
INTRODUCTION

Pharmacokinetics (PK) and pharmacodynamics (PD) are 

the two main areas of integrative pharmacology. PK evaluates 

‘what the body does to the drug’ (absorption, metabolism, 

distribution and excretion of drugs), and PD studies ‘what the 

drug does to the body’ (biological effects of drugs over time, 

the relationship between drug exposure and effects, mecha-

nism of action of drugs). The primary purpose of PK and PD 

modeling is to discover the biophysiological key properties 

of the drug (affinity, efficacy, potency and specific systemic 

factor), and to predict the time course and extent of drug ef-

fect under normal physiological condition, as well as specific 

pathological conditions [1,2]. Usually, PK studies are first per-

formed in various in vitro and in vivo environments, and then 

the concentration-effect/dose-effect relationship is inferred. 

To identify a meaningful PK-PD relationship, it is important 

to fully correlate the pharmacological effect with the drug 

concentration of the appropriate compartment in vivo [3–5]. 

In this process, if hysteresis (a time lag between the measured 

concentration and the observed effect) is demonstrated, 

several PK-PD modeling approaches, such as effect compart-

ment link model, turnover model/indirect response model, 

and tolerance/ rebound model, can be employed to describe 

it [3,6,7]. This paper introduces the semi-compartmental 

model, one method to collapse the hysteresis in the PK-PD 

relationship.

PHARMACOKINETICS 

The PK model represents the time-concentration course 

of a drug at the measured site (usually in plasma or whole 
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Frequently, we encounter the phenomenon of hysteresis in kinetic-dynamic model-
ing. The hysteresis loop in the concentration-effect curve suggests a time discrepancy 
caused by various pharmacokinetic and pharmacodynamic factors. To collapse the hys-
teresis loop and to simplify the concentration-effect relationship, several kinetic-dynamic 
modeling approaches including the effect compartment link model, turnover model 
(indirect response model), and tolerance/rebound model, have been used. The semi-
compartmental model is one method to describe the hysteresis of the pharmacokinetic-
pharmacodynamic relationship. Furthermore, this semi-compartmental model differs 
from other models (full parametric approaches) as it does not require pharmacokinetic 
parameters to estimate pharmacodynamic parameters and ke0. Therefore, we could 
employ a semi-compartmental approach in case it is difficult to apply the compartment 
model to pharmacokinetic data, as required for the pharmacodynamic analysis of inha-
lational anesthetics.
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blood), or in additional hypothetical compartments which 

cannot be measured directly [3,4]. Compartmental PK mod-

els, that simplify complex organs and tissues into compart-

ments and connecting lines, are most widely used [8,9]. Fig. 1 

shows a three-compartment model.

PHARMACODYNAMICS 

The PD model relates the drug concentration provided by 

the PK model to the observed drug effect [2,3,5,7]. The most 

commonly used PD model for describing the non-linear 

concentration-effect relationship is the sigmoid Emax model 

(the Hill equation [7,10], Eq. 1):

	 E =
Emax · C

n

ECn
50 + Cn 	 (Eq. 1)

where E is effect, C is drug concentration, Emax is the maxi-

mum effect, EC50 is the concentration of the drug producing 

half of Emax and n is the so-called steepness factor (n does not 

necessarily have a direct biological meaning, but it deter-

mines the slope of the curve. In the ordinary Emax model, n is 

equal to 1). This model can be used extensively in other areas; 

for example, in the receptor theory, EC50 reflects the potency 

of the drug in the system (the sensitivity of the organ or tissue 

to the drug) and Emax is the efficacy of the drug. If n is less than 

1, the curve becomes hyperbolic, implying active metabolites 

or multiple receptor sites [5,7]. Fig. 2 presents the excitatory 

sigmoid Emax model including the baseline effect (E0), and the 
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Fig. 1. Three-compartment model. (A) Scheme for three-compartment model. (B) Time-concentration curve plotted on semi-logarithmic scale in the 
three-compartment model following an intravenous bolus administration. I(t): drug dose (input), Vi: distribution volume of compartment i, kij: inter-
compartmental fractional rate constant (micro-rate constant from compartment i to compartment j), Cp: drug concentration in plasma, A, B, C: coef-
ficient (macro-constant), α, β, γ: exponent (macro-constant slope).

EC

2

D
ru

g
e
ff
e
c
t

Drug concentration (C)

0

1

EC

2

D
ru

g
e
ff
e
c
t

Drug concentration log(C)

0

1

E

E

R

A B

E

E

R

Fig. 2. The excitatory sigmoid Emax model with baseline (E0) on linear scale (A) and semi-logarithmic scale (B); when n (steepness factor) increases, 
the steepness of the tangent to the curve at EC50 increases (n of the red dotted line is larger than the blue solid line, and n of the green dotted line is 
smaller than the blue solid line). Emax: efficacy, the difference between baseline (E0) and maximum observed effect (Rmax), EC50: potency, the plasma 
concentration corresponding to the half of Emax. The figure is modified from the article of Gabrielsson et al. (Pharmacodynamic concepts 2016; 199-
332) [7].



equation is functionally described as follows (Eq. 2):

	 E = E0 +
Emax · C

n

ECn
50 + Cn 	 (Eq. 2)

KINETIC-DYNAMIC (PK-PD) MODELING 

Since PK and PD models share a common feature, i.e. 

concentration, they can be integrated to describe the overall 

dose-effect relationship, leading to useful insights into ratio-

nal dose regimen design (Fig. 3) [3–5]. In the direct link model 

(Fig. 4A), the simplest form of the PK-PD model, the mea-

sured plasma concentration is directly linked to the effect-site 

concentration, as the equilibrium between both concentra-

tions is assumed to be rapid and thus their ratio is constant 

under pharmacokinetic steady-state, as well as non-steady-

state conditions. Hence, the measured plasma concentration 

can serve as an input function for the concentration-effect 

relationship, with the peak of plasma concentration and 

maximum effect occurring simultaneously [3,5,11]. 

However, the assumption applied to the direct link model 

is often difficult to employ during actual physiological situa-

tions. In case of anesthesia induction, intravenous anesthet-

A semi-compartmental model 
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ics and neuromuscular blockers produce a peak in the blood 

in a short time; however, no tracheal intubation is concur-

rently performed since while the drug plasma concentration 

reaches its maximum, further time is required for the drug 

to reach its maximum at the effect site. As observed, when 

a distribution delay between the plasma concentration and 

the effect site concentration (hysteresis) appears, the plasma 

concentration fails to represent the effect site concentration 

(drug effect).

WHAT IS HYSTERESIS IN THE PK-PD 
RELATIONSHIP?

Hysteresis is a phenomenon that occur occasionally in PK-

PD modeling. Hysteresis can be easily comprehended by 

utilizing visual thinking. When the concentration-effect curve 

is drawn (Fig. 5), the hysteresis loop can be observed. If you 

draw a vertical line at the ‘concentration’ axis in Fig. 5, the 

line crosses the curve at 2 points, indicating two different re-

sponse levels for a single drug concentration. Counter-clock-

wise (anti-clockwise) hysteresis implies that the observed 

drug effect increases over time for a given drug concentration; 

in clockwise hysteresis, the observed drug effect decreases 

over time for a given drug concentration [4,6].

The hysteresis loop suggests that there is a time discrep-

ancy in the relationship between the measured drug con-

centration and the observed drug effect. Notably, hysteresis 

can occur due to a consequence of different PK and PD 

mechanisms, including distribution delay, input-output rate 

change, tolerance, formation of active metabolites, time-

dependent protein binding, multiple receptor sites or up/

down regulation of receptor, racemic drugs, and non-stereo-

specific assays [4,6]. To collapse hysteresis and to simplify the 

concentration-effect relationship, several PK-PD modeling 

approaches, such as effect compartment link model, turn-

over model/indirect response model, and tolerance/rebound 

model, have been utilized [3,6,7]. 

EFFECT COMPARTMENT LINK MODEL 

The effect compartment link model was elaborated by Hol-

ford and Sheiner [4,12,13] based on the concept of Segre [14]. 

This model is useful to describe the time displacement be-

tween the measured concentration and observed effect (hys-

teresis loop in concentration-effect curve), which often occurs 

due to a delayed distribution between the drug concentration 

in plasma and the effect site. In this model, a hypothetical 
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Fig. 5. Concentration-effect curve with hysteresis loop. (A) Counter-clockwise hysteresis between plasma drug concentration and observed drug ef-
fect. (B) Clockwise hysteresis between plasma drug concentration and observed drug effect.
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effect compartment is linked to the central compartment of 

a PK compartment model by first-order disposition kinetics 

(Figs. 4B, 6). It is assumed that the effect compartment has a 

negligible volume compared to the central compartment, re-

ceiving a negligible amount of the drug (the amount of drug 

influx into the central compartment from effect compartment 

is also negligible). The first-order rate constant ke0, defined as 

the loss of drug from the effect compartment, is not directed 

toward any of the PK compartments, implying excretion from 

the body. Therefore, ke0 (called ‘equilibration rate constant’) 

determines the concentration equilibrium between the 

plasma and effect compartment (the larger ke0, the faster the 

equilibrium, so the effect of the drug is faster) [2,3,5–7]. The 

relationship between the concentration at the effect compart-

ment (Ce) and the plasma concentration (Cp) is expressed by 

the differential equation as below Eq. 3:

	
dCe  = ke0 · (Cp − Ce)dt 	 (Eq. 3)

Furthermore, the observed effect (E) is correlated to Ce by 

an arbitrarily chosen sigmoid Emax model, where Ce is the so-

lution to Eq. 3. The equation for the Ce-E relationship is Eq. 4:

	 E =
Emax · C

n
e

ECn
e50 + Cn

e

	 (Eq. 4)

SEMI-COMPARTMENTAL MODEL

The semi-compartmental model is another estimation 

method that can be used to collapse hysteresis of the PK-

PD relationship, deriving the solution for the effect site 

concentration from the effect compartment link model. 

However, unlike the effect compartment link model in which 

PK parameters are first estimated and then PD parameters 

and ke0 are estimated, the semi-compartmental model does 

not require PK parameters (compartmental PK modeling) 

to estimate PD parameters and ke0 [7,15] (In ‘NONMEM’, a 

computer program for modeling, the effect compartment link 

model is named ‘sequential PK-PD modeling’ and the semi-

compartmental model is named ‘direct PD fit’). 

There are two different solutions used in the semi-com-

partmental model: linear solution and log-linear solution 

[7,15] (In ‘NONMEM’, a linear solution is applied when the 

plasma concentration is increased, and the log-linear solu-

tion is applied when the plasma concentration is decreased. 

The control file for the semi-compartmental modeling used 

in ‘NONMEM’ is presented in the Appendix 1).

In the linear semi-compartmental solution, the plasma 

concentration (Cp) obtained by assuming a piecewise linear 

PK model is expressed as Eq. 5.

	 tj − 1 < t ≤ tj	 (Eq. 5)

	 Cp = Cpj − 1 + λj (tj − tj − 1)

where 

λj =
Cpj − Cpj − 1 

tj − tj − 1

The integration of Eq. 3 defined the Cp-Ce relationship and 

Eq. 5 yields the solution for concentration at the effect site (Ce) 

given as Eq. 6:

Ce = Ce · e
−ke0(tj − tj − 1) + 

ke0 Cpj − 1 {e
−λj(tj − tj − 1) − e−ke0(tj − tj − 1)} 

ke0 − λj

	 (Eq. 6) 

In the log-linear semi-compartmental solution, the plasma 

concentration (Cp) is expressed in exponential form as Eq. 7, 

assuming a piecewise log-linear PK model. 

	 tj − 1 < t ≤ tj	 (Eq. 7)

	 Cp = Cpj − 1 + e−λj (t − tj − 1)

where

λj =
lnCpj − lnCpj − 1 

tj − tj − 1

Additionally, the log-linear semi-compartmental solution 

for effect site concentration (Ce) is derived from the integra-

tion of Eq. 3 and Eq. 7, like the linear solution, and the equa-

tion is as below Eq. 8.

	 Ce = ‌�Ce · e
−ke0(tj − tj − 1) + 	 (Eq. 8) 

(Cpj − 1 − 
λj

ke0

){1 − e−ke0(tj − tj − 1)} + λj(tj − tj − 1)	

Given the observed values for Cp, an estimate of ke0, and 

starting the recursive formula with Cp (0) = Ce = 0 (at time 

zero, the plasma and effect site concentrations are both zero), 

the time curve for Ce can be obtained from Eq. 6 and Eq. 8.

A semi-compartmental model 
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CONCLUSION

The semi-compartmental model allows PK-PD modeling 

to account for hysteresis without the PK parameters. This ap-

proach may demonstrate an advantage over the full paramet-

ric approach when model misspecification is observed in the 

PK model [15]. Moreover, this semi-compartmental model 

could be employed in studies where the measured concen-

tration data are difficult to apply to the compartmental PK 

model, including the PD analysis of inhalational anesthetics 

using the end-tidal inhalational anesthetics concentration 

data (PK data) and PD data obtained by electroencephalo-

gram based sedation depth measurements [16, 17].
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