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Abstract

Homocysteine is an essential intermediate product of biochemical reactions that

is present in various tissues of the human body. Homocysteine may be associ-

ated with the development and progression of Parkinson’s disease. Plasma

homocysteine levels in patients with Parkinson’s disease are elevated compared

to those of healthy individuals. High homocysteine drives PD development and

progression while aggregating the clinical symptoms of PD patients. The rela-

tionship between PD and homocysteine involves multiple pathways, including

nerve cell apoptosis, oxidative stress, and DNA damage. This is crucial for

explaining how high homocysteine drives the PD procession. Elevated homo-

cysteine level during PD development and progression offers a new strategy for

the diagnosis and treatment of this disease.

Introduction

Parkinson’s disease (PD), also known as tremor paralysis,

is a common degenerative disease of the nervous system in

middle-aged and elderly people. Pathologically, PD is char-

acterized by the degenerative loss of dopaminergic neurons

and the formation of Lewy bodies.1 As an extrapyramidal

disease, the typical symptoms of PD include resting tre-

mor, muscle rigidity, and bradykinesia, associated with

other nonmotor symptoms such as olfactory dysfunction,

cognitive impairment, psychiatric symptoms, and auto-

nomic dysfunction.2 Once these psychiatric symptoms are

manifested, they are often present persistently, increasing

the burden of care. Moreover, the psychiatric symptoms

can even outcompete the motor symptoms and become

the foremost factor affecting the quality of life and survival

of patients. Hence, these psychiatric symptoms are impor-

tant indications of poor prognosis in patients with PD.3

The prevalence of PD increases with increasing age, and

1% of the population aged over 60 years are affected by

PD.4 Therefore, exploring the etiology and pathogenesis of

PD is of enormous medical and social value for guiding

the diagnosis, treatment, and prevention of the disease,

and for improving the quality of life of the patients.

In recent years, some studies have shown that nearly

30% of the PD patients are associated with elevated
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plasma Hcy levels.5 Based on a clinical trial, Licking

et al.6 have shown that Hcy is closely related to PD devel-

opment and progression, and high Hcy may be a major

risk factor of PD. Hcy is a thio-containing amino acid

generated through the demethylation of methionine.

Methionine reacts with ATP to produce S-adenosyl-L-me-

thionine which is then demethylase to form Hcy, without

participating in protein synthesis.7–9 Hcy is mainly

derived from methionine in food and it is present mainly

in three forms in plasma. The most important form is

albumin-bound Hcy (~70–80%), while 1% is free Hcy in

a reduced form; the remaining portion is Hcy-cysteine

disulfide.10 The total Hcy in plasma is the sum of the

three forms, and the Hcy concentration usually refers to

the total Hcy concentration.

The Hcy produced in the human body is mainly elimi-

nated through the following three metabolic pathways.

(1) Remethylation: Hcy is remethylated to methionine by

5,10-methylenetetrahydrofolate reductase and methionine

synthetase, with vitamins B2 and B12 as cofactors.11 (2)

Transsulfuration, namely, the condensation of Hcy with

serine: Hcy is first transformed into cystathionine, in

which cystathionine b-synthase must be liberated and

vitamin B6 is used as a cofactor; further, the cystathionine

produced is metabolized into cysteine and a-ketobutyric
acid which are excreted from the body.12 (3) Release into

the extracellular fluid, which is indicative of the balance

between Hcy production and metabolism: at low concen-

trations of methionine, the cellular release of Hcy is

mainly controlled by the activity of methionine synthase,

while at high concentrations of methionine, cystathionine

synthetase activity primarily determines Hcy release.13

Studies have shown that high concentrations of Hcy are

closely linked to PD development and progression, and

Hcy may become a feasible therapeutic target for cogni-

tive decline in PD.14 Therefore, understanding the role of

Hcy in PD development and progression is of great sig-

nificance to revealing the pathogenesis of the disease.

Etiology of Hyperhomocysteinemia

Plasma Hcy concentrations can range from 5 to 15 lmol/L

in normal people,15 and elevated Hcy levels of 15 lmol/L

or higher are considered as hyperhomocysteinemia

(Hhcy).7,8 Because plasma metabolism is regulated by

many key enzymes, cofactors, and methyltetrahydrofolic

acid as a substrate, the etiology of Hhcy is diverse, mainly

including gene defects and nutritional deficiencies.16

Among the genetic causes of severe Hhcy and typical Hhcy

hematuria (congenital Hhcy hematuria), homozygous CbS
deficiency was found to be the most prevalent factor with

an incidence of 1/100,000, which resulted in a 40-fold

increase in the fasting plasma Hcy concentration compared

to the normal level.17 This defect is an autosomal recessive

trait. So far, at least 60 CbS mutants have been reported,

among which I278T and G307S are the most common

ones.18 Other gene defects include homozygous deficiency

of methylenetetrahydrofolate reductase (MTHFR),

methionine synthetase deficiency, and functional impair-

ment of methionine synthetase due to gene abnormality in

vitamin B12 metabolism.19,20 The C677T point mutation

in the coding region of the MTHFR gene is the most com-

mon gene defect associated with mild elevations of Hcy,

and the activity of the resulting MTHFR variant is only half

of the normal enzyme activity.21 A nutritional status analy-

sis has revealed that folic acid, vitamin B12, and vitamin

B6 are closely associated with Hcy metabolism; any nutri-

tional deficiencies that could lead to a decrease in folic

acid, vitamin B12, or vitamin B6 concentration would

increase the risk of Hhcy.22 Reportedly, ~2/3 of Hhcy cases

are caused by deficient blood concentrations of two or

more vitamin cofactors.22

Age and gender are also important factors related to

Hhcy. Plasma Hcy concentrations gradually increase with

increasing age, which may be attributed to the following

three reasons23: (1) the elderly are deficient in key cofac-

tors including vitamin B16, vitamin B12, and folic acid,

which results in decreased activities of amino acid meta-

bolic enzymes; (2) the elderly often have renal hypofunc-

tion; and (3) the elderly often exhibit decreased

cystathionase activity. Generally, plasma Hcy concentra-

tions in men are higher than in women, and, the concen-

tration levels increase with increasing age irrespective of

gender. Additionally, Hcy concentrations may increase or

remain constant in women after menopause.24 The main

pathway to clear Hcy in plasma is renal metabolism

(~70%), rather than simple excretion with urine.25,26

Hence, renal hypofunction often results in Hhcy. More-

over, plasma levels of Hcy are affected by the effects of

specific drugs,27 while certain diseases may cause Hhcy.

For example, plasma Hcy concentrations are increased in

patients with severe scleroderma due to folic acid defi-

ciency.28 An increase in plasma Hcy concentrations has

also been found among patients with lymphocytic leuke-

mia,29 breast cancer30 ovarian cancer,31 hepatocellular car-

cinoma,32 perhaps due to the metabolic disorder of

methionine in malignant cells.32 Furthermore, abnormal

living habits such as staying up late, alcoholism, smoking,

harsh environment, and high stress can lead to an

increase in plasma Hcy concentrations.33

Elevations of Homocysteine Levels in
Parkinson’s Disease

Epidemiological and clinical studies have shown that the

elevation of plasma Hcy levels is a high-risk factor for
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neurodegenerative diseases.34 Kuhn et al.35 reported that

the plasma Hcy levels in PD patients were substantially

higher than in the control group. High Hcy-induced loss

of intracellular ATP was suggested to be a crucial factor

leading to PD.36 Duan et al.37 noted that Hhcy con-

tributed to the decrease in dopaminergic neurons in a rat

PD model, while it enhanced the sensitivity of human

dopaminergic neurons to rotenone and iron ions in vitro;

these results suggest that Hhcy can destroy dopaminergic

neurons through increasing their sensitivity to toxins,

thereby driving the pathogenesis of PD and accelerating

disease progression. O’Suilleabhain et al.38 found that PD

patients with elevated plasma Hcy levels were more

depressed and cognitively impaired than the patients with

nonelevated Hcy levels. Because an elevated Hcy level can

usually be lowered by vitamin supplementation, these

findings have potential therapeutic implications for ame-

liorating rates of clinical deterioration.38

Role of Hhcy in Parkinson’s Disease

Available studies show that the high concentrations of

Hcy may drive PD development and progression through

multiple pathways involving apoptosis, oxidative stress,

mitochondrial dysfunction, and DNA damage in nerve

cells. However, these molecular mechanisms still need to

be further explored by in vivo, in vitro, and clinical stud-

ies.

Hhcy mediates nerve cell apoptosis

Hhcy mediates nerve cell apoptosis mainly through the

promotion of energy consumption and damage of DNA

strands. Streck et al.36 injected Hcy into animals, which

substantially reduced the production of tricarboxylic acid

cycle products and the intake of glucose by negatively

affecting succinate dehydrogenase and cytochrome C oxi-

dase activities. In physiological conditions, Hcy is methy-

lated into methionine to maintain low Hcy levels, and

this reaction requires the participation of folic acid and

vitamin B12.12 Methionine plays a vital role in the meta-

bolism of one-carbon units; it participates in many

biosynthetic processes and is essential for the synthesis,

repair, and methylation of DNA strands.39 Deficiency of

folic acid/vitamin B12 and/or excessive accumulation of

Hcy can hinder the metabolic turnover of methionine,

leading to decreased cytosine methylation in DNA and

hence the breakage of DNA strands. Kruman40 suggested

that the mechanism underpinning neuronal DNA damage

could be related to the interruption of DNA transmethy-

lation. Therefore, folic acid deficiency and Hhcy can

reduce DNA methylation, which in turn interferes with

gene transcription and DNA replication, impairs DNA

repair, and thus leads to gene mutation and apopto-

sis.41,42 Additionally, Paul et al.43 have shown that Hcy

may induce oxidative stress in nerve cells, which produces

reactive oxygen and nitrogen species, leading to apopto-

sis.

Hhcy can also induce nerve cell apoptosis via inhibition

of mitochondrial activity. Both clinical and animal studies

have demonstrated mitochondrial dysfunction in the

striatum of patients with PD.44,45 Hcy-mediated oxidative

stress inhibits the activity of mitochondrial complex I,

leading to mitochondrial respiratory chain dysfunction.46

Moreover, Hcy can enhance caspase activity and reduce

the mitochondrial transmembrane potential; the resulting

calcium influx causes calcium overload, eventually leading

to apoptosis.47 The reduction in mitochondrial complex I

activity and the generation of reactive oxygen species may

be a key mechanism of dopaminergic neuron apoptosis in

PD.48

Hhcy induces oxidative stress

Hhcy-induced oxidative stress may be associated with

increased intracellular Ca2+ concentration and DNA dam-

age.40,49 Previous experimental study showed a significant

dose-effect relationship for Hcy and Ca2+; 0.5 mmol/L of

Hcy markedly increased cytosolic Ca2+ concentrations,

and the Ca2+ concentrations increased with increasing

concentration of Hcy. In an in vitro culture of neuron

cells, both Hcy treatment and folic acid deficiency

resulted in an increase the intracellular Ca2+ concentra-

tions, while this reaction was alleviated by adding a Ca2+

channel blocker. This result suggests that at least most of

the increase in Ca2+ concentrations was caused by trans-

membrane Ca2+ inflow.49 Additionally, Hcy can activate

N-methyl-D-aspartate receptors (a subset of glutamic acid

receptors) and boost the excitotoxicity of glutamic acid,

leading to neuron degeneration. In contrast, N-methyl-D-

aspartate receptor blockers can reduce Hcy-induced cal-

cium influx, thereby reducing the toxic effect.40,50 More-

over, Refsum et al.51 have found that Hcy impairs

glutathione peroxidase activity and reduces the levels of

vitamins A, C, and E in tissues, thus inducing oxidative

stress.

The direct toxic effects of Hhcy on neurons

Hhcy increases the sensitivity of the nervous system to

the methylation of toxic substances in sensitive brain,

which is a vital biochemical process. S-adenosylhomocys-

teine. (SAH) is a potent methyltransferase inhibitor that

can slow down the methylation process in brain tissue,

which in turn causes damage and apoptosis of brain neu-

rons.52 Hhcy can inhibit the decomposition of SAH and
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thereby increase SAH levels in the brain. Kennedy et al.53

showed that the SAH levels in the prefrontal cortex of PD

patients with mild cognitive impairment were consider-

ably higher than in normal individuals, while the inhibi-

tion of exogenous methyltransferase activity by brain

tissue homogenates was 15% higher than in normal indi-

viduals; this result suggests that SAH may be an impor-

tant binding point for Hhcy to cause cognitive

impairment. Another study demonstrated that neurotoxi-

city was not induced by a direct infusion of free Hcy at a

dose of 0.43 ng/lL (equivalent to threefold the peripheral

plasma level) into the dorsal hippocampus of experimen-

tal animals; however, if kainic acid (a glutamate agonist

that is highly toxic to the hippocampus) was coinjected,

Hcy enhanced the neurotoxicity induced by kainic acid.40

Duan et al.37 also found a synergy between Hcy and 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, a

toxin widely used to induce PD-like changes in the ner-

vous system of animals). Thus, Hcy per se may not be

neurotoxic, but it increases the sensitivity of dopaminer-

gic neurons to other toxic substances among patients with

PD.

Hhcy impairs peripheral microcirculation

Hantatty et al.54 conducted a trial involving 22 healthy

adults and found that an increase in plasma Hcy concen-

trations, caused by oral administration of methionine or

Hcy, led to vascular endothelial dysfunction. When Hcy

enters the plasma, it oxidizes spontaneously to generate

O2 and H2O2. The reactive oxygen species generated by

endothelial injury due to Hhcy can cause vascular

endothelial cell damage. When metal ions such as iron

and copper are present, hydroxyl radicals with high cyto-

toxicity can be produced, leading to apoptosis and loss of

function in vascular endothelial cells.55 The active thiol

group of Hcy acts as a reducing group to break disulfide

bonds in peptide chain (e.g., thrombomodulin, protein C,

and certain molecules produced by endothelial cells, such

as the Von Willebrand factor), thereby affecting the bal-

ance between coagulation and anticoagulation.56 More-

over, Hcy inhibits glutathione peroxidase activity and

intracellular glutathione mRNA expression, which in turn

destroys the glutathione system and reduces the antioxi-

dant function of endothelium.57 Large amounts of Hcy

also reduce the biological activity of NO produced by

endothelial cells, thus weakening endothelium-dependent

vasodilation. Additionally, Hcy redox receptor is present

on human vascular smooth muscle, to which Hcy can

bind, causing vascular smooth muscle hyperplasia and

impairing vascular and endothelial function.58 In sum-

mary, Hhcy affects microcirculation through endothelial

injury, which in turn leads to insufficient brain perfusion,

causing cognitive impairment in PD.

Conclusion

Plasma Hcy concentrations are increased in patients with

PD compared to healthy individuals. Hhcy drives PD

development and progression while aggregating the clini-

cal symptoms among PD patients. Thus, Hhcy may be a

risk factor of PD. The relationship between PD and Hcy

involves multiple pathways, including gene defects, apop-

tosis, oxidative stress, and DNA damage. Therefore, the

detection and intervention of plasma Hcy levels in

patients with PD can facilitate the retardation and control

of PD progression, which has implications for improving

the prognosis and the quality of life of the patients.
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