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Abstract

Purpose

To predict and compare the hypotensive efficacy of three minimally-invasive glaucoma sur-

gery (MIGS) implants through a numerical model.

Methods

Post-implant hypotensive efficacy was evaluated by using a numerical model and a

computational fluid dynamics simulation. Three different devices were compared: the

XEN 45 stent (tube diameter, 45 μm), the XEN 63 stent (63 μm) and the PreserFlo micro-

shunt (70 μm). The influence of the filtration bleb pressure (Bp) and tube diameter, length,

and position within the anterior chamber (AC) on intraocular pressure (IOP) were

evaluated.

Results

Using baseline IOPs of 25, 30 and 50 mmHg, respectively, the corresponding computed

post-implant IOPs for each device were as follows: XEN 45: 17 mmHg (29% decrease), 19

mmHg (45%) and 20 mmHg (59%) respectively; XEN 63: 13 mmHg (48%), 13 mmHg

(62%), and 13 mmHg (73%); PreserFlo: 12 mmHg (59%), 13 mmHg (73%) and 13 mmHg

(73%). At a baseline IOP of 35 mmHg with an increase in the outflow resistance within the

Bp from 5 to 17 mmHg, the hypotensive efficacy for each device was reduced as follows:

XEN45: 54% to 37%; XEN 63: 74% to 46%; and PreserFlo: 75% to 47%. The length and

the position of the tube in the AC had only a minimal (non-significant) effect on IOP (<0.1

mmHg).
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Conclusions

This hydrodynamic/numerical model showed that implant diameter and bleb pressure are

the two most pertinent determinants of hypotensive efficacy. In distinction, tube length and

position in the AC do not significantly influence IOP.

Introduction

Glaucoma is one of the main causes of irreversible vision loss worldwide [1]. The main risk

factor for developing glaucoma is an increased intraocular pressure (IOP), usually caused by

an insufficient outflow of the aqueous humor (AH) [2]. Consequently, the main objective of

glaucoma treatment is to reduce IOP through pharmacological treatment, laser, traditional fil-

tering surgery, or tube implants [3, 4].

Recently, several new surgery implants, known as Minimally-Invasive Glaucoma Surgery

(MIGS) have been developed to improve the efficacy and safety of conventional glaucoma sur-

gery [5]. These implants work by increasing filtration of AH, either through its natural route

(iStent implant), or by rerouting the AH flow into either the subconjunctival space (XEN

implants and PreserFlo microshunt) or the suprachoroid space (CyPass Micro-Stent implant)

[6].

Several studies have assessed the hypotensive efficacy of these MIGS implants, although

with relatively short follow-up periods. Data from clinical studies indicate that the hypotensive

efficacy varies widely depending on the type of the implant [7–12]. Reference values in order

to preoperatively predict the highest likelihood reduction in IOP after implantation of these

MIGS devices are not available, but could be very useful to help select the device.

Despite the good safety profile of MIGS, this surgery is associated with risks of several com-

plications, including the loss of corneal endothelial cells, a severe adverse effect that led to the

withdrawal from the market of the CyPass implant (Alcon, Dallas TX, USA) [13, 14]. In this

case, a direct association was evidenced between the annual loss of endothelial cells and the

position of the implant in the anterior chamber (AC). However, the reasons for endothelial

corneal loss after aqueous shunt implantation are multifactorial and the exact etiology remains

poorly understood [15, 55, 56].

To better understand the pathophysiology of glaucoma, several different numerical models

have been developed to study the hydrodynamics of aqueous humour in the AC. These models

analyze the parameters that potentially influence AH flow from its production site in the ciliary

body to its exit through the trabecular meshwork [16–18] in healthy eyes [19] and after glau-

coma surgery [20, 21]. Since they provide a better understanding of the mechanism underlying

MIGS implants, these mathematical models could help to optimize glaucoma surgery by pre-

dicting the efficacy and safety of this procedure [21, 22].

In this context, the objective of the present study was to predict and compare the efficacy

and safety of three different MIGS devices through a numerical model. To do so, we assessed

the role of various parameters—baseline IOP, the filtrating bleb pressure, and the implant

characteristics [tube length, lumen and position in the AC]—on postoperative IOP.

Material and methods

Glaucoma implants and parameters studied

Three different MIGS implants were evaluated: two XEN implants (respectively, with lumens

of 45 μm and 63 μm; Allergan Inc. Dublin, Ireland), and the PreserFlo MicroShunt (70 μm
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lumen; Santen Pharmaceutical Co., Osaka, Japan). Table 1 describes the main characteristics

of these devices.

The hypotensive efficacy of the implants was calculated using baseline IOP values of 25, 30,

and 50 mmHg. The influence of various filtration bleb pressures (pb = 2, 5, 10, 17, 25, 34

mmHg) was also assessed. We calculated pb using the formula given below (Formula 1, analyti-

cal model section), based on data from clinical studies [7–12].

The following simulations were performed: pb = 2 mmHg: one-day after implantation; pb =

5 mmHg, one-week after implantation. Gardiner et al. developed a theoretical model in which

a pb = 17 mmHg was proposed to simulate no scar in the bleb and pb = 34 mmHg for the pres-

ence of scar formation in the bleb [20].

The influence of tube length on hypotensive efficacy was assessed by comparing the stan-

dard length tube to a tube that had been shorted by 1 mm. We performed the simulation using

three different implant positions in the AC and two different positions in the AC relative to

the iris (200 and 600 μm above the anterior iris).

Computational simulation. A three-dimensional (3D) simulation based on computa-

tional fluid dynamics was performed using the Ansys Fluent software (v6.3.26; Ansys, Inc.,

Canonsburg PA, USA). The simulations were run in steady regime with laminar flow, using a

constant flow rate of 2.0 μl/min of AH [23] as an input condition, with a pressure of 15 mmHg

(20 Pa) as an output condition [20]. The fluid was Newtonian and incompressible. The AH

was removed from the trabecular meshwork at the same rate as it was produced. In this simu-

lation, the thermal convection caused by the difference between the surface temperatures of

the cornea (34º C) and the other parts of the AC (iris and crystalline at 37º C) was considered

the main factor for flow in the AC [16]. The buoyancy effects due to temperature gradients

were modelled with the Boussinesq approximation [24]. A grid sensitivity analysis was per-

formed before final calculations. For this purpose, three meshes of large, medium and fine

sized cells were constructed. For the present study, we used only the intermediate mesh (7.5 x

105) because it had the smallest amount of variations (<1%).

For the elimination of AH, we only considered the trabecular route because this is the main

drainage route (accounting for 90% of elimination of AH) [16]; the uveoscleral route was not

simulated. Variables included in the simulation were based on standard values for an adult

human eye [16, 25–32] (Table 2). The numerical procedure was the same as described by Fer-

nandez-Vigo et al. [33] and Agujetas et al. [34]. However, our simulations incorporated a new

element that was not included in those studies: the flow across both the trabecular meshwork

and the implanted device. The trabecular meshwork was modelled as a saturated two-phase

porous medium [20] whose permeability is calculated as that necessary to obtain the preopera-

tive IOP, pg, for a prescribed pressure pev at the exit of the trabecular meshwork. To calculate

the trabecular meshwork permeability, we performed the simulation without the implanted

device. Once the trabecular meshwork permeability had been calculated, we simulated the

flow with the implanted device by imposing pressure pb in the filtering bleb. The position of

Table 1. Characteristics of the glaucoma implants studied in the numerical model.

Implant Tube lumen (μm) Total length of the implant (mm) Tube thickness (μm)

XEN 45 45 6 150

XEN 63 63 6 220

PreserFlo 70 8.5 350

XEN 45: XEN 45 gel stent; XEN 63: XEN 63 gel implant (both from Allergan Inc. Dublin, Ireland); PreserFlo:

PreserFlo MicroShunt, (Santen Pharmaceutical Co., Ltd., Osaka, Japan).

https://doi.org/10.1371/journal.pone.0239324.t001
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the implant is characterized by the distance l0 from the anterior iris and length d0 of the

implant in the AC (Fig 1). This simulation allowed us to determine the quasi-uniform pressure

pc in the anterior chamber following glaucoma surgery, and the flow rate Qv filtered by the

implant. The calculated parameters were pc and Qv, obtained both analytically and by the 3D

simulation software. We also calculated the endothelial wall shear stress (WSS) and the iridian

WSS.

Analytical model. The present analytical model aims to provide useful information for

glaucoma surgeons by modelling the MIGS implants in different scenerios in glaucomatous

eyes. This information may be helpful for clinical decision-making and to avoid undesired

complications described in previous clinical studies [5–12]. Additionally, as demonstrated by

previous studies, these analytical models could predict postoperative IOP, similar to the results

found in clinical studies [20, 21].

To validate this model, the parameters were calculated using a computational 3D simula-

tion. The pressure drop across the device obeys the generalized Hagen-Poisuille formula [35]

since the Reynolds number characterizing the flow in the implant takes very small values [36],

and therefore:

pc � pb ¼
128LLvmQv

pD4
h

ð1Þ

where pc and pb are the IOP following glaucoma surgery and in the filtering bleb, respectively;

L is a dimensionless constant that depends on the shape of the implant cross-section, Dh and

Lv are the implant hydraulic diameter and the total length, respectively; μ is the AH viscosity,

and Qv is the flow rate evacuated by the implant (Fig 2). The trabecular meshwork and

Schlemm’s canal jointly provide hydraulic resistance [37]. Because of the smallness of the Rey-

nolds number in this region, that resistance does not depend on the flow rate and can be calcu-

lated as the ratio of the pressure drop across this system before surgery to the flow rate Q0 =

1.7 μl/min evacuated by it [38]. This flow rate is calculated as that injected by the ciliary body,

Qcb = 2 μl/min, minus the flow removed by the uveoscleral pathway, Qup = 0.15Qcb [39]. The

dependency of these two flow rates on the IOP can be ignored [17]. Taking into account these

Table 2. Parameters used for the simulation with the standard values of an adult human eye used in the computa-

tional simulation.

Parameter Value

Diameter of AC, mm 12 [25, 26]

AC depth, mm 3.2 [25, 26]

Diameter of crystalline, mm 9 [27]

Thickness of crystalline, mm 4 [27]

Iris thickness, mm 0.18 [28]

Distance between iris and crystalline, mm 0.93 [25, 28]

Coefficient of linear expansion of AH, b, K-1 0.0003 [16]

Density of AH, ρ0, kg/m3 998.2 [29]

Dynamic viscosity of AH; μ, Pa-s 0.001 [29]

Viscosity of aqueous humor at 37 ºC, Pa-s 7x10-4 [29]

Thermal conductivity K, W/m-K 0.6 [30]

Acceleration by gravity g, m/s2 981 [31]

Specific temperature Cp, J/kg-K 4182 [32]

AC: anterior chamber; mm: millimeter; AH: Aqueous humor; μ: microns; ρ0: AH density; b: Coefficient of linear

expansion of AH; K-1: 1/Kelvin; Pa: Pascal; ºC: Celsius; W/m-K: Watt/meter-Kelvin; J/kg-K: Joule/Kilogram-Kelvin

https://doi.org/10.1371/journal.pone.0239324.t002
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considerations, the IOP following glaucoma surgery, pc, is:

pc ¼
pD4

hpbðpg � pevÞ þ 128LLvpgQ0m

pD4
hðpg � pevÞ þ 128LLvpgQ0m

ð2Þ

where pg and pev are the IOP values before surgery and at the exit of the Schlemm’s canal,

respectively. The flow rate filtered by the implant is:

Qv ¼
pD4

hQ0ðpg � pbÞ
pD4

hðpg � pevÞ þ 128LLvQ0m
ð3Þ

Fig 1. Cross section of the eye showing the parameters related to the implant location in the anterior chamber. Lo:

distance between the implant and the iris, do: length of the implant in the anterior chamber, pev: pressure in the

trabecular meshwork; pb: pressure inside the filtration bleb.

https://doi.org/10.1371/journal.pone.0239324.g001
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and coincides with that at which the AH filters from the bleb. The drop of pressure across the

implant can be calculated from Eq (2) and the Hagen-Poiseuille formula (1):

pc � pb ¼
128LLvðpg � pbÞmQ0

pD4
hðpg � pevÞ þ 128LLvQ0m

ð4Þ

In this case, the AH moves out the bleb and into the surrounding sub-conjunctival tissue

where it is absorbed by the subconjunctival capillaries. Both the sclera and conjunctiva are

Fig 2. Cross section of the eye showing the parameters calculated by the analytical model. pc: Intraocular pressure

(IOP) following glaucoma surgery; pb IOP following in the filtering bleb; pg: IOP before glaucoma surgery; Dh: Implant

lumen diameter; Lv: Implant total length; Qv: Flow rate evacuated by the implant; Q0: Flow rate evacuated by the eye

before glaucoma surgery.

https://doi.org/10.1371/journal.pone.0239324.g002
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assumed to be impermeable and thus fluid barriers [40, 41]. Gardiner et al. [20] described in

detail the transport and absorption of AH that occurs in the subconjunctival tissue. The flow

rate evacuated by the implant, Qv, under steady conditions verifies the equation:

ðpb � prÞ ¼ RbQv ð5Þ

where pr is a constant pressure of reference and Rb is a property of the subconjunctival tissue,

which provides effective hydraulic resistance. According to the estimates of Gardiner et al.,

pr’ 0.

Influence of thermal convection. In the above mathematical analysis, we have ignored

the influence of thermal convection. A simple but accurate way of describing the flow in the

AC is as follows (Fig 3): when the eyelid is closed, the AH injected by the ciliary body flows

radially from the pupil to the trabecular meshwork. This motion occurs at speeds of 10−4 − 10

−3 mm/s [12, 13] at an essentially uniform pressure (the IOP), which ranges from 10–21

mmHg in a healthy eye. By contrast, the IOP usually increases over 21 mmHg and could reach

values greater than 30 or 50 mmHg in an eye affected by glaucoma [42]. When the eyelid is

open and the body is upright, natural convection occurs in the AC driven by differences

between the temperature in the body and the temperature in the posterior cornea. This motion

occurs at velocities ranging from 0.1−1 mm/s [15, 16], with an associated dynamic pressure

field of approximately 10−4 mmHg. Interestingly, the two flows described above do not

Fig 3. Flow of the aqueous humor in the anterior chamber. Sketch to illustrate the superposition of the two flows in the anterior chamber. The black

arrows represent the flow which transports the aqueous humor from the ciliary body to the trabecular meshwork. This flow is driven by a quasi-

homogeneous reduced pressure field whose value is determined by the hydraulic resistance imposed by the trabecular meshwork. The red arrows

represent the natural convection taking place when the eyelid is open. In this case, the pressure field associated with this flow is inhomogeneous and much

smaller than the pressure that is driving the flow across the trabecular meshwork.

https://doi.org/10.1371/journal.pone.0239324.g003
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essentially interfere with each other due to the disparity between the scales of their velocity

and pressure fields. The radial flow does not significantly modify the velocity field of the natu-

ral convection, and this convection does not, as assumed by previous studies, alter the IOP [21,

31, 43–45].

Results

Efficacy in IOP reduction depending on the baseline IOP

Table 3 and Fig 4 show the post-operative IOP values in the different scenarios. For baseline

IOP values of 30 and 50 mmHg (with pev = 10.5 mmHg and pb = 10 mmHg), the IOP (pc) after

implantation of the XEN 45 device decreased to 16 mmHg (46% reduction) and 17 mmHg

(66% reduction), respectively. For the XEN 63 implant, the IOP decreased to 12 mmHg (60%

reduction) and 12 mmHg (76% reduction), respectively. In the PreserFlo implant, the respec-

tive values were 12 mmHg (60% reduction) and 12 mmHg (76% reduction).

The differences between the analytical model and the 3D simulation in terms of efficacy of

IOP reduction were<0.02 mmHg in all cases. S1 Table shows the postoperative IOP values in

the different scenarios studied.

The flow rate of AH (Qv) filtered by the implant calculated by the numerical model for a

baseline IOP of pg 25 mmHg, pev = 10.5mmHg and pb = 15 mmHg was 7.7 μl/min for the XEN

45, 11.45 μl/min for the XEN 63, and 11.56 μl/min for the PreserFlo implant. No significant

difference was found between the analytical and simulation flow rate across the three implants

in the different positions in the AC (<0.13 μl/min) (S1 Table).

Effect of the filtration bleb pressure on the hypotensive efficacy of the

implants

Table 3 shows the IOP values following implantation of the MIGS devices according to the dif-

ferent pb values (2, 5, 10, 17, 20, and 34 mmHg) to assess their efficacy at different stages of

postoperative scar formation in the bleb.

Table 3. Intraocular pressure (IOP) values following glaucoma surgery calculated by the numerical model according to different preoperative baseline IOP values

and different bleb pressures.

Pg = 25 mmHg Pg = 30 mmHg Pg = 50 mmHg

pb 0 5 10 17 20 34 2 5 10 17 20 34 0 5 10 17 20 34

XEN 45–6 mm 12.2 14.8 17.6 20.1 22.4 30.4 11.1 13.1 16.52 21.2 23.2 32.6 13.06 16.7 20.4 23.3 27.8 37.1

Efficacy (%) 51 40 29 19 10 - 63 56 44 29 22 - 73 66 59 53 44 25

XEN 45–5 mm 11.1 13.9 16.6 19.8 22.2 30.8 10.0 12.2 15.7 20.7 22.8 32.8 11.3 15.2 19.1 22.5 26.8 36.6

Efficacy (%) 55 44 33 20 11 — 66 59 47 31 24 - 77 69 61 55 46 26

XEN 63-6mm 5.0 9.0 13.0 18.1 21.0 32.6 5.1 7.8 12.2 18.4 21.2 33.5 4.2 8.7 13.3 18.9 22.5 34.9

Efficacy (%) 80 64 48 18 16 - 83 74 59 38 29 - 91 82 73 62 55 30

XEN 63–5 mm 4.3 8.4 12.5 17.9 20.8 32.8 4.6 7.3 11.9 18.2 20.9 33.6 3.5 8.2 12.8 18.6 22.1 34.7

Efficacy (%) 82 66 50 17 16 - 84 75 60 39 30 - 93 83 74 62 55 30

PreserFlo-8.5mm 4.7 8.7 12.8 18.0 20.9 32.7 4.9 7.6 12.1 18.3 21.0 33.5 3.9 8.5 13.1 18.8 22.3 34.8

Efficacy (%) 81 65 48 18 16 - 83 74 59 39 30 - 92 83 73 62 55 30

PreserFlo-7.5mm 4.2 8.4 12.5 17.9 20.5 32.8 4.6 7.3 11.8 18.2 20.9 33.6 3.5 8.1 12.8 18.6 22.1 34.7

Efficacy (%) 83 66 50 17 18 - 83 74 59 39 30 - 93 83 74 62 55 30

pg: pressure before the surgery; pb: pressure inside the filtration bleb; mm; millimeter; mmHg: millimeter of mercury; %: percentage of pressure reduction over the basal

pressure.

https://doi.org/10.1371/journal.pone.0239324.t003
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For a baseline IOP of 30 mmHg, increasing pb from 5 to 17 mmHg (to simulate the changes

that occur in the bleb from the early to the late postoperative period) reduces the hypotensive

efficacy from 56% to 29% (8.1 mmHg) in the XEN 45, from 74% to 38% (10.4 mmHg) in the

XEN 63, and from 74% to 39% (10.7 mmHg) in the PreserFlo implant.

Interestingly, in cases with a large scar that causes a high pb (34 mmHg) this may cause

inbound pressure towards the AC, thus leading to a postoperative IOP that is higher than the

basal IOP.

Effect of the total length of the implant on hypotensive efficacy

Table 3 shows the IOP values for the shortened implant tubes. A reduction of 1 mm the length

of the XEN 45 (16% of the total length) resulted in a decrease in IOP of an additional 1 mmHg

compared to the normal tube length, with lower pb (2, 5,10 mmHg) values, while the reduction

was<0.5 mmHg for higher pb (17, 20, 34 mmHg). In the XEN 63 implant, reducing the length

by 1 mm (16% of the total length), decreased the IOP by only 0.5 mmHg. In the PreserFlo

implant, reducing the length by 1 mm (11%) led to an IOP decrease of 0.3 mmHg.

Effect of implant position and length in the AC on Pc and Qv values

The pc and flow rate were not affected by the implant position in the AC given by l0 and d0.

The pc values were very similar in the six scenarios evaluated for each implant. The difference

in pc according to tube position was <0.01 mmHg for all implants, with the following

Fig 4. Intraocular pressure after implantation surgery with the three devices. IOP: intraocular pressure; pc: postoperative IOP; pg; preoperative IOP in the anterior

chamber; XEN45 (circles), XEN63 (squares), PreserFlo (triangles). In all cases, pev = 10.5 mm Hg and pb = 10 mmHg.

https://doi.org/10.1371/journal.pone.0239324.g004
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maximum and minimum pc values, respectively: XEN 45: 19.314 and 19.294 mmHg; XEN 63:

16.665 and 16.659 mmHg; and PreserFlo: 16.657 and 16.547 mmHg (S1 Table).

Wall shear stress on the endothelium and iris

Table 4 and Fig 5 show the WSS on the corneal endothelium.

For pg = 25 mm Hg, pev = 10.5 mmHg and pb = 15 mmHg, the mean WSS values were 0.690

mPa for the XEN 63, 0.695 mPa for the XEN 45, and 0.692 mPa for the PreserFlo device (all

positioned 1 mm in the AC and 600 μm above the iris).

The highest maximum WSS on the posterior cornea was 2.847 mPa with the PreserFlo

implant positioned 2 mm in the AC and 600 μm above the iris. Table 4 shows the maximum

WSS values on the posterior cornea. The differences between the highest and lowest maximum

Table 4. Values of the mean and maximum wall shear stress following glaucoma surgery for pg = 25 mmHg, pev = 10.5 mmHg and pb = 15 mmHg.

XEN 45

l0 (μm) 600 200

d0 (mm) 1 2 3 1 2 3

(τwcornea) (mPa) 0.695 0.696 0.692 0.696 0.689 0.690

(τwiris) (mPa) 0.776 0.766 0.762 0.775 0.770 0.767

XEN 63

l0 (μm) 600 200

d0 (mm) 1 2 3 1 2 3

(τwcornea) (mPa) 0.690 0.690 0.691 0.694 0.691 0.688

(τwiris) (mPa) 0.766 0.766 0.762 0.770 0.776 0.766

PreserFlo

l0 (μm) 600 200

d0 (mm) 1 2 3 1 2 3

(τwcornea) (mPa) 0.692 0.693 0.693 0.695 0.693 0.693

(τwiris) (mPa) 0.769 0.760 0.768 0.775 0.766 0.764

lo: distance between the implant and the iris, do: length of the implant in the anterior chamber, τwcornea: postoperative wall shear stress (WSS) on the posterior cornea;

τwiris: postoperative WSS following the surgery on the anterior iris; pg: preoperative pressure; pev: pressure in the trabecular meshwork; pb: pressure inside the filtration

bleb; mPa: Milipascal; μm: microns; mmHg: millimeter of mercury.

https://doi.org/10.1371/journal.pone.0239324.t004

Fig 5. Wall shear stress on the central and peripheral cornea after implantation of the different implants. A: XEN 45; B: XEN 63; C: PreserFlo; Pa: pascal.

https://doi.org/10.1371/journal.pone.0239324.g005
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WSS values for each implant as a function of the position in the AC were 0.189 mPa for the

XEN 63, 0.258 mPa for the XEN 45, and 0.669 mPa for Preserflo.

Fig 6 shows the WSS on the anterior iris. For pg = 25 mm Hg, pev = 10.5mmHg, and pb =

15mmHg, the mean WSS values were 0.766 mPa for XEN 63, 0.776 mPa for XEN 45, 0.769

mPa for PreserFlo, all positioned 1 mm in the AC and 600 μm above the iris. Table 4 shows the

mean and maximum WSS values on the corneal endothelium. The highest WSS values on the

posterior cornea was 3.369 mPa, observed in the XEN 45 implant positioned 3 mm in the AC

and 600 μm above the iris. The lowest maximum WSS value was 2.945 mPa, in the XEN 63

implant positioned 1 mm in the AC and 600 μm above the iris. The differences between the

highest and lowest maximum WSS values for each implant as a function of position in the AC

were as follows: 0.288, 0.400, and 0.267 mPa for the XEN 63, XEN 45, and Preserflo,

respectively.

Discussion

Interest in the assessing the efficacy and safety of MIGS implants has increased due to the large

number of these devices that have been implanted in recent years [7–12]. In the present study,

we applied a hydrodynamic/numerical model to assess the hypotensive efficacy of three com-

mon MIGS devices. Our results show that the device diameter is an important factor for hypo-

tensive efficacy, and the Preserflo microshunt is the device with best hypotensive efficacy (due

to its larger diameter), followed by the XEN 63 and XEN 45 stents. Similarly, the bleb pressure

was found to be a strong determinant of post- implantation IOP.

The clinical studies carried out by Marcos et al. [7] and Ibañez et al. [8] to evaluate the sur-

gical implantation of the XEN 45 both reported similar baseline IOP values (22.2 ± 6.8 mmHg

and 22.3 ± 5.4 mmHg, respectively) and a median of 2.5 and 3.4, respectively, hypotensive

glaucoma topical medications per patient, which may reduce IOP between 25 to 40% [3].

Thus, in those studies, the real “untreated” baseline IOP may have been as high as 30 mmHg.

To facilitate comparison between these studies and ours in term of efficacy, we used the higher

baseline IOP estimate. After XEN 45 implantation, those authors reported similar decreases in

IOP versus baseline IOP, as follows: 13.2 mmHg (59% reduction) and 12.8 mmHg (57%),

respectively on the first postoperative day, and 11.4 (51%) and 11.1 mmHG (49%) at one week

post-surgery. Our simulation yielded similar results: in the early postoperative period, IOP

decreased by 44% to 56% when the bleb pressure was between 5 and 10 mmHg, respectively.

The decrease in IOP at one month post-implantation in the studies by Marcos et al. and

Ibañez et al. was, respectively, 6.5 mmHg (29% reduction) and 6.0 mmHg (26% reduction). At

one year after surgery, when the filtration bleb was formed and stable, the respective decreases

Fig 6. Wall shear stress on anterior iris after implantation of each drainage device. A: XEN 45; B: XEN 63; C:

PreserFlo; Pa: pascal.

https://doi.org/10.1371/journal.pone.0239324.g006
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in those studies were 6.7 mmHg (30% reduction) and 7 mmHg (30% reduction). In most

cases, the pressure inside the bleb in the early postoperative period is minimal, only increasing

over time due to fibrosis [46–48]. In our simulation, the decrease in IOP ranged from 29% to

22%, while the bleb pressure ranged from 17 to 20 mmHg. It is important to consider that, in

routine clinical practice, manoeuvres such as needling of the filtration bleb are usually per-

formed from 6 months to one year after surgery to prevent excessive scar formation, which

could lead to more flow resistance in the bleb [49, 50].

In a sample of patients with baseline IOP of 22.5 ± 4.2 mmHg (mean number of glaucoma

medications = 2.4) who received a XEN 63 implant, Lenzhofer et al. [10] reported a mean

decrease in IOP of 38% (to 14 mmHg) and 34% (to 15 mmHg) at 6 and 12 months after the

surgery. Our model yielded a similar decrease in IOP values in the late post-surgery period,

ranging from 38% to 29%. Batelle et al. [12] implanted the PreserFlo microshunt in a series of

patients, with a decrease in IOP from the baseline IOP (22.1 ± 4.1 mmHg with a mean of 2.9

glaucoma medications) to 8 mmHg (63% reduction) the first week after the surgery and to

10.7 ± 2.8 (55% reduction) one year after the surgery. In our simulation, the calculated

decrease in IOP ranged from 74% to 59% and 39% to 30% in the early and late postoperative

period, respectively.

Interestingly, Mendrinos et al. measured the length of the Ahmed valve tube in the AC, but

did not observe any correlation between tube length and postoperative IOP at 12 months

(R = 0.57, P = 0.09) [51]. According to the Poiseuille equation, the lumen and the total tube

length of the implant are key factors in the calculation of AH flow [52]. We found that tubes

with smaller lumens presented greater output resistance and therefore a lower flow of AH

through the tube, which implies a greater postoperative IOP. Thus, in our numerical model,

the PreserFlo implant (70 μm) produced the largest decrease in IOP, from 30 mmHg to 12

mmHg (a 60% decrease); by contrast, the XEN 45 μm was the least effective of the devices eval-

uated, with the model showing a decrease in postoperative IOP from 30 to 16.5 mmHg (45%

decrease) Mauro et al. [21] in their theoretical numerical study, observed that the insertion of

an Express implant (50 μm) would reduce IOP by 41% (from 25 to 14.7 mmHg).

In our model, a 1 mm decrease in the total tube length would reduce the IOP by less than 1

mmHg, especially when the pressure in the bleb is low. We also found that hypotensive efficacy

in the PreserFlo and XEN 63 devices was similar, despite the 2.5 mm difference in total tube

length.

The most important factors under normal conditions (production of AH constant) for the

calculation of the flow are the lumen and the total length of the tube. Therefore, these two

parameters are crucial for implant design to optimize surgical outcomes to ensure adequate

efficacy with a minimal risk of hypotony.

We found that the location of the tube in the AC (either more anterior or adjacent to the

endothelium, or more posterior and therefore closer to the iris) does not significantly affect

the flow of AH through the tube (the difference in Pc according to tube location was<0.01

mmHg for all implants), and therefore, did not affect the postoperative IOP. To our knowl-

edge, in real-life clinical practice no studies have assessed the influence of tube location in the

AC in terms of the efficacy of MIGS implants.

In terms of the safety profile of these implants, the magnitude of the WSS on the corneal

endothelium and iris surface is an important parameter to assess the risk of cell damage and

detachment in these structures. We found that all of these MIGS devices increased the WSS.

However, this increase in endothelial and iris WSS is slight, and did not reach the threshold

values generally considered necessary to damage to these structures. In our study, the highest

WSS values in the central corneal endothelium and iris were 72 and 128 times lower (0.00137

Pa and 0.000775 Pa, respectively) than the values described by Kaji et al. (0.1 Pa) [53] and
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Gerlach et al. (0.51 and 1.53 Pa) [54] at which endothelial corneal cells become detached.

Therefore, the mechanism by which endothelial count decreases after tube implantation in the

AC is not related to the flow of the AH but rather is likely to be multifactorial [55, 56].

The differences between the analytical and simulation values for postoperative IOP were

insignificant (<0.02 mmHg) in all three devices, a finding that validates our model. Addition-

ally, we found no significant differences (<0.13 μl/min) between the analytical and simulation

flow rates in the three implants in six different positions in the AC.

Study strengths and limitations

This study has several limitations, mainly that the numerical and simulation models use cer-

tain variables that are difficult to measure in vivo. First, AH production was set as a constant

value (2.0 μl/min) even though the flow in the human eye varies during the day, from as high

as 2.75 ± 0.63 μl/min [57, 58] to as low as 1.4 ± 0.19 μl/ min during sleep [59]. Second, the bleb

pressure used in this study, which is an important determinant of implant efficacy, was simu-

lated based on data from previous clinical studies using our analytical model [7–12], the exact

pressure in the filtration bleb during the postoperative period is currently unknown, so future

studies with real bleb pressure are needed. Another limitation is that we set AH outflow resis-

tance as a constant in the model, even though this value is not constant in healthy or glauco-

matous eyes since many factors can influence outflow, including IOP and the trabecular

meshwork, among others [59–61]. Finally, the analytical model does not include the estima-

tion of WSS generated by the AH flow.

Conclusion

In this study, an improved numerical model and computational fluid dynamics simulation

were used to predict and compare the hypotensive efficacy of three MIGS implants. This study

shows that the position of the tube in the anterior chamber does not influence IOP. However,

the tube diameter and length are both important determinants of postoperative IOP. Of the

three implants, the PreserFlo implant produced the largest decrease in IOP and the XEN 45

the smallest. All three MIGS implants were safe in terms of possible corneal endothelium and

iris damage.
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