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Abstract
Purpose of Review To review the blood pressure (BP) effects of pain and analgesic medications and to help interpret BP 
changes in people suffering from acute or chronic pain.
Recent Findings Acute pain evokes a stress response which prompts a transient BP increase. Chronic pain is associated with 
impaired regulation of cardiovascular and analgesia systems, which may predispose to persistent BP elevation. Also analge-
sics may have BP effects, which vary according to the drug class considered. Data on paracetamol are controversial, while 
multiple studies indicate that non-steroidal anti-inflammatory drugs may increase BP, with celecoxib showing a lesser impact. 
Hypotension has been reported with opioid drugs. Among adjuvants, tricyclic antidepressants and serotonin-norepinephrine 
reuptake inhibitors could be pro-hypertensive due to potentiation of adrenergic transmission.
Summary Pain and analgesics may induce a clinically significant BP destabilization. The implications on hypertension 
incidence and BP control remain unclear and should be explored in future studies.
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Introduction

Pain is defined as “an unpleasant sensory and emotional 
experience, associated with actual or potential tissue dam-
age” [1]. According to its time course, it is commonly classi-
fied into acute and chronic pain. Acute pain is a physiologic 
response to noxious stimuli; it is sudden in onset and time-
limited, lasting for less than 3 months. Chronic pain persists 
past normal healing time, lasting or recurring for more than 
3 to 6 months [1].

Pain is a very frequent health complaint and represents 
one of the most common reasons for adults seeking medi-
cal care, particularly among older individuals. Acute pain is 
highly prevalent in the primary care, with low back pain and 
headache representing the most frequent causes [2]. It is also 

common in the hospital setting, where up to 80% of patients 
complain of pain, which is reported to be severe in 9–36% of 
cases [3]. Chronic pain affects 25–35% of people worldwide 
showing increasing prevalence with advancing age. It rep-
resents one of the major causes of depression, poor quality 
of life, mobility restriction, and disability, thus significantly 
affecting individuals’ psychosocial well-being [4, 5].

Similarly to pain, hypertension is highly prevalent in the 
general and geriatric population [6], so that hypertension and 
pain frequently coexist in clinical practice [7•]. Both pain 
and analgesic medications are known to affect blood pres-
sure (BP) values, with pressor effects varying according to 
pain duration and the drug class considered [8, 9••, 10••]. 
Consequently, pain and analgesics may potentially influence 
the development of arterial hypertension and interfere with 
BP control in hypertensive patients. The knowledge of the 
BP effects of pain and analgesics could thus be useful in the 
context of hypertension management.

This narrative review provides an overview of available 
evidence concerning the effects of pain and analgesic medi-
cations on BP (Table 1), which may be helpful to interpret 
BP changes in patients suffering from acute or chronic pain.
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Physiology of Pain and Analgesia

Somatic nociceptive stimuli enter the spinal cord through 
the dorsal roots of the spinal nerves and are transmitted 
along myelinated Aδ and C fibers of the anterolateral sys-
tem. These afferent fibers synapse in the dorsal horns of 
the spinal gray matter, and then cross to the opposite side 
and ascend through the anterior and lateral white columns 
of the cord up to the thalamus. Nociceptive stimuli are 
then transmitted to the cortex and subcortical areas, which 
activate the descending pathways [11]. In the central nerv-
ous system, areas playing a major role in pain perception 
and codification include the reticular formation (integra-
tion of pain experiences), the limbic system (emotional 
responses to pain), the hypothalamus (vegetative and neu-
roendocrine responses to pain), and the thalamus (pain 
awareness and subsequent reactions) (Fig. 1) [8].

Pain perception is modulated at a central level through 
descending inhibitory pathways referred to as the “analge-
sia system,” consisting of a network of inhibitory neurons 
which suppress pain signals before they are relayed to the 
central nervous system. Its main centers are located in the 
periaqueductal and periventricular areas of the mesencepha-
lon and in the medulla, which activate the inhibitory neu-
rons of the dorsal horns of the spinal cord (Fig. 1) [12]. Sev-
eral neurotransmitters are involved, particularly encephalin 
and serotonin, which mediate a presynaptic and postsyn-
aptic inhibition of Aδ and C fibers in the dorsal horns, so 
that pain stimuli are blocked immediately after entering the 
spinal cord. Pain perception is also modulated at the spi-
nal level by the “gelatinous substance of Rolando,” which 

inhibits the transmission of incoming nociceptive stimuli 
along Aδ and C fibers. This mechanism is known as “gate 
control” and can be activated also by tactile stimuli, thus 
explaining why simple maneuvers such as rubbing the skin 
may provide pain relief.

In contrast to the analgesia system, a facilitating descend-
ing pathway exists, which originates at a supraspinal level 
and facilitates the relay of pain stimuli to the brain (Fig. 1). It 
constitutes a defense mechanism, aimed at inducing the indi-
vidual to escape potentially harmful situations. An abnor-
mal, persistent activation of the facilitating pathway may 
occur in some pathological conditions, leading to chronic 
pain and hyperalgesia, as it is supposed to happen in chronic 
muscle pain, neuropathic pain, and migraine [13].

Pain and Blood Pressure

Pain is associated with neuro-endocrine and autonomic 
responses that can raise BP. Indeed, pain evokes a stress response 
involving the activation of the hypothalamic–pituitary–adrenal 
axis and the sympathetic nervous system, which integrate and 
potentiate each other [14]. The subsequent release of cortisol 
and catecholamines results in a BP increase, which is detected 
by carotid and aortic baroreceptors involved in BP regulation. 
Experimental studies indicate that baroreceptors not only induce 
a compensatory BP reduction but also activate the analgesia sys-
tem, with the final aim to suppress pain stimuli and restore the 
homeostasis (Fig. 2). Indeed, baroreflex activation was shown to 
reduce pain perception (the so-called “BP-related hypoalgesia”) 

Table 1  Effects of most commonly prescribed analgesics on blood pressure

BP blood pressure, NSAIDs non-steroidal anti-inflammatory drugs, TCA  trycyclic antidepressants, SNRI serotonin-noradrenalin reuptake inhibi-
tors, SSRI selective serotonin reuptake inhibitors

Analgesics Effects on BP values Mechanism potentially responsible for blood pressure changes

Paracetamol Unclear Inhibition of prostaglandins synthesis [10••, 28]
Vasodilation [29]
Sodium content of effervescent formulations [30]

NSAIDs and COXIB BP increase Inhibition of prostaglandins synthesis [45]
Increased production of endothelin-1, increased levels of aldosterone [46, 47]
Calcium-mediated reduced vascular tone (celecoxib) [49]

Opioids BP decrease Histamine release and histamine-mediated vasodilation [57–59]
Reduced sympathetic tone [62]

Antidepressants
TCA 
SNRI
SSRI

BP increase
BP increase
Unclear

Potentiation of adrenergic transmission, anticholinergic effects [72, 73•]
Potentiation of adrenergic transmission [72]
Vasodilation, reduced sympathetic activity, cytochrome inhibition [74, 77, 86]

Anticonvulsants
Gabapentinoids
Carbamazepine

Possible BP increase Activation of the nitric oxide pathway (gabapentinoids) [80]
Antagonism of central noradrenergic transmission (carbamazepine) [82–84]
Cytochrome induction and increased metabolism of antihypertensive medications 

(carbamazepine) [85]
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and may also affect pain-related anxiety and avoidance behav-
iors [14, 15].

The baroreceptor response to pain-induced BP elevation 
tends to wane in chronic pain conditions, probably due to 
decreased vagal inhibitory activity or baroreceptor desensi-
tization [16–18•]. Consequently, chronic pain may prompt a 
persistent elevation in BP values, resulting from the failure 
of homeostatic control mechanisms (Fig. 2). Additionally, 
chronic pain may determine a dysfunction or a progressive 
exhaustion of descending inhibitory pathways [12, 16, 19], 

while the facilitating pathway continues to promote trans-
mission of nociceptive information and may also be over-
activated, thus further increasing pain sensitivity [12].

Given the above, we might expect that chronic pain is asso-
ciated with an increased risk of hypertension [18•]. Similarly, 
we may hypothesize that chronic pain interferes with BP low-
ering in hypertensive individuals, thus predisposing to poor 
BP control. In a study by Bruehl et al. patients complaining of 
chronic pain had significantly higher prevalence of hyperten-
sion as compared to controls (39% vs 21%, p = 0.001) and pain 

Fig. 1  Physiology of pain and analgesia. CNS, central nervous system

Fig. 2  The effects of acute and 
chronic pain on blood pressure
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intensity was an independent predictor of hypertension [7•]. 
Yet, data regarding incidence of hypertension in chronic pain 
sufferers are lacking [16]. Likewise, the impact of chronic 
pain on BP control in hypertensive subjects has not been 
investigated to date. In view of the epidemiological relevance 
of chronic pain, it is desirable that future studies explore its 
role as a potential risk factor for both hypertension and poor 
BP control.

Analgesic Medications and Blood Pressure

Paracetamol

Paracetamol is included among over-the-counter medications 
and represents a first-line therapy for both acute and chronic 
pain. In hypertensive individuals, paracetamol is commonly 
considered to be a safer alternative to non-steroidal anti-
inflammatory drugs (NSAIDs), as it is supposed to have 
limited impact on BP values. Yet, evidence concerning the 
effects of paracetamol on BP is weak and controversial.

Previous observational studies reported a higher risk of 
incident hypertension in patients using paracetamol com-
pared with non-users, with a trend suggesting increasing risk 
with increasing frequency of use [20–22]. By contrast, no 
risk increase was reported in paracetamol users by Kurth 
et al. [23]. However, the observational design of these stud-
ies limits the interpretation of causal links.

Prospective, randomized controlled trials assessing the 
effects of paracetamol on BP are scarce and report conflict-
ing results [10••]. Radack et al. did not observe any significant 
BP change in hypertensive patients receiving paracetamol 1 g 
three times a day [24]. A study by Pavlicevic´ et al. [25] com-
pared the BP effects of ibuprofen (400–600 mg, 3/day) and 
piroxicam (10–20 mg/day) followed by paracetamol (1 g, 3/
day) in hypertensive patients and controls receiving either 
lisinopril/hydrochlorothiazide or amlodipine. In the lisinopril/
hydrochlorothiazide subgroup, both ibuprofen and piroxicam 
led to a significant BP increase, while a BP decrease was 
observed during the paracetamol phase, suggesting a hypoten-
sive effect. However, these findings were not confirmed in the 
amlodipine subgroup. A randomized placebo-controlled study 
in patients with coronary artery disease observed a significant 
increase in ambulatory BP after 2 weeks’ paracetamol treat-
ment (1 g, 3/day), with systolic and diastolic BP varying from 
122 to 125 mmHg and from 73 to 75 mmHg, respectively 
(p < 0.02 for both) [26]. Similarly, a randomized, double-blind 
placebo controlled trial by Chalmers et al. reported a 4 mmHg 
increase in systolic BP in a small sample of hypertensive 
patients receiving paracetamol 1 g three times a day [27].

Although widely prescribed, the pharmacodynamics of 
paracetamol remains largely unknown. It is assumed that it 
acts through the inhibition of the cyclo-oxygenase (COX) 

pathway, thus reducing the synthesis of prostaglandins (PGs) 
which mediate inflammation and pain. It is plausible that 
the potential effects of paracetamol on BP are related to the 
inhibition of PGs production, with particular reference to 
PGE2 and prostacyclin (PGI2). Indeed, both these molecules 
are potent vasodilators and their lower levels might allow 
for the predominance of vasoconstrictor substances such as 
endothelin. Additional effects of PGI2 and PGE2 include 
stimulation of natriuresis and attenuation of norepinephrine 
release [28, 29], which may contribute to explain the hyper-
tensive effect of paracetamol reported by some studies.

In addition to the above, the salt content of paracetamol 
may potentially be responsible for BP changes, as effervescent 
formulations contain significant amounts of sodium bicarbo-
nate [10••]. Consistently, the shift from effervescent formu-
lations to sodium-free tablets was found to induce a clini-
cally significant BP decrease in older hypertensive patients 
(− 13 mmHg, p < 0.0001, and − 2.5 mmHg, p < 0.0001 for 
systolic and diastolic BP, respectively) [30].

A recent randomized trial assessed the hemodynamic 
effects of intravenous paracetamol in healthy subjects, pro-
viding a different scenario. Infusion of paracetamol was 
found to induce a transient but significant fall in mean BP 
(− 1.85 mmHg) associated with reduced systemic vascular 
resistance and increased cardiac index, thus suggesting vaso-
dilation [31•]. Similarly, hypotension following paraceta-
mol infusion has been reported in critically ill patients, with 
some authors hypothesizing a reduction in cardiac index [32, 
33•].

In conclusion, the effects of paracetamol on BP are still 
controversial. Randomized data from larger samples are 
needed and evidence specifically referring to hypertensive 
patients should be implemented. In addition, the effects of 
paracetamol on out-of-office BP should be investigated, 
as well as its potential interactions with antihypertensive 
medications.

Non‑Steroidal Anti‑Inflammatory Drugs (NSAIDs) 
and COX‑2 Inhibitors

It is widely recognized that non-steroidal anti-inflammatory 
drugs (NSAIDs) may increase BP values, particularly in hyper-
tensive patients [24, 34]. A meta-analysis by Pope et al. includ-
ing 1324 patients (mean age 46, 92% hypertensive) reported 
a 3.3 mmHg mean arterial pressure increase associated with 
NSAIDs use [35]. After adjusting for sodium intake, naproxen 
and indomethacin were associated with the largest BP increase 
(+ 3.7 and + 3.6 mmHg, respectively), while piroxicam, aspi-
rin, and ibuprofen had negligible pressor effects [35]. A meta-
analysis by Johnson et al. reported similar results, describing 
a 5 mmHg mean arterial pressure increase in hypertensive 
patients receiving NSAIDs [36]. Piroxicam was associated 
with the highest BP increase when compared to placebo 
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(+ 6.2 mmHg), while aspirin had minimal BP effects [36]. 
Consistently, in a previous study involving 18,790 hyperten-
sive individuals, aspirin 75 mg daily was proved to have no 
interference with antihypertensive therapy [37].

Of notice, although NSAIDs are reported to have reduced 
BP effects in normotensive individuals [38, 39], some stud-
ies reveal an increased risk of incident hypertension associ-
ated with NSAIDs use [20, 40].

BP changes may also occur in patients receiving selective 
COX-2 inhibitors, with particular reference to etoricoxib and 
rofecoxib (the latter now withdrawn from the market) [39, 
41, 42]. By contrast, celecoxib seems to lesser impact office 
and ambulatory BP values compared to other selective and 
non-selective NSAIDs [34, 42, 43•, 44]. Similar to paraceta-
mol, the BP effects of NSAIDs are supposed to be related to 
the inhibition of the COX pathway. Two isoforms of COX 
enzymes exist, commonly referred to as COX-1 and COX-2. 
The first is constitutively expressed in most tissues, while 
the second is mainly upregulated with inflammation and cell 
injury. Selective NSAIDs inhibit the COX-2 isoform, while 
other NSAIDs may preferentially inhibit COX-1 or have a 
balanced effect. Experimental studies on animals confirm that 
inhibition of both COX enzymes may lead to BP increase 
[45], thus providing a physiopathological explanation for the 
BP effects of NSAIDs. In addition, it has been suggested 
that other mechanisms might contribute to NSAIDs-mediated 
BP elevation, including an increase in endothelin-1 produc-
tion and aldosterone levels [46, 47]. The pressor effects of 
NSAIDs may be more common in older people, due to an 
age-related susceptibility to salt retention which is further 
exacerbated by the inhibition of PGs synthesis [39, 48]. 
Unlike other NSAIDs, celecoxib inhibits calcium responses 
in vascular smooth muscle and reduces vascular tone, inde-
pendent of COX-2 inhibition. This pharmacodynamic char-
acteristic may provide an explanation for the limited impact 
of celecoxib on BP, as this mechanism probably counterbal-
ances the increase in vasoconstriction which is induced by 
COX-2 inhibition [49].

It should be considered that PGs are involved in the phar-
macodynamics of some antihypertensive medications, e.g., 
their natriuretic effect is complementary to that of diuretics, 
while ACE-inhibitors effects are at least partly mediated by 
bradykinin, a vasodilating molecule acting through the induc-
tion of PGs release [50]. Consequently, ACE-inhibitors, angi-
otensin receptor blockers, and diuretics seem to be affected 
most by NSAIDs co-administration [51•, 52]. The antihy-
pertensive response to calcium antagonists does not seem 
to be attenuated instead [39, 53, 54], even if an interaction 
with NSAIDs is reported by some authors [51•]. Interaction 
of NSAIDs with beta-blockers still remains unclear [51•].

In conclusion, available data indicate that patients should 
be monitored for BP changes when initiating NSAID treat-
ment, with particular reference to older and hypertensive 

individuals. Studies assessing the impact of NSAIDs on BP 
have mainly focused on young and relatively healthy indi-
viduals with controlled hypertension, while data on older 
patients with multimorbidity and/or uncontrolled hyperten-
sion are lacking [9••].

Opioids

As concerns the hemodynamic effects of opioid drugs, avail-
able literature mainly refers to acute intravenous adminis-
tration during anesthesia or postoperative analgesia. In this 
context, opioids may cause relevant cardiovascular effects, 
including hypotension and bradycardia, particularly if ben-
zodiazepines are co-administered [55•]. Data on chronic 
opioid treatment are limited, but hypotension, orthostatic 
hypotension, and syncope are commonly reported among 
potential adverse effects of most opioid analgesics, such as 
morphine, buprenorphine, fentanyl, oxycodone, and tapent-
adol [55•]. Yet, the mechanism underlying opioid-mediated 
hypotension still remains a matter of debate.

As many opioids are potent histamine releasers [56], their 
hypotensive effects may result from histamine-mediated 
vasodilation. However, if histamine release has been clearly 
demonstrated for morphine, codeine, and pethidine [57–59], 
it is reported to be minimal or absent for oxycodone and 
fentanyl [57, 60, 61]. In addition to histamine effects, opioid-
induced hypotension may also derive from an attenuation 
of sympathetic alpha-adrenergic outflow, leading to periph-
eral vasodilation [62]. Finally, the release of nitric oxide 
and the activation of vagal reflex have been hypothesized as 
alternative mechanisms [63, 64]. Hypotensive effects might 
be more relevant in the presence of hypertension, due to a 
hypersensitivity to opioid receptor agonists or an overex-
pression of opioid receptors in hypertensive people [65].

Adjuvant Analgesics

Antidepressants are increasingly used as an adjuvant therapy 
for chronic pain, particularly in patients with neuropathic 
pain, migraine, and fibromyalgia. It is known that antide-
pressants may influence BP values, but different effects are 
reported according to the drug class considered.

Tricyclic antidepressants (TCA) and serotonin-norepinephrine  
reuptake inhibitors (SNRI) are traditionally considered to have 
hypertensive effects and were shown to be associated with an 
increased risk of incident hypertension [66•, 67••]. The BP 
effects of SNRI seem to be dose-dependent and become more 
relevant at supratherapeutic doses [68, 69]. As proof of that, some 
studies observed no significant BP changes in patients receiving 
venlafaxine or duloxetine at therapeutic doses [70, 71].

The potentiation of adrenergic transmission may account 
for the association of TCA and SNRI with increased BP, 
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especially when considering that the majority of norepineph-
rine which is released in the heart is recaptured into sym-
pathetic nerves. The inhibition of norepinephrine reuptake 
by TCA and SNRI could thus result in increased cardiac 
sensitivity to sympathetic stimulation [72]. In addition to 
the above, the anticholinergic action of TCA may further 
contribute to BP elevation [73•].

The BP effects of selective serotonin reuptake inhibitors 
(SSRIs) are currently unclear. Experimental studies indi-
cate that SSRIs may potentially lower BP and a vasodilat-
ing effect has been reported for fluoxetine, citalopram, and 
sertraline, which is likely mediated by the inhibition of cal-
cium-elicited vasoconstriction [74–76]. Moreover, fluoxetine 
and paroxetine act as cytochrome CYP2D6 inhibitors, thus 
potentially reducing the metabolic rate of hypotensive drugs 
like nifedipine and beta-blockers [77]. Finally, some authors 
suggest that SSRIs may attenuate sympathetic activity [78]. 
However, SSRIs were not found to affect BP values in a 
recent review and meta-analysis [67••].

We may conclude that TCA and SNRI could have pro-
hypertensive effects, whereas the impact of SSRI on BP has 
yet to be clarified. Available studies mainly involved patients 
with depression, which itself has been reported to be associ-
ated with an increased risk of hypertension [79], thus making 
it more difficult to interpret the association between antide-
pressants and BP. Future studies should preferably explore 
the BP effects of antidepressants when prescribed in normo-
tensive and hypertensive adults with chronic pain.

Along with antidepressants, anticonvulsants represent 
an important adjuvant for pain management, particularly in 
patients with neuropathic pain and fibromyalgia. Gabapenti-
noids such as gabapentin are the molecules with the strongest 
evidence for chronic pain treatment, while carbamazepine is 
mainly effective in trigeminal neuralgia. It has been recently 
demonstrated that gabapentin can induce vasodepression and 
bradycardia acting through the nitric oxide pathway [80]. 
Indeed, gabapentin is known to attenuate the hypertensive 
response to laryngoscopy and tracheal intubation [81].

Evidence concerning the effects of carbamazepine on BP is 
scarce. Some case reports describe severe uncontrolled hyper-
tension induced by carbamazepine, which may derive from 
antagonism of central noradrenergic transmission [82–84]. In 
addition, it should be recalled that carbamazepine is a potent 
CYP3A4 inducer and may decrease plasma concentration of 
antihypertensive medications via cytochrome induction. The 
latter mechanism may be particularly relevant for calcium 
antagonists [85].

As chronic pain seems to negatively influence BP regula-
tion, we could expect that pain relief deriving from analgesic 
treatment might instead favor BP control in hypertensive 
patients. Consequently, patients receiving effective analgesic 
therapy should present with better BP control as compared 
to patients with untreated or poorly controlled chronic pain. 

Yet, the above-described direct effects of analgesics on BP 
may act as a confounder, thus making it difficult to assess 
whether pain therapy improves BP control in hypertensive 
individuals. However, the BP effects of pain relief have not 
been investigated to date and specific evidence is lacking.

Conclusions and Perspectives

Pain and blood pressure appear to be strictly related. Accord-
ing to available evidence, both pain and analgesic therapies 
may induce a clinically significant destabilization of blood 
pressure values. The subsequent implications on hyperten-
sion incidence and blood pressure control remain unclear 
and should be explored in future studies.
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