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A B S T R A C T   

We aim to assess the causal association between educational attainment and gestational diabetes 
mellitus, and the mediating effect of obesity on this association. We estimated the causal effects of 
educational attainment on gestational diabetes mellitus using European ancestry genome-wide 
association study summary data with two-sample univariate Mendelian randomization (UVMR) 
approach. Two-stage Mendelian randomization analysis was performed to assess the potential 
mediating role of obesity traits in this association and to calculate the mediating proportion. 
UVMR analysis demonstrated that higher educational attainment was associated with a reduced 
risk of GDM (OR 0.76, 95% CI 0.67–0.86; p < 0.01). EA has also been associated with decreased 
obesity in women. Mediation Mendelian randomization results indicated that body mass index 
(BMI) was the most significant mediating factor in the relationship between educational attain
ment and GDM, accounting for 42.52% (95% CI 37.75–55.44%) of the effect, followed by waist- 
to-hip ratio (WHR) at 34.35% (95% CI 29.82–46.41%), body fat percentage at 28.95% (95% CI 
35.99–46.81%), and WHR adjusted for BMI (WHRadjBMI) at 12.51% (95% CI 36.2–58.5%). 
educational attainment exerts a potential causal protective effect against gestational diabetes 
mellitus, and obesity-related risk factors play a mediating role. Attention should be paid to the 
educational attainment of women, and obese women with lower educational attainment may 
represent a higher risk group for GDM than those with higher educational attainment.   

1. Introduction 

Gestational diabetes mellitus (GDM) is characterized by glucose intolerance, which manifests for the first time during pregnancy [1, 
2] since its initial description in 1964. GDM is a common complication during pregnancy, with a global incidence rate ranging from 
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7.1% to 27.6% in different areas [3,4], and affects approximately 17 million pregnancies worldwide [5]. GDM increases the risk of 
adverse pregnancy outcomes [6,7] and long-term maternal and offspring complications [1,5,8–10]. GDM is a growing public health 
concern that has garnered widespread attention worldwide. 

Education attainment (EA) is a vital socioeconomic characteristic and a predictor of other factors, such as occupation and income. It 
substantially impacts the adoption of healthy lifestyles and the accessibility of healthcare services [11]. Moreover, EA may serve as a 
causal factor in the development and mortality of various diseases. Mendelian randomization (MR) is a substantially more robust 
approach than conventional clinical research methods for evaluating causal relationships based on observational data. Recent MR 
studies have shown that higher EA is causally associated with a decreased risk of obesity traits [12–14] and identified a causal as
sociation between lower EA and a higher risk of type 2 diabetes [15,16]. However, little is known about the causal relationship be
tween genetically predicted EA and GDM risk as estimated using recent genome-wide association study (GWAS) data. 

Hence, our objective was to comprehensively examine the causal effects of EA on the risk of GDM and ascertain the mediating 
influence of obesity using two-sample univariate MR (UVMR) and MR-based mediation analyses. 

2. Materials and methods 

2.1. Study design 

The study design is illustrated in Fig. 1. The MR approach was based on three key assumptions [17]. First, the instrumental var
iables used were associated with the risk factors. Second, these factors were not associated with confounding factors. Finally, the effect 
of these genetic variants on the outcome should be solely through risk factors and no other pathways. 

2.2. Data sources for genetic instruments 

This MR study utilized summary-level data from GWASs to obtain data sources for exposure, mediators, and outcomes. Most 
GWASs have focused on individuals of European ancestry (Table 1). 

2.3. Genetic instruments for EA and obesity traits 

EA is the number of years of formal education a person has completed, starting with kindergarten or its equivalents [18]. Genetic 
instruments for education were selected from a GWAS of years of schooling in individuals of European ancestry. The most recent GWAS 
was conducted by the Social Science Genetic Association Consortium (SSGAC), with summary data available for 765,283 participants 
after excluding data from individuals in 23andMe owing to limitations in reporting more than 300,000 SNPs [18]. 

Body mass index (BMI), body fat percentage (BF%), waist-to-hip ratio (WHR) and WHR adjusted for BMI (WHRadjBMI) were 
selected as obesity traits. BMI, calculated as total body weight (kg) divided by standing height squared (m2), is a widely used indicator 
of overall obesity. WHR and WHRadjBMI are considered measures of central obesity. Genetic instruments for BMI, WHR, and 
WHRadjBMI were identified through a meta-analysis of GWASs, combining data from the Genetic Investigation of Anthropometric 
Traits and the UK Biobank. These studies included 806,834 individuals with BMI (434,794 women); 697,734 individuals with WHR 
(381,152 women); and 694,649 individuals with WHRadj BMI (379,501 women) [19]. The summary statistics of the female European 
ancestry used in this study were obtained from the following website: https://zenodo.org/record/1251813#.Y6lY_BVBzQw. We also 
obtained BF% from the Neale Lab, summary data available for 331,117 participants of European ancestry, and summary statistics 
obtained from the following website: https://gwas.mrcieu.ac.uk/datasets/ukb-b-8909/ 

Linkage disequilibrium analyses were performed using r2 < 0.001, a distance threshold of 10,000 kb, and SNPs with a significance 
level of P < 5 × 10− 8 as primary genetic instruments for EA, BMI, BF%, WHR, and WHRadjBMI. We also calculated the F-value to 
identify weak instrumental variables, which were excluded if the F-value was below 10. 

Fig. 1. Overview of the study design. This study consisted of two stages of analysis. In stage 1, we assessed the causal associations of EA with GDM 
using univariate Mendelian randomization, which was the total effect in stage 2. We assessed the causal associations of EA with obesity trait 
mediators (BMI, WHR, WHRadjBMI, and BF%) and obesity trait mediators with GDM. We then performed bidirectional Mendelian randomization to 
ensure that obesity trait mediators had no causal association with EA. Finally, indirect effects of individual mediators (BMI, WHR, WHRadjBMI, BF 
%) using 2-step MR. EA, education attainment; GDM, gestational diabetes mellitus; BMI, body mass index; WHR, waist-to-hip ratio; WHRadjBMI, 
WHR adjusted for BMI; BF%, body fat percentage. 
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2.4. Genetic instruments for GDM 

GDM is characterized by the development of diabetes mellitus during pregnancy [20] GDM summary statistics data of GDM were 
obtained from a GWAS of European ancestry by the FinnGen Consortium [21]. FinnGen, an ongoing project in Finland, merges 
genomic information with digital healthcare data. Version 9 of the FinnGen data was used, comprising 210,870 females (13,039 cases 
and 19,7831 controls) with a prevalence of 6.18%. Data were downloaded from https://storage.googleapis.com/finngen-public-data- 
r9/summary_stats/finngen_R9_GEST_DIABETES.gz. 

2.5. Statistical analysis 

2.5.1. UVMR analyses and sensitive analyses 
We performed a two-sample UVMR analysis to assess the causal relationship between EA and GDM, EA, and obesity trait mediators 

(BMI, BF%, WHR, and WHRadjBMI), and obesity trait mediators and GDM development separately. We evaluated the causal asso
ciation between EA and the mediators using bidirectional MR. 

Table 1 
Overview of GWAS data used in the MR Analyses.  

Phenotype No of participants Ancestry Consortium/cohort Author Year of publication PubMed ID 

EA 765,283 European SSGAC Okbay et al. 2022 35361970 
BMI 262,817 European GIANT + UKB Pulit, SL et al. 2018 30239722 
WHR 263,148 European GIANT + UKB Pulit, SL et al. 2018 30239722 
WHRadj BMI 262,759 European GIANT + UKB Pulit, SL et al. 2018 30239722 
BF% 331,117 European Neale Lab Neale et al. 2017 NA 
GDM 210,870 European FinnGen Kurki M.I. et al. 2023 NA 

Abbreviations: EA: education attainment, GDM: gestational diabetes mellitus, BMI: body mass index (female), WHR: waist-to-hip ratio, WHRadjBMI: 
WHR adjusted for BMI, BF%: body fat percentage. 

Fig. 2. (A) MR-estimated total effect of EA on GDM using different methods(β0). (B1) MR-estimated effects of EA on each mediator (β1). (B2) MR- 
estimated effects of mediators on GDM (β2). (C1) MR-estimated effects of indirect effects of each mediator separately(β1 × β2) by the product of 
coefficients method with delta method-estimated 95% CIs. (C2) Calculated proportions mediated (%) are presented with 95% CIs. EA, education 
attainment; GDM, gestational diabetes mellitus. 
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The primary analysis employed an inverse-variance-weighted (IVW) approach, utilizing different genetic variants under the 
assumption of instrument validity. We deleted confounding SNPs associated with triglyceride, high-density lipoprotein, and APOA1 
(see Supplementary Data 1) based on the literature [13] using PhenoScanner (cam.ac.uk). We incorporated three alternative methods 
into our MR analysis to address potential pleiotropy: MR-Egger regression, weighted median, and weighted mode. Heterogeneity 
across genetic instruments was evaluated using Cochran’s Q test. We employed the MR-Egger intercept test to identify horizontal 
pleiotropy. In cases where the MR-Egger intercept indicated horizontal pleiotropy, we identified and excluded outliers using the 
pleiotropy residual sum and the outlier (PRESSO) method (see Supplementary Data 2). We conducted an MR-Steiger directionality test 
to confirm the causal direction of UVMR. The reliability of the findings was validated using a leave-one-out approach. Finally, the 
results were presented visually using scatter, funnel, and leave-one-out plots. 

2.5.2. Mediation MR analyses 
As there was no sample overlap, we employed GWAS data from FinnGen as the primary data source for GDM to perform mediator 

screening. A two-step MR analysis was conducted to evaluate the individual mediating effect of an intermediate factor between EA and 
obesity traits (BMI, BF%, WHR, and WHRadjBMI; Fig. 2). 

In the first step, UVMR analysis was used to calculate the total direct effect of EA on GDM risk (β0; Fig. 2(A)). In the second step, we 
estimated the effect of EA on obesity traits (β1; Fig. 2 (B1)) and the effects of different obesity traits (BMI, WHR, WHRadjBMI, and BF 
%) on GDM (β2; Fig. 2 (B2)), and then calculated the indirect effect (β1 × β2) (Fig. 2(C1)). β1 × β2 was divided by the total effect (β0) to 
determine the proportion of the mediated effect (Fig. 2(C2)). 

Effect sizes were reported as odds ratios (OR), β-coefficients, proportions, and their respective 95% confidence intervals (CI). All 
analyses were performed using the TwoSampleMR (version 0.5.7) and MRPRESSO packages (version 1.0.0) in R Software 4.3.1 
(https://www.R-project.org). 

3. Results 

3.1. Genetic instruments 

Data on SNPs and their associations with EA, mediators, and GDM are provided in the Supplementary Information (see Supple
mentary Data 3–16). 

3.2. Effects of EA on GDM (β0) 

Univariate MR analyses demonstrated that an elevated genetic predisposition to EA was associated with an increased risk of GDM. 
Moreover, for each SD increase in genetically predicted EA, there was a corresponding 24% reduction in the risk of developing GDM 
(OR = 0.76; 95% CI:0.67–0.86) (see Fig. 2(A), sTable 1, sFig. 1a.). We conducted a reverse MR analysis and the MR-Steiger direc
tionality test to evaluate potential directional horizontal pleiotropy. There was no causal association between GDM and EA (IVW, p >
0.05) (see Supplementary Data 12, sTable 3). 

3.3. Effect of EA on mediators (β1) 

The effects of genetically predicted EA on each mediator are illustrated in Fig. 2 (B1) and summarized in sTable 2. It was observed 
that for every SD increase in genetically predicted EA, there was a significant association with lower BMI (β = − 0.23; 95% CI: − 0.24 to 
− 0.17), reduced WHR (β = − 0.19; 95% CI: − 0.22 to − 0.16), decreased WHRadjBMI (β = − 0.09; 95% CI: − 0.12 to − 0.06), and 
diminished FA% (β = − 0.19; 95% CI: − 0.22 to − 0.16). These findings highlight the inverse relationship between genetically predicted 
EA and obesity. 

We further employed bidirectional MR to validate the causal relationship between EA and different obesity-related traits. The 
results indicated no evidence of a reverse causal association between obesity-related traits and education (see Supplementary sTable 3, 
sFigure 1b). 

3.4. Effect of mediators on GDM (β2) 

Fig. 2 (B2) and sTable 4 show the significant associations between each mediator and GDM. According to these findings, an increase 
of one SD in genetically predicted BMI was linked to a 1.74-fold higher likelihood of GDM (OR = 1.74, 95% CI: 1.57 to 1.94). Similarly, 
an increase of one SD in the genetically predicted WHRadjBMI was associated with an increased risk of GDM (OR = 1.41, 95% CI: 1.28 
to 1.55). Moreover, a one SD increase in genetically predicted WHR resulted in 1.58-fold higher odds of developing GDM (OR = 1.58, 
95% CI: 1.40 to 1.78). Finally, a one SD increase in genetically predicted FA% was associated with a 1.85-fold higher likelihood of GDM 
(OR = 1.85, 95% CI: 1.55 to 2.20). These findings confirm the significant impact of these mediators on the risk of developing GDM (see 
Supplementary sFig. 1c). 

3.5. Indirect effect and individual mediating effect (β1 × β2) 

Fig. 2 (C1) and Fig. 2 (C2) illustrate the individual contributions of each mediator in explaining the indirect effects of EA on GDM. 
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Specifically, BMI accounted for 46.71% (95% CI: 39.70%–65.71%) of the total effect of EA on GDM, with a coefficient of − 0.13 (95% 
CI: − 0.16 to − 0.10). BF% explained 43.77% (95% CI: 39.35%–55.75%) of the total effect, with a coefficient of − 0.12 (95% CI: − 0.15 
to − 0.08). WHR accounted for 32.27% (95% CI: 28.95%–41.25%) of the total effect, with a coefficient of − 0.09 (95% CI: − 0.11 to 
− 0.06). Finally, WHRadjBMI explained 11.50% (95% CI: 11.11%–12.54%) of the total effect, with a coefficient of − 0.03 (95% CI: 
− 0.04 to − 0.02). These findings shed light on the individual contribution of each mediator to the relationship between EA and GDM. 

3.6. MR sensitivity analyses 

Heterogeneity was assessed using Cochran’s Q test. We observed substantial heterogeneity from the genetic instruments for EA to 
GDM and mediators, as well as from mediators to GDM (p < 0.05) (see Supplementary sTable 5). 

To evaluate potential directional horizontal pleiotropy, we conducted a reverse MR analysis and the MR-Steiger directionality test 
(see Supplementary Data 12–16 and sTable 6). Additionally, we performed an MR-Egger regression to assess whether the mean value 
of the Egger intercept was nonzero, indicating possible directional pleiotropy. Furthermore, we employed the MR-PRESSO method to 
identify and remove outlier SNPs (see Supplementary Data 2). Using a funnel chart to visualize SNP outliers can aid in a better un
derstanding of the distribution of data, identify anomalies, and facilitate appropriate data processing and analysis (see Supplementary 
sFig. 2a, sFig. 2b and sFig. 2c). These approaches enhance the robustness and validity of the results by eliminating the potential in
fluence of outliers. 

Our study found no significant evidence of horizon pleiotropy as a mediator of EA (p > 0.05) (see Supplementary sTable 6). 
Moreover, the MR-weighted median and weighted mode methods were generally consistent with the MR-IVW method in terms of 
effect size and direction (see Supplementary sTable 1 and sTable 2), suggesting that horizontal pleiotropy did not significantly bias the 
results. 

Finally, we conducted a leave-one-out cross-validation to validate the reliability of our findings. These consistent validation results 
provide additional support for the robustness and reliability of our results (see Supplementary sFigure 3a, sFigure 3b and sFigure 3c). 

4. Discussion 

In this updated MR study of EA to GDM, we found evidence of a causal protective relationship between EA and GDM, where each SD 
increase in schooling was associated with about a 24% decrease in GDM risk (OR = 0.76; 95% CI:0.67 to 0.86; P = 2.10 × 10− 5). Our 
MR-based mediation analysis indicates that obesity traits may mediate the relationship between EA and GDM. Specifically, BMI 
accounted for 46.71% of the mediation, BF% 43.77%, WHR 32.37%, and WHR-adjusted BMI 11.50%. These findings emphasize the 
importance of addressing obesity traits to understand the relationship between complex EA and GDM. 

In a previous study [22], an evaluation was used to determine the causal relationship between EA and GDM using MR analysis. This 
study used EA-related GWAS data from Okbay [23] and GDM-related GWAS data from the UKbiobank [24]. However, owing to the 
limited records in the GDM database, only 240 cases were identified using questionnaire-based criteria. Consequently, MR analysis 
found no causal association between EA and GDM (OR = 1.00; 95%CI:1.00–1.00; P = 0.171). Thus, updating the MR results for the 
EA-GDM relationship using the latest databases is crucial. 

To address this issue, we acquired data from a genome-wide association study (GWAS) of European ancestry conducted by the 
FinnGen Consortium. This database comprises 210,870 females, with 13,039 cases and 197,831 controls in 2023. Additionally, we 
obtained the latest GWAS data on European ancestry (EA) from the SSGAC in 2022 [18] which incorporates a whole-genome polygenic 
risk score or polygenic index explaining 12–16% of the EA variance and aids in the risk prediction of 10 diseases. 

EA is a well-established determinant of social health [25]. In our study, we found a compelling causal association between higher 
EA and a reduced incidence of GDM and a decrease in obesity-related indicators such as BMI, BF%, WHR, and WHRadjBMI. Notably, 
existing reports suggest that education has more pronounced health effects on women than that on men [26]. Therefore, increasing the 
EA of women may have a more significant potential in positively addressing female obesity. 

Obesity is currently recognized as a crucial risk factor for GDM. A two-sample MR study [13] confirmed a causal association be
tween obesity-related traits and the incidence of GDM. In another study that utilized a polygenic scoring approach, Li et al. [27] 
revealed that obtaining a college degree was associated with a reduced likelihood of obesity. Moreover, among individuals with college 
degrees, those with a higher education polygenic score exhibited a lower likelihood of obesity than those with a relatively lower 
education polygenic score. Howe et al. [28] conducted a within-sibship MR study that revealed a strong association between higher EA 
and lower BMI. Furthermore, in an observational study, Panchal et al. [29] found that individuals with lower EA (less than college 
graduates) had higher BMI than those with higher EA (college graduates and post-college degrees) [31.8 ± 6.4 vs. 29.6 ± 4.8 vs. 29.7 
± 5.2, p = 0.04]. These findings align with our study results, indicating a robust and significant causal association between 
obesity-related traits, such as BMI, BF%, WHR (indicative of central obesity), and the incidence of GDM. 

The Mendelian mediation analysis further confirmed the independent mediating effects of different obesity-related indicators 
between EA and GDM. BMI showed the most substantial mediating effect (46.7 %), followed by BF% (43.77%), WHR (32.37%), and 
WHR-adjBMI (11.50%). Although BMI has been considered a shortcoming in assessing obesity in previous studies on different diseases 
[30] it remains the indicator with the highest independent proportion in the mediation analysis; the result was similar to that of the 
observational [31] and MR study [13]. 

The mechanisms through which EA may reduce the risk of GDM could involve the following: Higher EA could lead to lifestyle 
changes [32–36] such as promoting regular physical exercise and adopting a healthy diet to achieve a healthy body composition or 
appropriate pregnancy weight gain goals. Simultaneously, higher EA can enhance women’s economic income [37] elevate their family 
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status, and make it easier for them to receive more family support during pregnancy. A higher EA level may make it easier to control 
diseases [37,38]; it is more likely that obese women of reproductive age with a higher EA level will achieve more effective preventive 
measures by obtaining health education before conception. 

For healthcare professionals, it is essential to not only deepen their understanding of the heightened risk of GDM in overweight and 
obese women but also consider EA as a crucial factor in the preconception assessment for GDM. Particular attention should be paid to 
women of reproductive age with obesity due to lower EA. From a policymaking perspective, the EA of females is a public health 
concern that should be prioritized even before considering disease health status. 

Our MR study first updated the association of EA with GDM and the mediators of obesity traits and identified EA as a modifiable 
factor preceding the disease factor (GDM). This study has some limitations that should be considered. First, the participants were solely 
of European origin. generalizing the findings to other ethnic populations requires further investigation in diverse cohorts. Second, the 
summary data used in the two-sample MR analysis did not permit stratified analyses by covariates such as age, EA status, and BMI. 
Third, this study only conducted a mediation analysis on some commonly used indicators of obesity and did not analyze other potential 
mediators such as blood lipid levels, physical activity, and socioeconomic status. Further studies are required to elucidate the potential 
mediating effects of EA on GDM concerning these factors. The other mediating effects of EA and GDM could not be fully explained by 
this study. For example, several potential mediators such as health policy, economic conditions, social background, and family support 
systems are not heritable, and GWASs are unavailable. Fourth, the constant heterogeneity of SNPs may have caused potential bias and 
affected the robustness of the MR results. Caution should be exercised when interpreting the results because of potentially unaccounted 
variable influences. 

5. Conclusions 

Our comprehensive MR study provided strong evidence supporting a causal link between higher EA and reduced GDM risk, 
partially with obesity traits acting as mediators. Enhancing female EA can directly affect women’s health and have long-term and 
profound positive effects on their overall societal health. 
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A. Horan, J.-J. Hottenga, P.L. De Jager, P.K. Joshi, A. Jugessur, M.A. Kaakinen, M. Kähönen, S. Kanoni, L. Keltigangas-Järvinen, L.A.L.M. Kiemeney, I. Kolcic, 
S. Koskinen, A.T. Kraja, M. Kroh, Z. Kutalik, A. Latvala, L.J. Launer, M.P. Lebreton, D.F. Levinson, P. Lichtenstein, P. Lichtner, D.C.M. Liewald, L. Cohort Study, 
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