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Abstract

Neural complexity is thought to be associated with efficient information processing

but the exact nature of this relation remains unclear. Here, the relationship of fluid

intelligence (gf) with the resting-state EEG (rsEEG) complexity over different time-

scales and different electrodes was investigated. A 6-min rsEEG blocks of eyes open

were analyzed. The results of 119 subjects (57 men, mean age = 22.85 ± 2.84 years)

were examined using multivariate multiscale sample entropy (mMSE) that quantifies

changes in information richness of rsEEG in multiple data channels at fine and coarse

timescales. gf factor was extracted from six intelligence tests. Partial least square

regression analysis revealed that mainly predictors of the rsEEG complexity at coarse

timescales in the frontoparietal network (FPN) and the temporo-parietal complexities

at fine timescales were relevant to higher gf. Sex differently affected the relationship

between fluid intelligence and EEG complexity at rest. In men, gf was mainly posi-

tively related to the complexity at coarse timescales in the FPN. Furthermore, at fine

and coarse timescales positive relations in the parietal region were revealed. In

women, positive relations with gf were mostly observed for the overall and the

coarse complexity in the FPN, whereas negative associations with gf were found for

the complexity at fine timescales in the parietal and centro-temporal region. These

outcomes indicate that two separate time pathways (corresponding to fine and

coarse timescales) used to characterize rsEEG complexity (expressed by mMSE fea-

tures) are beneficial for effective information processing.
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1 | INTRODUCTION

The human brain is perceived as a complex network composed

of interconnected regions that constantly process and integrate

information with coherent temporal dynamics (Honey et al., 2009;

Sporns, Chialvo, Kaiser, & Hilgetag, 2004; van den Heuvel, Stam,

Kahn, & Hulshoff Pol, 2009). It is thought that the moment-to-

moment variability of functional network states reflects important
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information about the topology and dynamics of brain networks

across spatial and temporal scales (Faisal, Selen, & Wolpert, 2008;

Garrett et al., 2013; Miskovic, Owens, Kuntzelman, & Gibb, 2016;

Pincus, 1991; Tognoli & Kelso, 2014). This particularly refers to the

situation when there is no explicit task and a subject is instructed to

relax and not to “think about anything special” (Cabral, Kringelbach, &

Deco, 2014; Deco & Corbetta, 2011; Deco, Jirsa, et al., 2013). From

this point of view, the brain at rest may be modeled as a multistable

dynamical system transitioning among diverse network states. An

insight into brain spontaneous fluctuation patterns within particular

networks may be obtained using external time-series observations,

for example, electroencephalogram (EEG) or magnetoencephalogram

(MEG) signals (Kelso, 1995; Stam, 2005). A key property of a dynami-

cal system that can be inferred from such observable time-series data

is its complexity understood as the richness of information conveyed

by system state transitions in the spatiotemporal domain (Costa,

Goldberger, & Peng, 2005; Frigg & Werndl, 2011; Pincus, 1991). The

concept of complexity in this sense is intrinsically linked with both the

information-theoretic notion of entropy and the concept of entropy

of a dynamical system (Frigg & Werndl, 2011).

Indeed, back in the '60s, Pinneo (1966) noted that it is not neces-

sarily the stimulus-induced “phasic” neural activity, but rather the

baseline, task-independent “tonic” activity that enabled effective neu-

ral functioning. Spontaneous low-frequency fluctuations of blood-

oxygen-level dependent signals investigated using functional magnetic

resonance imaging (fMRI) have been found to be highly structured

(Biswal et al., 2010; Damoiseaux et al., 2006). Specifically, they chan-

ged synchronically in functionally separate regions within the net-

works subserving critical sensory and cognitive functions (Allen

et al., 2011; Damoiseaux et al., 2006). One such brain network is the

frontoparietal network (FPN) that plays an important role in cognitive

control (Gordon et al., 2018). Several studies indicate that individual

differences in the characteristics of spontaneous spatiotemporal

fluctuations, pronounced in the FPN (Finn et al., 2015; Gratton

et al., 2018; Mueller et al., 2013), might be related to intellectual abili-

ties (Finn et al., 2015).

Spatiotemporal patterns of the resting brain's activity appear to

change much more rapidly than they could be detected using tech-

niques with a poor temporal resolution, for example, fMRI (Baker

et al., 2014; Deco & Corbetta, 2011; Siegel, Donner, & Engel, 2012).

Moreover, the ambiguity of the physiological sources of the hemody-

namic signal limits the insight into the mechanisms governing the

relationship between activity at rest and activity associated with

tasks, and consequently with behavioral results (Fox & Raichle, 2007).

Therefore, more appropriate methods, for example, EEG or MEG

should be applied to investigate these fast network state transitions;

which have already been used to demonstrate that the dynamic orga-

nization of spontaneous interactions between networks contribute

to more efficient communication in the brain (de Pasquale, Della

Penna, Sporns, Romani, & Corbetta, 2016; Liu, Farahibozorg, Porcaro,

Wenderoth, & Mantini, 2017; Siegel et al., 2012). Since it has been

hypothesized that such fast information transfer efficiency is linked to

intellectual abilities, the present study tested this assumption by

exploring the resting EEG (rsEEG) signal complexity and its relation to

fluid intelligence (gf ).

Gf is defined as the ability to solve novel problems by adaptive

reasoning without resorting to acquired knowledge or referring to pre-

vious experience (Cattell, 1963; Carroll, 1993, Horn & Cattell, 1967;

for review: McGrew, 2009). Fluid intelligence understood in this way

can then be defined as a facet of intellect related to the capacity to

process and integrate information (Deary, Penke, & Johnson, 2010;

Duncan et al., 2000; Jensen, 1998; Jung & Haier, 2007; Luders, Narr,

Thompson, & Toga, 2009) by flexible transitions between network

states (Barbey, 2018; Colom, Jung, & Haier, 2006; Colom, Karama,

Jung, & Haier, 2010; Gordon et al., 2018). The greatest dynamic flexi-

bility, which is thought to be crucial for adaptation to environmental

demands (Friston, 2011), has been found in networks closely related to

fluid intelligence (mainly the FPN) (Gu et al., 2015). The FPN has been

labeled in other contexts as the executive control network (Dosenbach

et al., 2006) or considered as a part of a larger control network com-

prising the cingulo-opercular network and the dorsal attention network

(Gordon et al., 2018). Thus, the role of the FPN in fluid reasoning abil-

ity might be identified with cognitive control shaping neural network

dynamics, supporting specific cognitive functions essential to solve a

novel challenging task (Barbey, 2018).

Existing evidence on the FPN as the neuroanatomical foundation

of intelligence (the parieto-frontal integration theory of intelligence,

P-FIT, Jung & Haier, 2007) is mainly derived from fMRI and

PET studies focused on task-related activations (Colom et al., 2010;

Jung & Haier, 2007), whereas task-free outcomes remain inconsistent

(e.g., Dubois, Galdi, Paul, & Adolphs, 2018; Ferguson, Anderson, &

Spreng, 2017; Finn et al., 2015; Hearne, Mattingley, & Cocchi, 2016;

Santarnecchi, Emmendorfer, & Pascual-Leone, 2017). This inconsis-

tency might be partly caused by the use of different methods to

evaluate intelligence and resting-state brain activity. Currently, the

whole-brain network connectivity and interactions at rest are thought

to be involved in gf (Ferguson et al., 2017; Finn et al., 2015; Hearne

et al., 2016; M. Li et al., 2019). Specifically, the connectivity between

the right hippocampus and the medial prefrontal cortex (R. Li, Zhang,

Wu, Wen, & Han, 2020), the interactions of the lateral prefrontal cor-

tex with other networks (Cole, Ito, & Braver, 2015) or the connections

between the FPN, default mode, salience and motor-sensory network

(M. Li et al., 2019) have been linked to fluid intelligence. It is worth

noting, however, that the FPN interactions are still found to be most

predictive for gf level (Ferguson et al., 2017; Finn et al., 2015; M. Li

et al., 2019).

Fink and Neubauer's team extensively explored the brain sub-

strates of intelligence in the context of the neural efficiency hypothesis

and found more focused activations during performance on various

problem-solving tasks in highly-intelligent—compared to average-

intelligent persons (Neubauer & Fink, 2009a, 2009b). These studies

also showed that sex mattered when the relationship between intellec-

tual abilities and task-related neural activity was explored. For exam-

ple, Neubauer and Fink (2003) found that a higher level of intellectual

abilities coexisted with more focused activation during intelligence test

performance only in male subjects. According to the authors' best
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knowledge, in the context of gf, the role of sex in resting-state neural

activity (including the specificity of the FPN) has not been well recog-

nized to date.

Previous studies have revealed an inconsistency in the relation-

ship between individual alpha frequency at rest and intelligence

suggesting either a positive association (Anokhin & Vogel, 1996;

Grandy et al., 2013) or no relation (Jaušovec & Jaušovec, 2000; Post-

huma, Neale, & Boomsma, 2001). These contradictory results might

be due to different methods used to assess intelligence or uncon-

trolled the sex effect (Pahor & Jaušovec, 2017). Furthermore, persons

with higher intelligence, relative to those with lower IQ, demonstrated

reduced alpha power (Jaušovec, 1997), enhanced alpha power

(Jaušovec, 1996), or no differences were observed (Jaušovec, 2000).

Recently, intelligence is being considered with a reference to a

small-world brain organization (Colom et al., 2006; Langer et al., 2012;

Thatcher, Palmero-Soler, North, & Biver, 2016; van den Heuvel

et al., 2009), defined as high local clustering and the short path length

of the network comprising the nodes interconnected by the lines or

edges with adjacent nodes (Watts & Strogatz, 1998). It has been dis-

covered that fluid intelligence positively correlated with enhanced

small-world organization of rsEEG higher alpha band (10.5–12 Hz)

over the right posterior area whereas a negative relationship was

observed between gf and local connectivity in the frontal cortex and

posterior cingulate gyrus (Langer et al., 2012). Thatcher et al. (2016)

found a negative relation of intelligence with the magnitude of infor-

mation flow, obtained from rsEEG data. Furthermore, in this study,

the greatest differences between the groups characterized by low and

high IQ were determined for the electrodes separated by long dis-

tances. Above outcomes have been explained in terms of small-world

brain topology: a higher intelligence level coexists with more efficient

local information processing that produces less demands from more-

distant nodes of the network. On the other hand, several resting-state

fMRI studies emphasized a significance of long-distance connections

in intellectual behavior (Colom et al., 2006; Santarnecchi, Galli,

Polizzotto, Rossi, & Rossi, 2014; van den Heuvel et al., 2009). Specifi-

cally, there are evidence on a strong positive relationship between gf

and global communication efficiency in the brain (van den Heuvel

et al., 2009) and also moderately weak long-distance connections are

thought to explain the most of variance in intelligence tests scores

(Santarnecchi et al., 2014). All these studies have raised the impor-

tance of taking into account both local and global information transfer

while investigating the neural substrates of fluid intelligence.

The dynamic flexibility of a network may be evaluated in terms of

neural complexity, understood as a product of different kinds of non-

trivial interactions emerging from the coexistence of synchronized

and desynchronized subsystems (Ibáñez-Molina & Iglesias-Parro,-

2016), the balance between functional segregation and integration

processes (Tononi, Sporns, & Edelman, 1994; Deco, Ponce-Alvarez,

et al., 2013), and the neural noise (Cabral et al., 2014; Cabral,

Kringelbach, & Deco, 2017). Neural complexity is conceived as the

randomness of temporal fluctuations' patterns of brain activity within

a region or network (McDonough & Nashiro, 2014). These patterns

are thought to reflect the dynamic flexibility of the brain network, that

is, its capacity to change rapidly over time in order to work in the most

efficient manner. In this study, the complexity of the rsEEG (mainly in

FPN, but not limited to its areas) was assessed using an extension of

sample entropy (SampEn) measure that enabled examination of the

complexity of resting neural network state transitions in the spatio-

temporal domain.

SampEn is related to the Kolmogorov–Sinai entropy (KS entropy)

of a dynamical system and has been introduced specifically for

the analysis of nonstationary physiological signals (Richman &

Moorman, 2000). Furthermore, for a multivariate signal such as EEG,

the multivariate MSE (mMSE) proposed by Looney, Adjei, and

Mandic (2018) examined complexity across both time and space

(channels). The vector-valued complexity profiles of a signal obtain-

able using MSE or mMSE have been demonstrated to contain more

information on the complexity of the underlying system than the

SampEn measure alone. It should also be noted that complex dynam-

ics typically involve structures across temporal scales, from fine-scales

to coarse-scales (Ahmed & Mandic, 2011; Catarino, Churches, Baron-

Cohen, Andrade, & Ring, 2011; Costa, Goldberger, & Peng, 2002;

Kosciessa, Kloosterman, & Garrett, 2019; Looney et al., 2018). Com-

putational studies have shown the positive relationship between

small-world network organization and complexity on coarse-scales

(Nobukawa, Nishimura, & Yamanishi, 2019; Park et al., 2019). The sig-

nal complexity at fine scales has been associated with information

processing by local neuronal assemblies, whereas variability at coarse

scales has been linked to large-scale network processing (Courtiol

et al., 2016; Vakorin, Lippe, & McIntosh, 2011), both of which are crit-

ical for adapting to environmental demands (Friston et al., 1997;

Garrett et al., 2013) and yield insights into neural underpinnings of

fluid intelligence.

In the present study, we hypothesized a positive relationship

between fluid intelligence and overall rsEEG complexity, especially in

the FPN and its interactions. Since neural complexity is thought to

reflect richness of brain signal (e.g., Garrett et al., 2013; Tononi

et al., 1994) or its level of integrity (McIntosh et al., 2014; Sporns,

Tononi, & Edelman, 2000), it is reasonable to believe that higher gf is

associated with greater overall EEG signal complexity (Friston, 1996),

especially in the resting-state condition when brain activity is consid-

ered as a neural basis for specific tasks performance (Rasero et al.,

2018). Existing evidence in that matter has yielded ambiguous

outcomes. Some of them demonstrated that individuals with a

high intelligence level were characterized by greater rsEEG dimen-

sional complexity compared to those with lower IQ (Lutzenberger,

Birbaumer, Flor, Rockstroh, & Elbert, 1992), whereas others did not

confirm these findings (Anokhin, Lutzenberger, & Birbaumer, 1999).

In addition, we expected that the complexity at both fine- and

coarse-grained timescales would be related to gf. Previous studies

indicate that keeping greater local information processing (expressed

by the complexity at fine scales) along with lower long-range interac-

tions (represented by the coarse scales) is beneficial for cognition

(McIntosh et al., 2014; Vakorin et al., 2011). The entropy at short

scales might reflect the capacity of the brain network to redirect its

activity which allows for better adjustment to changing environmental
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demands. Thus, in the present study the fine rsEEG complexity could

be positively related to gf.

The dynamics observed at coarse-scales refers to the achieved,

relatively stable, network state (configuration) and/or the transitions

between these states (the capacity to reconfigure). Hence, it could be

argued that a lower level of complexity on late scales would be associ-

ated with efficient information processing, and therefore a higher

level of gf. On the other hand, based on results linking higher fluid

intelligence (gf ) with the increased small-world organization

(Colom et al., 2006; Langer et al., 2012; Thatcher et al., 2016; van

den Heuvel et al., 2009) and its association with dynamic com-

plexity at coarse-scales (Nakagawa, Jirsa, Spiegler, McIntosh, &

Deco, 2013), this relationship may be just the opposite. Therefore,

in the present study, we assumed that higher level of the coarse

entropy (reflecting long-range interactions which promote global

information processing) might be related to fluid intelligence. We

assumed that higher level of the coarse entropy (reflecting long-

range interactions which promote global information processing)

might be related to fluid intelligence.

Furthermore, we hypothesized that there are different patterns

of the relationship between the rsEEG complexity and gf in men and

women at both fine and coarse scales. The evidence on how sex

affects the relationship between rsEEG patterns and fluid intelligence

is rather scarce. However, sex-related differences in both structure

and function of the brain are well documented, suggesting that men's

and women's outcomes should be analyzed separately (Cahill &

Aswad, 2015).

2 | METHODS

2.1 | Participants

The sample consisted of 119 healthy participants (57 men, mean age:

22.85 ± 2.84 years; age range: 18–30 years). There were no signifi-

cant age differences between men and women (t[115] = .009, p = .99,

no data on the age of two participants).

Participants were recruited via the Internet. To control for the

potential effect of other individual differences (such as age, neurologi-

cal and mental health history) on the relationship between mMSE

features and gf factor, we applied restrictive inclusion criteria. From

the point of view of our research question, the age factor seems to be

particularly important. Previous studies (Fernández et al., 2012;

Gómez, Pérez-Macías, Poza, Fernández, & Hornero, 2013; McIntosh

et al., 2014; Zappasodi, Marzetti, Olejarczyk, Tcchio, & Pizzella, 2015)

have suggested that complexity measures demonstrate inverted qua-

dratic relation with maximum between 40 and 60 years of age. For

this reason only results from people aged between 18 and 30 years

old were included. This age range corresponds to a period after the

completion of major neurodevelopment and before the appearance of

the first neurodegenerative changes.

Participants were right-handed (verified by the Edinburgh Hand-

edness Inventory, Oldfield, 1971) and reported no history of head

trauma, psychiatric or neurological diseases. They had not taken any

medications affecting the central nervous system for at least a year

prior to participation in the study, and declared current nonuse

of analgesic medication (self-report). Additionally, participants were

requested to avoid alcohol intake for at least 48 hr before the EEG

recording, and to maintain their regular caffeine and nicotine intake

for at least 24 hr (self-report).

2.2 | Ethical approval

The study was approved by the local ethics committees and was car-

ried out in accordance with the ethical principles of the 1964 Declara-

tion of Helsinki (World Medical Organization, 1996) and conformed

to the ethical guidelines of the National Science Centre of Poland

(2016). All participants provided written informed consent to partici-

pate in the study and were paid the equivalent of 20 euros. Partici-

pants were informed that the study concerned human cognition, and

that their data would be anonymous.

2.3 | Tests and procedure

2.3.1 | Fluid intelligence assessment

To assess individual level of fluid intelligence, the standard paper-and-

pencil administered version of four tests were applied (Cattell's Cul-

ture Fair Intelligence Test, CTF-3, Cattell & Cattell, 1973, the Paper

Folding Test, Paper, Ekstrom, French, Harman, & Dermen, 1976,

Number series and Pattern completion, Number and Pattern, Gągol

et al., 2018). Two additional tests using computerized mode were

administered (the Raven's Advanced Progressive Matrices, RAPM,

Raven, Court, & Raven, 1983, and Figural Analogies, Analogies,

Chuderski & Nęcka, 2012).

The CFT-3 (Cattell & Cattell, 1973) consists of four parts (series

completion, classifications, matrices, and topological relations) and

includes 50 items in total (time limit: 30 min). The Paper (Ekstrom

et al., 1976) requires imagining unfolding a piece of paper that has

been folded and punched in several places (time limit: 10 min).

Number (Gągol et al., 2018) requires finding the hidden rule according

to which a sequence or an array of numbers is constructed, and

completing it with the missing number (time limit: 18 min). Pattern

(Gągol et al., 2018) is conceptually similar to RAPM; it consists of

16 sequences/patterns of shapes and requires choosing one shape

out of a few alternatives that correctly completes each sequence or

pattern of shapes (time limit: 20 min).

RAPM (Raven et al., 1983) consists of a 3 × 3 matrix figure with

the lower right-hand entry missing. Participants were asked to choose

one out of eight alternatives to complete each of 36 matrices (time

limit: 36 min). Analogies (Chuderski & Nęcka, 2012) consists of the

36 items, each item having an A:B::C:D format, where A, B, and C are

simple patterns of shapes, B is generated from A using several geo-

metric transformations (e.g., orientation, size, and filling), and D is an
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empty space to be filled with one pattern (out of four) that was trans-

formed from C in the same way as B was transformed from A (time

limit: 36 min). Three practice trials preceded each test. Both tests

were computerized.

The exploratory factor analysis was used to extract the gf factor

(explained 61.76% of total variance in the six intelligence test scores,

eigenvalue = 3.71; see Table 1 for details).

No sex-related difference were found for the gf factor (women (W):

x̄ = − .15 ± .94, men (M): x̄ = .16 ± .05, t(117) = 1.73, p = .09), CFT-3

(W: x̄ = 29.05 ± 5.30, M: x̄ = 28.98 ± 4.53, t(117) = −.07, p = .94), Anal-

ogies (W: x̄ = 21.42 ± 3.82, M: x̄ = 22.12 ± 4.18, t(117) = .96, p = .34),

Paper (W: x̄ = 9.94 ± 2.95, M: x̄ = 11.00 ± 3.61, t(117) = 1.77, p = .08),

and RAPM (W: x̄ = 20.77 ± 4.17, M: x̄ = 21.30 ± 4.21, t(117) = .68,

p = .50). Only Number (W: x̄ = 10.02 ± 3.27, M: x̄ = 11.49 ± 3.00,

t(117) = 2.56, p = .01) and Pattern (W: x̄ = 8.87 ± 2.65, M: x̄ = 10.02 ±

2.91, t(117) = 2.25, p = .03) showed significant differences. Men scored

higher than women in both the Number series and the Pattern test.

Database of intelligence test results is at this URL: http://fizyka.

umk.pl/�tpiotrowski/complexity/UJ_gf.csv.

2.3.2 | Procedure

The participants were screened using paper-and-pencil gf tests

(CFT-3, Paper, Pattern, and Number) from one to 7 days before the

EEG session. During mounting the EEG cap (around 30 min), the

participants read printed instructions for RAPM and Analogies as well

as received several example items to solve. The EEG session started

with 360 s of continuous recording during resting state with eyes

open (the participants were asked to keep their eyes fixated on a

cross presented at the center of the computer screen), with another

300 s recorded while the participants were required to concentrate

on their respiration (not analyzed further). Then either RAPM or Anal-

ogies (the order of tests was random) were presented. The order of

each test's items was fully randomized to separate the effects of diffi-

culty from the effects of learning/fatigue and signal deterioration.

After completing each set of 36 items, the EEG signal during another

240 s of resting state with eyes open was recorded (not analyzed fur-

ther). This procedure was repeated for the remaining test, followed by

another 240 s of the resting state recording. In addition, participants

completed other cognitive tasks and personality questionnaires, which

were not included in the present study. The entire EEG session lasted

about 2 hr. To provide the same test conditions, each EEG examina-

tion was performed in a dimly lit room with constant artificial, inde-

pendent of weather conditions. The research assistants corrected the

placement of the EEG cap on the skull when necessary.

2.3.3 | EEG data acquisition and preprocessing

Continuous EEG was recorded at 256 Hz from 64 Ag/AgCl scalp elec-

trodes using the Biosemi Active Two system. The electrodes were

secured in an elastic cap using the 10–20 international electrode

placement system, and referenced online to the common mode sense

electrode located at the C1 electrode. The horizontal and vertical eye

movements were monitored using four additional electrodes placed

above and below the right eye, and in the external canthi of

both eyes.

The acquired data were processed using MATLAB (ver. R2017a,

Mathworks Inc., Natick MA) and the EEGLAB toolbox (ver. 14,

Delorme & Makeig, 2004). EEG signals were downsampled to 256 Hz

and high pass (>1 Hz) filtered. Bad channels were removed using

an automated procedure (POP_REJCHANSPEC) based on signal SD

(rejection threshold of >5 SD was used for the frequency range of

TABLE 1 Descriptive statistics, reliabilities (Cronbach's alpha), and correlations (Pearson's r) for all intelligence tests were used to extract the
gf factor (N = 119)

Statistics RAPM (1) CFT-3 (2) Paper (3) Analogies (4) Number (5) Pattern (6) gf factor

x 21.03 29.02 10.45 21.76 10.72 9.42 0.00

SD 4.18 4.92 3.31 3.99 3.22 2.83 1.00

Min/max 6/31 17/38 1/16 8/29 2/17 3/16 −2.61/1.82

Skew −.68 −.152 −.454 −.363 −.311 .036 −.284

Kurtosis .909 −.694 −.306 .014 −.344 −.597 −.490

Alpha .83 .80 .81 .77 .74 .74 N/A

r(gf ) .809*** .746*** .820*** .766*** .729*** .839***

r(6) .648*** .570*** .611*** .553*** .545***

r(5) .437*** .460*** .527*** .504***

r(4) .544*** .481*** .540***

r(3) .646*** .517***

r(2) .509***

Abbreviations: CFT-3, Cattell's Culture Fair Intelligence Test; gf, fluid intelligence; RAPM, Raven's advanced progressive matrices; SD, standard deviation;

x, mean.

***p < .001.
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0–5 Hz and >2.5 SD for the frequency range 5–40 Hz). Epochs con-

taining unusually high amplitudes were identified and removed using

a threshold of 444 μV. The remaining signal was low-pass filtered

(<40 Hz) and re-referenced to the average (common) reference.

Epochs containing unusually high amplitudes were identified and

removed using a threshold of 222 μV. Independent components were

identified and rejected in an automated manner using the ADJUST

tool (an EEGLAB plugin). The previously removed or missing channels

were interpolated (POP_INTERP) purely for the sake of fitting the

preprocessed data into the EEGLAB format for subsequent analysis

and have not been used otherwise. Finally, we identified and removed

epochs containing jamplitudesj > 111 μV. For further analysis, a num-

ber of continuous, uncut, disjoint and 10,240 samples (40 s) long

epochs from each dataset were extracted.

The following channel sets were located in the frontal (Figure 1)

(F: F7, F8, F3, F4), frontal left (FL: FP1, F7, F3, FC3), frontal right (FR:

FP2, F8, F4, FC4), central (midline) (C: Fz, Cz, Pz, Oz), parietal (P: P3,

P4, P7, P8), parietal left (PL: P7, P3, O1, PO3), and parietal right (PR:

P8, P4, O2, PO4), middle left (ML: T7, C3, Cp5, Cp1), middle right (MR:

T8, C4, Cp6, Cp2), regions of the scalp were selected for further anal-

ysis (Figure 1).F IGURE 1 Channels and channel sets locations

F IGURE 2 Coarse-graining procedure was performed for each of the p time series considered. (a) Original i-th time series, where i = 1,2,…,p.
For clarity of presentation, we select the first 50 samples to be considered in the subsequent panels (b–d). Panels (b–d): The original signal is
coarse-grained (averaged) from consecutive samples over segments of increasing length (scale factor) ε = 2, ε = 3, and ε = 4. This process acts as a
low-pass filter and results in visible smoothing of the original signal. Note that the resulting signal is of length N/ε, where N is the length of the
original signal
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The preprocessing script used in this study can be found at

https://github.com/IS-UMK/complexity/tree/master/Preprocessing

2.4 | Multivariate multiscale sample entropy
analysis of rsEEG

Multivariate multiscale sample entropy (mMSE) analysis of rsEEG was

performed using the method proposed by Looney et al. (2018). The

mMSE is a multivariate extension of the MSE method based on com-

puting the sample entropy parameter (Richman & Moorman, 2000)

for coarse-grained (averaged) time series proposed by Costa et al.

(2002). We first illustrate all steps of the mMSE algorithm in Figures 2,

4-7 using sample parameter values selected to maximize the clarity

of the presentation of the algorithm (see also Analysis flowchart,

Figure 3). Afterward, the specific choices of the mMSE parameter

values used in this work are discussed and the reader is directed to

the repository of the implementation of mMSE. It is worth noting that

similar graphical representations of sample entropy and MSE algo-

rithms were given by Costa et al. (2002); Grundy, Anderson, and

Bialystok (2017); and Heisz, Shedden, and McIntosh (2012). To the

best of the authors' knowledge, a complete graphical illustration of

the mMSE algorithm has not been previously published in the

literature.

Let Pi denote the number of composite delay vectors similar to

the i-th one. We introduce the normalized version of Pi as Bi
m rð Þ=

1
N−n−1

� �
Pi = Pi

N−n−1 which has values between 0 (there are no compos-

ite delay vectors similar to the i-th one) and 1 (all other composite

delay vectors are similar to the i-th one), for a given similarity thresh-

old r>0. Then, we can introduce the similarity coefficient

Bm rð Þ= 1
N−n

� �PN−n
i=1 Bm

i rð Þ, is the average value of Bi
m (r) across com-

posite delay vectors.

It is clear that the construction of extended composite delay vec-

tors as shown in Figure 7 produces N-n such vectors. Then, the proce-

dure of counting similar vectors presented in Figure 6 is repeated for

the extended composite delay vectors, yielding Qi extended compos-

ite delay vectors similar to the i-th one. Similarly as before, we intro-

duce the normalized version of Qi as Bi
m+1 rð Þ= 1

N−n−1

� �
Qi and the

similarity coefficient Bm+1 rð Þ= 1
N−n

� �PN−n
i=1 Bm+1

i rð Þ, compare with, par-

agraph below the Figure 4 legend. The superscript (m+ 1) in both Bi
m

+1(r) and Bm+1(r) emphasizes that these quantities are computed now

for the extended composite delay vectors of length m+ 1. Then, for

the embedding vector M, time lag vector τ, and similarity threshold

r > 0, the mMSE coefficient at scale ε is of the form mMSE (M,τ,r,ε)

=− ln Bm+1 rð Þ
Bm rð Þ

� �
: The mMSE vectors (values of mMSE as a function of ε)

are obtained using the above steps performed across the range of

scales ε.

For a single-variate time series Pincus and Goldberger (1994) rec-

ommended the minimum number of samples to be at least 10m for

approximate entropy (ApEn), where m is the embedding coefficient.

The papers utilizing sample entropy (Richman & Moorman, 2000) and

its extensions to the multivariate case (Ahmed et al., 2012; Ahmed &

Mandic, 2011; Costa et al., 2002; Looney et al., 2018) follow a simi-

lar recommendation. In the latter case, the minimum number of

samples is defined as p*10m. Regarding the embedding vector

M = [m1,m2,…,mp], we set the embedding vector coefficients to

mk = 2 for k = 1,2,…,p. The time delay τk was set to 1 for k = 1,2,…,p,

the threshold r measuring similarity between data points was set to

r = .15 with time series normalized to unit variance, and the dis-

tance measure d was the maximum distance. These settings

followed the guidelines proposed by Pincus and Goldberger (1994)

for the ApEn measure and adopted for the SampEn-based measures

(Ahmed & Mandic, 2011; Costa et al., 2002; Looney et al., 2018;

Richman & Moorman, 2000), as they ensure stability of conditional

F IGURE 3 Workflow diagram

F IGURE 4 Two-time series
(p = 2) with N = 10 samples. The time
series considered represent two
signals for the scale factor ε = 1
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probability estimates while preserving detailed system information.

Our implementation is based on modification of MATLAB scripts

downloaded from:

http://www.commsp.ee.ic.ac.uk/�mandic/research/Multivariate_

Complexity_Stuff/Matlab_Multivariate_Multiscale_Entropy.zip.

Our scripts are freely available based on GNU General Public

License from the GitHub repository https://github.com/IS-UMK/

complexity/tree/master/MMSE_vectors.

The EEG dataset used in this study to compute mMSE vectors can

be found at http://fizyka.umk.pl/�tpiotrowski/complexity/UJ.mat.

2.5 | Features of mMSE profiles

2.5.1 | Skewed inverted-U shape of mMSE vectors

We obtained the mMSE vectors for each subject for frontal (F), frontal

left (FL), frontal right (FR), central (C), parietal (P), parietal left (PL),

parietal right (PR) and middle left (ML), middle right (MR) channel sets

(Figure 1) separately, using the procedure outlined in Section 2.4 (see

also Figure 3). In all of these cases, the mMSE vectors were stable and

characterized by a skewed inverted-U shape across time scales, which

is typical for EEG and MEG signals (Costa et al., 2005; Courtiol

et al., 2016; Grandy, Garrett, Schmiedek, & Werkle-Bergner, 2016;

Kosciessa et al., 2019; Kuntzelman, Jack Rhodes, Harrington, &

Miskovic, 2018; see Figure 8). Indeed, this pattern also persists in other

F IGURE 5 Construction of composite delay vectors (rows of
the matrix) from the original p = 2 time series introduced in Figure 4
with N = 10 samples. The i-th composite delay vector is obtained
in this example for the embedding vector M = [3,2] (embedding
the first signal in the 3-dimensional space, and the second signal in
the 2-dimensional space) and the time lag (sample skipping) vector
τ = [2,1]. The total number of composite delay vectors obtained
in this way is N–n, where n-max{M} x max{τ}. In this example
N–n = 10–3 * 2 = 4. The length of each of the composite delay
vectors is m =

Pp
k =1mk , where mk is the k-th coefficient of the

embedding vector. In our case, m = 3+2 = 5

F IGURE 6 For a given similarity
threshold r > 0, the number of composite
delay vectors similar to the i-th one is
counted (excluding self-matches), for i = 1,2,
…,N–n. Panel (a): For r = 2 and for the first
three composite delay vectors x[0], x[1], and
x[2], their neighborhoods of radius r (pink,
green, and purple stripes, respectively) are
introduced. Then, all composite delay vectors
lying within these neighborhoods are marked
using pink diamonds, green circles, and
purple triangles, respectively. Panel (b): The
number of similar composite delay vectors,
represented as pink, blue, and purple tiles is
counted for x[0], x[1], and x[2], respectively.
The self-matches are excluded and are
marked by the hatched area at the
corresponding entry

F IGURE 7 Construction of extended composite delay vectors
obtained from those presented as rows of the matrix in Figure 5 by
adding the next sample, simultaneously for all time series. The
samples are selected according to the coefficients of the embedding
vector M = [3,2] and the time lag vector τ = [2,1]. It should be noted
that this procedure increases the length of each of the composite
delay vectors by p—the number of time series considered. In the

presented example, p = 2
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modalities, such as fMRI (e.g., Grandy et al., 2016; McDonough &

Nashiro, 2014; McDonough & Siegel, 2018; Omidvarnia, Zalesky, Ville,

Jackson, & Pedersen, 2019) or in simulation studies (e.g., Courtiol

et al., 2016; Grandy et al., 2016; Kuntzelman et al., 2018). For our

dataset the mMSE values stabilized at the coarse-grained time series

for scale ε = 12.

2.5.2 | AUC, MaxSlope, and AvgEnt features
of mMSE profiles

We considered the following three features derived from the mMSE

vectors, calculated for a given subject frontal (F), frontal left (FL), fron-

tal right (FR), central (C), parietal (P), parietal left (PL), parietal right

(PR) and middle left (ML), and middle right (MR) channel sets (intro-

duced in Section 2.3.2, Figure 1).

a. Area under curve (AUC), obtained by the trapezoidal approximation

of the area delimited by the mMSE vector. The AUC feature may

be viewed as the total complexity of the EEG signal represented by

the mMSE vector.

b. MaxSlope, defined as the maximum pairwise difference between

the first four elements (1:4 timescales) of the mMSE vector divided

by indices' difference. The MaxSlope feature may be viewed as rep-

resenting the maximum complexity change of the EEG signal at

high-frequency fine-scales.

c. AvgEnt, defined as the average value of the last four elements

(9:12 timescales) of the mMSE vector; the AvgEnt feature may be

viewed as representing the baseline value of entropy of the EEG

signal at low-frequency coarse-scales.

The scripts calculating the above features can be found at https://

github.com/IS-UMK/complexity/tree/master/MMSE_features.

2.5.3 | Diversity of spatiotemporal complexity
patterns between the channel sets

The above features characterize the mMSE vector obtained from the

EEG signal from a certain, single set of channels. However, considering

the purpose of our research it is important to quantify the relationship

between the mMSE vectors obtained from the EEG signals from the two

sets of channels for a given subject. To this end, we introduced the differ-

ence between two channel sets for particular mMSE features (Difference

for AUC, MaxSlope, and AvgEnt between the following pairs of channel

sets: F-P, FL-PL, FR-PR, FL-FR, PL-PR, and ML-MR).

2.6 | Statistical analyses

Partial least square regression (PLSR) analysis was used to determine the

extent to which the rsEEG complexity patterns were associated with gf

factor in the overall sample, and separately in men and women samples.

In addition, we performed a series of the mix ANOVA to check

the effect of sex, channel set, and brain lateralization on the mMSE

features (Section S1).

F IGURE 8 Skewed inverted-U shapes of the mMSE vectors for each channel set in (a) the overall sample, (b) men, and (c) women. Note.
The X-axis represents timescales and the Y-axis represents the average of the mMSE values across the subjects. Error bars represent the
confidence intervals (95% CI). mMSE vectors were calculated using the following parameters for all channel sets: m = 2, r = .15, p = 4, ε = 12,
where m is the embedding coefficient, r is the similarity threshold, p is the number of channels in a given channel set, and ε is the time scale
factor. C, central; F, frontal; FL, frontal left; FR, frontal right; ML, middle left; MR, middle right; P, parietal; PL, parietal left; PR, parietal right;
(details see Figure 1)
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2.6.1 | Partial least square regression analysis

The PLSR is a multivariate regression technique (Wold, Sjöström, &

Eriksson, 2001) which has been designed to provide robust regression

in situations where there are many correlated predictor variables and

a limited number of samples, as is typical in neuroscience (Krishnan,

Williams, McIntosh, & Abdi, 2011). The PLSR method decomposes the

matrix of values of the predictor variables (features) X into orthogonal

scores T and loadings P as X = TP in such a way as to incorporate

information on both X and the vector representing the dependent vari-

able y in T and P. More precisely, the algorithms used to find such a

decomposition aim to determine scores T and loadings P in such a way

as to describe as much as possible of the covariance between X and y.

In order to determine the optimal number of PLSR components

(latent variables, LVs, obtained by deflating iteratively the crossproduct

matrix S = XTY using singular value decomposition [SVD] in the order

of decreased covariance between X and Y), we used two criteria:

a. the first one is based on the cross-validated (CV) PLSR model,

where the CV curve is obtained as a function of the number

of components. This approach is based on the randomization test

method (in this case, number of permutations: N = 10,000, α = .05

level, Van der Voet, 1994; PLS R package, Mevik, Wehrens,

Liland, & Hiemstra, 2019),

b. the second one simply selects the number of LVs based on the first

local minimum of the CV curve as a function of the number of

components (Mevik et al., 2019).

We note that the above procedure results in a single hypothesis to

be verified, represented by the selected multivariate linear regression

model: whether there exists or not a linear combination of independent

variables matching values of a dependent variable. Thus, multiple com-

parisons are not performed. We also note that the PLSR does not

assume that the regression residuals are normally distributed. Conse-

quently, the assumption for the standard t-test of the significance

of regression coefficients is not met. To circumvent this difficulty, we

have used bootstrapped estimation of confidence intervals (95% CI,

number of bootstrap repetitions: N = 10,000) for regression coefficients

(MVDALAB package, Afanador, Tran, Blanchet, & Baumgartner, 2017)

to verify which independent variables were relevant to the test of our

hypothesis.

The independent variables were centered and standardized.

The R script implementing the above analysis is freely available

based on GNU General Public License from our GitHub repository

https://github.com/IS-UMK/complexity/tree/master/PLSR.

This script uses the mMSE features and gf scores downloadable from

http://fizyka.umk.pl/�tpiotrowski/complexity/UJ_gf_complexity.csv.

3 | RESULTS

3.1 | Relation of rsEEG complexity to gf: PLSR
Analysis

For the overall sample (N = 119), the first local minimum of the CV curve

is obtained for three LVs. Each of them explained respectively 19, 10, or

3% (in total 32%, Figure 9) of the shared covariance between gf and the

complexity measures. The regression coefficients, bias-corrected

95% bootstrapped confidence intervals (95% CI) and the bootstrap

standard error (SE) for the variables relevant to the rsEEG complex-

ity associated with gf are shown in Table 2. The predictors, listed in

Table 2, are ordered from the most to the least strongly related to

the rsEEG pattern complexity relevant to higher gf in groups sepa-

rated into positive and negative predictors. Detailed information

about the obtained regression coefficients, 95% CI and SE for all

variables are provided in Table S1.

When the PLSR analysis was conducted only in men (N = 55, two

outliers were removed), the first local minimum allowed to extract

eight LVs. This model explained respectively 24, 19, 9, 6, 6, 2, 1, and

1% (in total 68%, Figure 10) variation of the gf. Relevant contributors

F IGURE 9 Individual subjects'
complexity score versus gf score in the
entire sample (N = 119)

DRESZER ET AL. 4855

https://github.com/IS-UMK/complexity/tree/master/PLSR
http://fizyka.umk.pl/%7Etpiotrowski/complexity/UJ_gf_complexity.csv
http://fizyka.umk.pl/%7Etpiotrowski/complexity/UJ_gf_complexity.csv


in LVs pattern significant for higher gf are listed in Table 3 (details,

Table S2).

Women (N = 62) demonstrated a significant relationship between

the rsEEG complexity and gf factor (one LV, permutation test,

p < .05, a model with one LV explained 34% variation of the gf,

Figure 11). Significant contributors to the LV pattern relevant to gf are

provided in Table 4. Table S3 contains the detailed results for all

predictors.

4 | DISCUSSION

To our knowledge, this is the first study in which the multivariate

extension of multiscale sample entropy (mMSE) was used to ana-

lyze spontaneous EEG data in relation to fluid intelligence (gf ). The

mMSE provides information about signal richness (complexity) in

the spatiotemporal domain, that is, for different brain regions

(channel sets) across different timescales. As the mMSE takes into

account the cross-correlations between variables in the time series

(between electrodes), it is very useful for analyzing EEG data, typi-

cally recorded from many channels (Costa et al., 2005). Further-

more, this analysis allows us to determine not only the overall brain

complexity (entropy) but also the complexity at fine-grained (short)

and coarse-grained (long) timescales, as well as the differences

between particular complexity features (Ahmed et al., 2012;

Ahmed & Mandic, 2011; Looney et al., 2018). Therefore, the mMSE

appears to be an excellent tool to investigate the relationship

between fluid intelligence and rsEEG complexity at different time-

scales, which is a novel and rather unique approach in the neurosci-

ence of individual differences.

TABLE 2 rsEEG complexity pattern
(mMSE features) relevant to gf obtained
from PLSR analysis in the entire
sample (N = 119)

Predictor Regression coefficient 95% CI SE

Positive AvgEnt FL-FR .133 [.053; .196] .04

AvgEnt FL .120 [.058; .179] .03

AvgEnt P .113 [.030; .186] .04

MaxSlope PL-PR .101 [.022; .178] .04

MaxSlope FR-PR .083 [.011; .153] .04

AvgEnt FL-PL .082 [.019; .151] .03

AUC FL .076 [.019; .129] .03

AUC FL-PL .070 [.017; .123] .03

AUC FR-PR .053 [.009; .107] .02

Negative MaxSlope PR −.139 [−.233; −.030] .05

MaxSlope ML-MR −.134 [−.206; −.039] .04

AvgEnt F-P −.134 [−.209; −.050] .04

MaxSlope ML −.102 [−.177; −.016] .04

AUC F-P −.084 [−.157; −.007] .04

Abbreviations: 95% CI, bias-corrected 95% bootstrapped confidence intervals; C, central; F, frontal, FL,

frontal left, FR, frontal right; ML, middle left; MR, middle right; P, parietal; PL, parietal left; PR, parietal

right; SE, estimate of bootstrap standard error.

F IGURE 10 Individual subjects'
complexity score versus gf score in
men (N = 55)
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TABLE 3 rsEEG complexity pattern
(mMSE features) relevant to gf obtained
from PLSR analysis in men (N = 55)

Predictor Regression coefficient 95% CI SE

Positive MaxSlope FR-PR .305 [.034; .446] .11

AvgEnt PR .301 [.076; .447] .09

AvgEnt FL .295 [.077; .430] .09

AvgEnt FL-PL .279 [.044; .408] .09

MaxSlope F-P .276 [.028; .429] .10

AvgEnt FL-FR .195 [.002; .379] .10

Negative AUC F-P −.362 [−.466; −.093] .10

AvgEnt PL-PR −.293 [−.426; −.054] .09

AvgEnt F −.254 [−.469; −.016] .11

AvgEnt FR-PR −.196 [−.426; −.054] .09

AvgEnt F-P −.172 [−.373; −.001] .09

Abbreviations: 95% CI, bias-corrected 95% bootstrapped confidence intervals; C, central; F, frontal, FL,

frontal left, FR, frontal right; ML, middle left; MR, middle right; P, parietal; PL, parietal left; PR, parietal

right; SE, estimate of bootstrap standard error.

F IGURE 11 Individual subjects'
complexity score versus gf score in
women (N = 62)

TABLE 4 rsEEG complexity pattern
(mMSE features) relevant to gf obtained
from PLSR analysis in women (N = 62)

Predictor Regression coefficient 95% CI SE

Positive AvgEnt FL-FR .067 [.085; .032] .02

AUC FL-FR .064 [.031; .099] .02

AUC FL-PL .048 [.010; .079] .02

AvgEnt PL-PR .043 [.001; .076] .02

AUC PL-PR .042 [.001; .078] .02

AUC FR-PR .041 [.0004; .074] .02

AvgEnt FL-PL .040 [.003; .067] .02

AvgEnt FL .040 [.008; .069] .02

AUC FL .030 [.002; .066] .02

Negative AUC PR −.064 [−.085; −.032] .01

MaxSlope PR −.062 [−.087; −.029] .01

MaxSlope ML-MR −.054 [−.093; −.023] .02

AvgEnt PR −.049 [−.074; −.012] .02

MaxSlope ML −.049 [−.073; −.017] .01

MaxSlope P −.036 [−.064; −.0003] .02

Abbreviations: 95% CI, bias-corrected 95% bootstrapped confidence intervals; C, central; F, frontal, FL,

frontal left, FR, frontal right; ML, middle left; MR, middle right; P, parietal; PL, parietal left; PR, parietal

right; SE, estimate of bootstrap standard error.
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Our findings indicate two distinct time pathways (corresponding

to short and long timescales) in which fluid intelligence is related

to the entropy at rest. Specifically, gf was mainly associated with the

fronto-parietal complexities at coarse timescales and with temporo-

parietal complexities at fine timescales (Table 2). Additionally, we

found that sex influenced the relationship between fluid intelligence

and spontaneous EEG complexity at short and long scales differently.

This effect was observed in the absence of significant differences in gf

test performance between men and women (Table 1).

4.1 | gf and rsEEG complexity

In the current study, gf was associated with the overall entropy

(measured by AUC) and the complexities at both fine and coarse time-

scales (expressed by MaxSlope or AvgEnt, respectively). These results

were observed mainly for the FPN. However, the value of MaxSlope

computed from signals on the electrodes located both over the

frontoparietal and centro-temporal regions was related to fluid intelli-

gence (Table 2, Figure 9). Therefore, the present study not only

reinforced the well-documented relevance of the FPN in fluid intelli-

gence (Dubois et al., 2018; Goh et al., 2011; Gu et al., 2015; Haier,

Jung, Yeo, Head, & Alkire, 2005; Jung & Haier, 2007; Langer

et al., 2012; Yoon et al., 2017) but also confirmed previous findings

demonstrating that intellectual behavior is represented in the areas

beyond this network (Basten, Hilger, & Fiebach, 2015; Hilger

et al., 2017a; Hilger et al., 2017b; Pamplona, Santos Neto, Rosset,

Rogers, & Salmon, 2015; van den Heuvel et al., 2009). However, it

should be mentioned that the electrodes located over the parietal or

frontal regions do not necessarily receive parietal or frontal contribu-

tions. Thus, the above conclusions should be considered with caution.

The present study revealed that better gf task performance was

associated with greater left frontal AUC and AvgEnt, higher parietal

AvgEnt, and larger left frontal relative to right frontal AvgEnt (Table 2,

Figure 9). These results are partially congruent with previous evidence

from resting-state fMRI studies (McDonough & Nashiro, 2014;

Omidvarnia et al., 2019; Saxe, Calderone, & Morales, 2018) demon-

strating increased brain entropy in the prefrontal cortex, inferior tempo-

ral lobes and cerebellum associated with higher gf (Saxe et al., 2018), a

positive relationship of fluid intelligence with the complexity of resting-

state networks including the FPN (Omidvarnia et al., 2019) or with the

temporal variability of the middle frontal, inferior parietal and visual

cortices (Yang et al., 2019). A higher intelligence level also turned out

to coexist with more efficient organization of the whole-brain network

(van den Heuvel et al., 2009) or mainly the FPN (Duncan, 2010; Langer

et al., 2012). Also, the global connectivity of the left lateral prefrontal

cortex, both within and outside the FPN, was as a predictor of fluid

intelligence (Cole et al., 2015; Cole, Yarkoni, Repovš, Anticevic, &

Braver, 2012). Our results are the first to show gf—FPN complexity

relationship similar to that demonstrated in resting fMRI studies.

We found that a larger frontal AUC in relation to the parietal AUC,

determined separately for the left and right hemispheres, were posi-

tively related to gf. Interestingly, the difference between the frontal

and parietal AUC (calculated for both left and right channel sets

together) was negatively associated with fluid intelligence. Similar

effects were observed for AvgEnt, except that in this case, there was a

positive relationship between gf and the difference between the left

frontal and left parietal entropies (Table 2). These results indicate that

maintaining a greater within-hemisphere advantage of frontal over

parietal complexities at all timescales, and only at coarse scales along

with a lower dominance of frontal over parietal entropy, computed

jointly for both hemispheres, facilitates better gf test performance.

We also cautiously suggest that both intra- and interhemispheric cou-

pling in the FPN at rest are beneficial for fluid intelligence.

We found that the left frontal and parietal AvgEnt were positively

related to gf. A greater advantage of left frontal AvgEnt over the right

frontal and left parietal AvgEnt, was also associated with higher fluid

intelligence. Considering the coarse timescales as reflecting conditions

that facilitate long-distance interactions across distributed neural

assemblies (e.g., Vakorin et al., 2011), the above findings might support

the role of large-scale connections in the implementation of intellec-

tual behaviors. A contribution of global interactions to efficient infor-

mation processing remains, after all, unclear. Some authors (Thatcher

et al., 2016) have claimed that the shorter rather than longer distances

between brain areas are related to higher intelligence, whereas others

postulated a major role of wide-distributed areas in the brain in intel-

lectual behaviors (Colom et al., 2006; van den Heuvel et al., 2009).

Recently, both strong and weak connections have been considered

responsible for the variability of intellectual behavior (Santarnecchi

et al., 2017). Long-distance connections are thought to reduce the

topological distance between brain regions, which improves communi-

cation in the brain and, thereby, contributes to intellectual behavior

(Bullmore & Sporns, 2009; Deco, Jirsa, et al., 2013; Deco, Ponce-

Alvarez, et al., 2013; van den Heuvel et al., 2009; Watts &

Strogatz, 1998). Our outcomes are also congruent with the under-

standing of the role of long brain connections, proposed by Betzel and

Bassett (2018), as those that provide diversity of information transmit-

ted in the neuronal networks leading to complex brain dynamics

patterns.

In light of the proposed theories concerning the functional signifi-

cance of neural complexity at coarse scales (McIntosh et al., 2014),

the pattern of relationship between AvgEnt and gf, determined in the

current study, indicate that the increased number of long-range inter-

actions of the left frontal and parietal areas provides favorable condi-

tions for better performance of fluid intelligence tasks.

We also found that gf was negatively associated with complexity

at fine timescales (MaxSlope) in the right parietal and left middle

regions. When gf was higher, there was greater right frontal and left

parietal MaxSlope relative to MaxSlope in the right parietal area. Fur-

thermore, a higher MaxSlope in the right middle area relative to

MaxSlope in the left middle area was negatively related to gf. This pat-

tern of the relationship between gf and rsEEG fine-grained complexity

suggests that intrahemispheric coupling within the FPN along with

interhemispheric coupling within the middle and parietal regions might

be a substrate for higher gf. Complexity at fine timescales has been

considered to represent local information processing and within-

hemisphere functional connectivity (McIntosh et al., 2014). Recently,

it has been found that greater complexity at fine timescales is related
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to greater integrity of white matter in the brain (McDonough &

Siegel, 2018). Therefore, the results might mainly indicate that

maintaining a low level of interconnections (both functional and struc-

tural) among local neuronal populations in the right parietal and mid-

dle left regions promotes gf.

In the present study, higher fluid intelligence was associated

mainly with greater complexity at coarse timescales and lower

entropy at fine timescales (Table 2). These results are consistent with

recent resting-state fMRI findings (Menon & Krishnamurthy, 2019)

and highlight the usefulness of differentiating short and long scales

when fluid intelligence in relation to neural complexity is examined.

The pattern of relations of gf with MaxSlope and AvgEnt in the present

study contradicts the theory implicating that information processing is

the most effective when neurons desynchronize at fine timescales

and synchronize at coarse timescales (Baptista & Kurths, 2008). Con-

gruently with McDonough and Nashiro (2014), who suggested that

less neural complexity is related to higher synchrony between brain

areas, given outcomes indicate that better gf task performance coex-

ists with synchronization at fine scales and desynchronization at

coarse scales. On the contrary, the outcomes are consistent with

some previous evidence implicating that decreased entropy at fine

timescales and increased entropy at coarse timescales might be

important features of optimized brain functioning (Farzan et al., 2017;

McIntosh et al., 2014). Therefore, this study may extend the current

understanding of the neural complexity at fine and coarse timescales.

More studies are definitely needed to further clarify these issues.

4.2 | gf and rsEEG complexity: Sex matters

We believe that this is the first study to demonstrate the different

patterns of relationship between gf and rsEEG complexity in men and

women. In this study, there were no significant sex-related differences

in fluid intelligence (Section 2.3.1, see also Table 1). This suggests that

male and female brains may recruit different regions in different ways

to resolve the gf tasks. Such an explanation has been proposed by

other authors (Deary et al., 2010; Jiang et al., 2019), who found com-

parable results in their resting-state fMRI studies.

By including into the data analysis the fine and coarse entropy

metrics, we discovered that sex significantly affects the relation

between gf and spontaneous EEG complexity. Specifically, in women,

positive associations were found mainly with the AUC and AvgEnt

in the FPN, and negative associations were observed with the parie-

tal and left middle MaxSlope (Table 4). In men, fluid intelligence

was predominantly related (in both directions) to the AvgEnt in the

FPN and positively associated with the frontal relative to parietal

MaxSlope (jointly for both hemispheres and only for right regions;

Table 3).

Higher gf in women was associated with both greater left frontal

AUC and AvgEnt, relative to the right frontal and left parietal entro-

pies, and with lower right parietal AUC and AvgEnt. Fluid intelligence

in this group was also negatively related to the parietal, especially

right parietal, and left middle MaxSlope, as well as to the difference

between the left and right middle MaxSlope (Table 4). These outcomes

suggest that maintaining in the female brain increases of both overall

complexity and complexity at coarse timescales in the left frontal area

along with a decrease in these entropies in the right parietal region;

and with lower entropy at fine scales in the parietal and left centro-

temporal areas, provides favorable conditions for intellectual behavior.

Therefore, a high level of coarse complexity in the left anterior brain

area accompanied by a low level of both entropies at coarse and fine

scales in the posterior region, may be beneficial for gf.

In men, higher fluid intelligence was associated with greater

AvgEnt in the left frontal and right parietal areas as well as with the

bigger left frontal AvgEnt in relation to the right frontal and left parie-

tal AvgEnt (Table 3). Furthermore, in this group, there was a negative

relationship between gf and frontal AvgEnt; the difference between

frontal and parietal AvgEnt (in both hemispheres and only in the right

areas), as well as the difference between the left and right parietal

AvgEnt. The favorable conditions for fluid intelligence in the male

brain were provided by keeping complexity at coarse scales by

increases in the left anterior and right posterior areas and decreases in

the whole frontal region.

Considering the neural model that links the variability at long

scales with long-distance connections and the variability at short scales

with local information processing (McIntosh et al., 2014; Vakorin

et al., 2011), the pattern of the relationship between fluid intelligence

and rsEEG complexity in women might indicate that increased global

interconnectivity of the left frontal region and decreased parietal area

accompanied by reduced connections of the parietal and left centro-

temporal regions with local neuronal populations provide favorable

conditions for gf task performance. Consequently, in men, greater

global information processing in the left frontal and right parietal

regions along with reduced long-distance connectivity of the frontal

area (left and right one together) might promote intellectual behavior.

In men, interesting relations with gf were found in the right hemi-

sphere: higher intelligence was associated with increased complexity

at coarse scales in the parietal area and greater fine entropy in the

frontal region. This effect might indicate that in the right posterior

part of the brain the temporal dynamics of rsEEG signal promote

global processing; whereas right anterior complexity provides favor-

able conditions for more local processing.

For both men and women, a high level of left frontal AvgEnt, also

in relation to both right frontal and left parietal AvgEnt, and also bigger

right parietal AvgEnt, constitute the conditions facilitating fluid intelli-

gence (Tables 3 and 4). These relationships reflect greater lateraliza-

tion of language (Tomasi & Volkow, 2012), more verbal thoughts

generated during resting-state conditions (resulting in more state tran-

sitions, Tomescu et al., 2018), or increased tendency of the brain to

wander instead of settle in one state for a longer time (Chou

et al., 2017). All these effects seemed to be just as likely for both

sexes. In contrast to women who showed decreased right parietal

AvgEnt associated with higher gf, in men, an inverse relationship was

observed; that is, increased complexity at coarse scales coexisted with

better gf task performance. These results might reflect more thoughts

that involve visuospatial abilities (represented mainly in the right

DRESZER ET AL. 4859



parietal region, e.g., Corbetta, Shulman, Francis, Miezin, &

Petersen, 1995) at rest in men. In women, mostly frontal entropies

were positively related to fluid intelligence, which may indicate the

recruitment of prefrontal cortex during the resting state (e.g., to gen-

erate self-reference thoughts, making future plans, etc.). Therefore,

distinct patterns of relationship between gf and rsEEG entropy in men

and women may result from different “baseline” brain activity in both

sexes (see also Supporting Information results: Section S1, Figure S1).

Gf related to rsEEG complexity differently in men and women,

may also reflect sex-related differences in brain anatomy (Burgaleta

et al., 2012; van der Linden, Dunkel, & Madison, 2017). In support of

this claim, a recent paper by Shumbayawonda, Deniz Tosun, Hughes,

and Abásolo (2018) revealed the relationship between gray matter

integrity and MEG signal complexity only in females. Narr et al. (2007)

found that cortical thickness of the frontal or temporo-occipital

regions correlated with intelligence in females and males, respectively.

White matter integrity, on the other hand, turned out to be more

related to gf in women than in men (Deary et al., 2010). Since the tem-

poral variability of brain signals is thought to be differently associated

with brain structure in men and women, it is highly recommended to

include this data when investigating how intelligence and neural com-

plexity are interrelated.

4.3 | Limitations of the study and future directions

This study showed that sex significantly affects the relationship

between resting EEG signal complexity and fluid intelligence. How-

ever, in the present study factors that might potentially account for

this relationship were not controlled. Specifically, previous findings

have revealed that sex hormone levels, a phase of menstrual cycle in

women, or exogenous hormone administration (e.g., taking contracep-

tive pills) significantly affected brain functioning (Solís-Ortiz, Ramos,

Arce, Guevara, & Corsi-Cabrera, 1994; Vogel, Beer, & Clody, 1971).

Resting-state activity is also thought to be susceptible to fluctuations

of sex hormones during the menstrual cycle (Arélin et al., 2015).

Another limitation is the lack of control over mental processes

that are not occupied with any particular task or external stimuli.

In this case, the relationship between the rsEEG complexity and fluid

intelligence may be affected by differences in spontaneous cognition

(Andrews-Hanna, Reidler, Huang, & Buckner, 2010; Christoff &

Fox, 2018); for example, self-generating thoughts, mind-wandering,

fluctuations of attention, emotional states or personality, and temper-

amental traits, which could be related directly to both the intelligence

level and spontaneous bioelectrical activity. It appears that the rela-

tionship between EEG signal complexity and fluid intelligence may be

specifically mediated by sex differences in spontaneous cognition,

which has not been a subject of systematic research to date.

However, it should be noted that the last two paragraphs above

describe general limitations of any resting state studies using EEG and

fMRI techniques.

The biggest limitation of the present study was that there was a

lack of in-depth investigations of the gf factor relationship with mMSE

features. Thus, the neurophysiological nature of the entropies, at fine-

grained timescales and coarse-grained scales, remains to be eluci-

dated. According to the theory that we often refer to in the current

work (Vakorin et al., 2011), fine or coarse scales represent local or

global information processing, respectively. This concept has recently

met some criticism (e.g., Kosciessa et al., 2019) and, therefore, should

be treated with caution. Some methodological constraints of dis-

tinguishing fine and coarse timescales have also been pointed out

(Omidvarnia et al., 2019). Specifically, fine entropy was thought to be

more repeatable than coarse complexity. In the present study, at

the stage of analysis, when the AvgEnt values were determined,

there was a risk that some original information from EEG was deleted

and reduced into random fluctuations. Therefore, the stability of

mMSE vectors should be checked with the use of internal consistency

or test–retest methods, especially longitudinal stability. To date,

attempts to do this have been made in a few EEG (Kuntzelman

et al., 2018) and fMRI studies (McDonough & Siegel, 2018;

Omidvarnia et al., 2019), and only for selected entropy algorithms.

As described in Section 2.4, mMSE analysis of rsEEG was per-

formed in this work using the method proposed by Looney et al.

(2018). As such, this approach inherits limitations of both the multi-

scale sample entropy (MSE) introduced by Costa et al. (2002), as well

as the computation of the SampEn parameter itself (Richman &

Moorman, 2000). Namely, it requires a sufficiently large number of

samples for SampEn to be evaluated accurately for all time scales,

which is a significant limitation, considering that the length of the avail-

able time series for scale ε is N/ε, where N is the length of the original

signal. Indeed, this coarse-graining procedure limited the number of

time scales considered in this work to εmax = 12. Furthermore, coarse-

graining essentially acts as a moving average low pass filter, which

obfuscates the frequency domain content of the signal, as it has little

ability to separate frequency bands. This fact yields analysis of the

relationship between mMSE and frequency content of the EEG signal

difficult (Courtiol et al., 2016), although certain progress has been

made recently in this area (Kosciessa et al., 2019). On a more positive

note, limitations of the previously introduced approaches to the multi-

variate extension of the MSE regarding the choice of extension of

composite delay vectors of multivariate signals has been successfully

resolved (Looney et al., 2018; see also Ahmed & Mandic, 2011).

5 | CONCLUSIONS

In the present study, it was found that the resting EEG signal com-

plexity, calculated with the use of mMSE features, was associated

with fluid intelligence (measured by a set of tasks involving gf ).

The outcomes extend the current understanding of the relationship

between gf and neural complexity by including into data analysis new

timescales. This approach allowed us to distinguish two separate tem-

poral paths in which different patterns of relationships between fluid

intelligence and rsEEG complexity in the FPN were found. The man-

ner in which sex affected this relationship appears to be dependent

on the temporal scales.
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Different patterns of these relationships were found in men and

women. This finding suggests that there may be a “different baseline”

brain activity (Cahill & Aswad, 2015) in both sexes, or anatomical differ-

ences between the male and female brain. Gf was associated with rsEEG

complexity mainly in the FPN (although the effects were not restricted

to this network). Therefore, including sex to the analysis of the relation-

ship between neural complexity and intellectual behavior may allow us

to better understand the nature of spontaneous fluctuations during the

resting state and brain representation of fluid intelligence. While sex-

specific differences in cortical complexity in the intelligence context

have been investigated, this work likely to be the first to uncover such

differences in the complexity of brain dynamics.
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