔 over each of the phases of
the BC Recovery Plan. We show in Figure 5 the results of estimating 𝜔 for the model (pha, vol).
The four recovery plan phases are labelled in the plot, and the effect of each phase on domestic
spread is clear. For Phase 1, �̂�1 = 0.91, 95% CI: (0.80, 1.05); for Phase 2, �̂�2 = 0.71, 95%
CI: (0.50, 1.03); for Phase 3a, �̂�3a = 1.28, 95% CI: (1.04, 1.58); and for Phase 3b, �̂�3b = 0.80,
95% CI: (0.63, 1.00). Thus Phase 3a saw the largest average domestic spread out of the four
considered periods.

Regions with many COVID-19 cases may have experienced higher rates of under-detection
than the Northern Health Authority region because of a lack of capacity for testing. However, our
results are consistent with a serological study (Skowronski et al., 2020) in the lower mainland
of BC, which used two sampling snapshots (one in March and one in May 2020). Skowronski
et al. (2020) found that for May 2020, the 95% confidence interval for total cases was between
2.25 and 20.5 times greater than the reported number of cases, while we found for May
2020 (weeks 6–10) a 95% confidence interval of 3.69–8.75 times greater than the reported
number of cases. While these confidence intervals are consistent with each other, and we
believe the under-detection rate could be similar across regions (when testing volume has been
accounted for), further studies applying these methods to other regions would be necessary for
confirmation.

Owing to the summation over states to remove the latent variables Nt and Rt from the
likelihood, the likelihood function is computationally demanding, with computation times
roughly proportional to K3. This is one important reason to consider the Bayesian MCMC
approach over the MLE approach. The Bayesian approach is more computationally tractable
for large Nt, as the MCMC algorithm explores the space of possible latent variable states
stochastically, without resorting to integrating over states. For comparison, in the Northern
Health Authority case study, both the MLE approach and the MCMC approach took close to
6 h of computing time (both were computed using Compute Canada’s WestGrid). However, for
larger regions, the MLE approach may become intractable because of the dependence of the
computing time on the population size.

In choosing the priors for the MCMC approach, it would be beneficial to incorporate results
from other comparable studies. In particular, there is little prior knowledge informing the range
of the spread rate 𝜔 and the mean importation 𝛾 . Improving the prior distributions would be
helpful in reducing the posterior variance and improving the accuracy of estimates (Kéry &
Royle, 2015, Section 2.5.3).

Currently, our model cannot account for the differences between symptomatic and asymp-
tomatic cases. The data we used to inform the model involve aggregated case counts of primarily
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symptomatic cases. However, our model attempts to estimate the total number of COVID-19
cases (including both symptomatic and asymptomatic cases). This is possible because asymp-
tomatic cases will still contribute to the spread of the virus, increasing the number of symptomatic
cases (Ganyani et al., 2020; Johansson et al., 2021). Thus the population growth parameters 𝛾

and 𝜔 are informed by both the symptomatic and the asymptomatic cases (and the probability
of detection p will be deflated by the presence of asymptomatic cases). However, our model
does not treat the two categories separately, thus making the implicit model assumption that
both categories share identical population dynamics. In future work, this could be addressed
by including additional information about asymptomatic cases, which to our knowledge is not
widely available from regional public data. In the hospitalization records model of Pullano et
al. (2021), researchers looked at under-detection of COVID-19 in France, and their approach
included information on numbers of symptomatic and asymptomatic cases observed through
testing, allowing them to assess population dynamics for those case categories. Similar data
collection could be done for other regions, and the information could be incorporated into our
model using techniques similar to those of Pullano et al. (2021). If the proportion of asymptomatic
cases was known over time, then that information could be used as a time covariate for relevant
parameters in our model.

Our model does not make use of any additional data to distinguish between domestic spread
and importation. If we had access to reliable data on the proportion of observed cases that
are due to domestic spread versus importation, then we could also incorporate these data as
parameter covariates and further improve the estimates of the population dynamics parameters
𝛾 and 𝜔. This could improve our model fit, as our current estimate for the apparent mean
importation is �̂� ≈ 0, which is not likely to be the true mean importation. As an example, consider
as auxiliary data the number of incoming travellers who have tested positive per week. The
auxiliary data would give a lower bound on 𝛾 for each time point, leading to better estimates
of both 𝛾 and 𝜔. The auxiliary data would be incorporated in the MLE models by including
an indicator variable in the likelihood function and in the MCMC models as additional prior
knowledge for 𝛾 .

An important limitation of our model is the requirement for enough reporting periods
T . Initially we looked at only the Phase 1 data for the Northern Health Authority region.
However, since Phase 1 contained only 8 weeks of data, both the MLE and the MCMC
models failed to converge. For the MLE model, increasing K caused �̂� to increase with-
out bound, while p̂ decreased asymptotically to zero. For the MCMC model, the fail-
ure was evident in that the prior distributions chosen for both 𝜆 and p became overly
informative.

Another shortcoming of the model, identified by an anonymous reviewer, is that the number
of deaths Dt is assumed fully observed, and in the model specified in Equation (1) we make the
simplifying assumption that pd is the same between the two multinomial components (the state
process and the observation process) of the model. This implies that p̂d = E

[Dt
Nt

]
, and also that

p̂d = E
[Dt

at

]
. However, this is inconsistent when Dt > 0, since Nt > at. This inconsistency will

have little to no effect on our case study, since p̂d is small. However, for larger values of pd, this
issue could be solved by adding an additional parameter 𝛼 to the model, which would allow 𝛼pd
(probability of death for observed cases) to be larger than pd (probability of death for total cases).
In this case, in Equation (1): Observation Process, we would need to replace pd with 𝛼pd. Several
options exist for modelling 𝛼. It could be another free parameter to be estimated by the model
fitting process, or it could be taken to be the reciprocal of the probability of detection: 𝛼 = 1∕p.
The latter case seems preferable, as it has the potential to inform estimates of the probability of
detection better when pd is large; and when p approaches 1, 𝛼pd approaches pd. This latter case
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leads to the following generative process:

Initial Abundance: N1 ∼ Poisson(𝜆)

State Process: {At,Dt,Rt} ∼ Mult
(
Nt; pa, pd, pr

)
Observed Active Cases: at = nt + at−1 − rt−1 − Dt−1, a0 = r0 = D0 = 0

Domestic Spread: St ∼ Poisson
(
𝜔Nt−1

)
, for t > 1

Imported Cases: Gt ∼ Poisson(𝛾), for t > 1

Abundance Updates: Nt = At−1 + St + Gt, for t > 1

Observation Process:
nt ∼ Binomial

(
Nt − at−1 + rt−1 + Dt−1, p

)
{at − Dt − rt,Dt, rt} ∼ Mult

(
at; p∗a, 𝛼pd, pr

)

(5)

where p∗a = 1 − 𝛼pd − pr is the probability of remaining active in the observed subset of cases.
We note that this implies an additional constraint: p > pd. However, the constraint is already
accounted for by the assumption that deaths are fully observed.

For future applications to larger populations, we recommend introducing the 𝛼 parameter
specified in Equation (5). To illustrate the similarity between the 𝛼 = 1 model and the 𝛼 = 1∕p
model when the number of deaths is relatively small, we show in Table 8 the parameter estimates
from fitting both models using the Bayesian framework. Parameter estimates are nearly identical
between the two models.

For future applications of this model to more recent data, in particular to the current situation
with the COVID-19 pandemic, we also recommend including total administered vaccinations
as a time-varying parameter for 𝜔, since a larger proportion of vaccinated individuals in a
population reduces the rate of spread of the disease (Haas et al., 2021).

In the N-mixtures disease analytics work of DiRenzo et al. (2019), data are required for
modelling both infected and non-infected individuals, as sampling is assumed to occur at
random in a mixed population. In contrast, we only consider infected individuals, as the publicly
available COVID-19 counts data do not contain any non-infected individuals. It is possible for
us to ignore the uninfected population because of the implicit assumption that the uninfected
population is large compared to the infected population (so that we do not account for population

TABLE 8: Bayesian parameter estimates for the base model (with no parameter covariates) fitted to the
Northern Health Authority COVID-19 data.

Parameter Model 𝛼 = 1 Model 𝛼 = 1∕p

𝜆 29.36 (16.44, 47.71) 30.30 (16.62, 48.51)

𝛾 1.60 (0.14, 4.00) 1.71 (0.13, 3.98)

𝜔 0.62 (0.54, 0.70) 0.62 (0.54, 0.70)

p 0.30 (0.22, 0.41) 0.31 (0.21, 0.41)

pd 0.0037 (0.0012, 0.0080) 0.0030 (0.0013, 0.0055)

pr 0.62 (0.58, 0.66) 0.62 (0.58, 0.66)

Note: Included for comparison are estimates with 95% credible intervals for the 𝛼 = 1 model from Equation (1) and the
𝛼 = 1∕p model from Equation (5). Parameters are initial mean abundance parameter 𝜆, mean imported cases parameter
𝛾 , mean domestic spread parameter 𝜔, probability of detection p, probability of mortality pd , and probability of recovery
pr . Note that for the Northern Health Authority data, the difference in estimates between the two models is negligible.
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saturation effects, such as running out of susceptible members of the population to infect). While
this implicit assumption is reasonable during early stages of the pandemic, it can be removed
by including time-varying covariates for 𝜔, which would allow 𝜔 to decrease to zero as the
population becomes saturated.

We have looked at a single Health Authority region in British Columbia, Canada. We will
continue to apply these methods to each of the remaining four Health Authority regions so as
to compare the results across the province. By extending these methods to multi-site modelling,
we intend to evaluate the situation for the province of BC as a whole, treating each Health
Authority region as an independent site. This will allow each site to borrow population dynamics
information from the other regions.
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