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The health of dairy animals, particularly the milk-producing mammary glands, is essential to the dairy industry because of the
crucial hygienic and economic aspects of ensuring production of high qualitymilk. Due to its high prevalence,mastitis is considered
the most important threat to dairy industry, due to its impacts on animal health and milk production and thus on economic
benefits.TheMG is protected by several defencemechanisms that preventmicrobial penetration and surveillance. However, several
factors can attenuate the host immune response (IR), and the possession of various virulence and resistance factors by different
mastitis-causing microorganisms greatly limits immune defences and promotes establishment of intramammary infections (IMIs).
A comprehensive understanding of MG immunity in both healthy and inflammatory conditions will be an important key to
understand the nature of IMIs caused by specific pathogens and greatly contributes to the development of effective control methods
and appropriate detection techniques. Consequently, this review aims to provide a detailed overview of antimicrobial defences in
theMG under healthy and inflammatory conditions. In this sense, we will focus on pathogen-dependent variations in IRs mounted
by the host during IMI and discuss the potential ramifications of these variations.

1. Introduction

The udder is the milk-producing organ of dairy animals;
hence, for optimal production, it should be healthy. Mastitis
is the inflammatory response of the mammary gland (MG)
tissue to physiological and metabolic changes, traumas,
and allergies and, most frequently, to injuries caused by
various microorganisms. Mastitis is considered the utmost
threat to the dairy industry from three perspectives: eco-
nomic, hygienic, and legal (EU Directive 46/92, modified
by Directive 71/94). The intramammary inflammation (IMI),
accompanied by immunological and pathological changes in
the MG tissue, occurs at different degrees of intensities and
results in a wide range of consequences regarding physical,
chemical, and often microbiological alterations of secreted
milk.

A wide spectrum of microorganisms, including fungi,
yeast, algae, Chlamydia, and viruses, have been incrimi-
nated in causing mastitis, but bacteria remain the principle
causative agents of such complex [1, 2]. The major bacte-
rial mastitis pathogens (Staphylococcus aureus, Streptococcus
agalactiae, S. uberis, S. dysgalactiae, and coliforms) are most
often responsible for clinical mastitis (CM). Meanwhile,
minor pathogens (coagulase-negative staphylococci “CNS”;
streptococci other than S. agalactiae, S. uberis, and S. dys-
galactiae; Corynebacterium spp.; Pseudomonas spp.; Serratia
spp.; Proteus spp.; Pasteurella spp.; Listeria spp.; Leptospira
spp.; Yersinia spp.; Enterobacter spp.; Brucella spp.; and
Mycobacterium spp.) are typically associated with subclinical
mastitis (SCM) or sometimes associate clinical IMIs [2].
With the exception of a few pathogens that can invade via
the blood stream (e.g., Brucella abortus or Mycobacterium
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bovis), infection of the MG occurs by ascension through
the ductus papillaris, the only opening of the udder to
the outside world [3], and the pathogens pass to find an
environment that is warm, moist, and nutrient-rich and thus
suitable for rapid growth and multiplication. To establish a
successful infection after traversing the teat end opening,
bacteria must combat the antimicrobial activities of the teat
and MGmicroenvironments [4].

Adequate immune functions are essential for host defence
against IMIs. MG immunity depends on the complex com-
bination and coordination of nonspecific and specific pro-
tective elements, including the anatomical features of the
gland as well as cellular and humoral defence components
[5]. Nevertheless, MG immune defence varies over differ-
ent stages of lactation in dairy animals and is typically
depressed with exposure to stress and around drying-off and
parturition, thus increasing susceptibility to mastitis [6, 7].
However, a considerable body of evidence has accumulated
suggesting that mastitis is a multifactorial complex, and
several management and environmental factorsmust interact
to increase host exposure to mastitis pathogens, reduce the
natural resistance of animals to disease, or aid pathogens in
gaining entrance to the MG environment to cause infection
[2, 4].

2. The MG Immune Defence System and Its
Related Components

2.1. Teat Skin and Teat Canal Defence System (Structural
Defence). The primary defence mechanism of the MG is
represented structurally in the teat canal [3, 8, 9], which
acts as both a physical barrier and a source of antimicrobial
substances. The physical barrier is provided by the smooth
muscle sphincter surrounding the teat canal, which prevents
escape of milk and constitutes a barricade against the entry of
different pathogens by maintaining tight closure [2, 3, 9].The
antimicrobial defence, on the other hand, comprises several
components. Normally, the healthy teat skin is coated with a
protective mantle of fatty acids (FAs) that slow the growth of
bacterial pathogens [2]. Additionally, the stratified squamous
epithelium of the teat duct produces keratin, a waxy material
lining the teat canal, which traps invading bacteria and
hinders the migration of microorganisms into the gland
cistern. Keratin also contains antimicrobial agents that assist
in combating infection [9]. This keratin is composed of
(I) bacteriostatic FAs of both esterified and nonesterified
types, such as lauric, myristic, palmitoleic, and linolenic
acids and (II) fibrous proteins, which bind electrostatically
to microorganisms, altering the cell wall and rendering it
more susceptible to osmotic pressure changes and, thus, to
lysis and death [9]. Additionally, these cationic proteins were
found to have an inhibitory effect against some pathogens
as Staph. aureus and S. agalactiae [10], which was equal to
that of proteins isolated from bovine neutrophils [11]. The
lipid content and composition of teat duct keratin have been
shown to vary throughout the milking process [12], between
lactating and dry dairy animals [13], and according to the
severity of IMI. SCMwas found to not affect the lipid content

of teat duct keratin, while CM was shown to be associated
either with significantly higher levels of total lipids [14] or
with similar lipid composition of uninfected quarters [15].
Additionally, the free FAs in milk from clinical quarters con-
tained fewer short-chain FAs, whereas polyunsaturated FAs
were significantly higher [14]. Recently, sentinel functions for
the teat towards invading pathogens have been documented,
as the teat canal tissue responded rapidly and intensely, with
both expression of several Toll-like receptors (TLRs) and
production of cytokines and antimicrobial peptides [16, 17].

Damage of keratin, perhaps as a result of incorrect intra-
mammary therapy infusion [18] or by faultymachinemilking
[19], has been reported to increase susceptibility of the teat
canal to bacterial invasion and colonisation [20]. However,
the antimicrobial effectiveness of keratin is limited [9, 21] and,
despite the potent physical and chemical protection in the teat
canal, there are several ways by which bacteria can penetrate
the teat canal and cause IMI, so much so that a number of
pathogens are able to colonize the teat canal for prolonged
periods, such asCorynebacterium bovis, or CNS.The survival
for several days of Staph. aureus deposited a few mm inside
the teat canal has also been demonstrated [22–24]. Also,
during milking, it is common for keratin to be flushed out
with distention of the teat canal [25]. Because the sphincter
takes approximately 2 h to regain its contracted position,
there is a chance for outside pathogens to enter the teat
canal, causing trauma and damage to the keratin or mucous
membranes lining the teat sinus [2, 21]. Additionally, during
mechanical milking, microorganisms present at the teat end
may be propelled into or through the teat duct into the
cistern. This mechanism is considered the chief mechanism
behind the spreading of contagious mastitis pathogens [26].

2.2. Innate and Adaptive (Acquired) Immunity. The MG is
normally protected by both innate and adaptive immune
responses (IRs), which coordinate and operate together to
provide an optimal defence against infections. The IRs also
facilitate the constitutive or acute transient presence of a
wide range of immune-related components in milk [5]. The
adaptive immune system (AIS) responds more robustly to
threats to which it has previously been exposed [27]; however,
it is slow to respond to novel threats [33]. In contrast,
the innate immune system (IIS) is the first line of defence
against pathogens once they have penetrated the physical
barrier of the teat canal and before the AIS comes into
play, and it evolves into a highly effective host defence [33,
34]. This process is mediated via several intracellular signal
transduction cascades that trigger an acute upregulation
of several innate immune components including different
leukocytes, adhesion molecules, and cytokines [35–37].

2.2.1. The IIS and Its Components. Innate immunity plays
a vital role in protecting the MG against infection [38].
The two most critical components of host innate immunity
are pathogen recognition (PR) and the ability to mount a
proinflammatory response, a complex interaction of cellular
andmolecular processes aimed at detecting and subsequently
eliminating harmful pathogens [25, 34]. A wide variety of
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components linked to the innate IR (IIR) have been iden-
tified in milk, including cellular defence components [e.g.,
leukocytes], components contributing to humoral defence
[e.g., complement system (CS), immune-modulating factors
(pro- and anti-inflammatory cytokines), lactoferrin (LF),
transferrin (TF), lysozyme (LZ), and components of the
lactoperoxidase/myeloperoxidase systems], oligosaccharides,
gangliosides, reactive oxygen species (ROS), acute phase
proteins (APPs) (e.g., haptoglobin and serum amyloid A),
ribonucleases, and a wide range of antimicrobial peptides
and proteins. Many of these components originate from
specialised cells that traffic to the MG [33, 34]. The ability
of the IIS to recognise and respond to a broad spectrum
of pathogens that may or may not have been previously
encountered, combined with the speed in mounting a proin-
flammatory response following initial PR, greatly contributes
to the host’s ability to control invading pathogens [37]. Below,
there is a detailed overview of the roles and mechanisms of
action of some innate immune factors.

(1) Cellular Defence Systems and Roles of Different Immune
Cells (Leukocytes).The viable leukocytes inside the MG offer
some degree of cellular protection against microbial invasion
through their ability to recognisemicroorganisms and induce
a rapid inflammatory response in an attempt to resolve
the IMI immediately. Thus, MG-resident leukocytes likely
provide a surveillance function in the uninfected gland. Also,
these cells may aid in the restructuring of the MG that
occurs during involution (i.e., apoptosis) [39]. In addition
to microbicidal functions of phagocytosis, MG leukocytes
secrete a variety of immune-related components into milk
including cytokines, chemokines, ROS, and antimicrobial
proteins and peptides (LF, defensins, and cathelicidins) [40].
Leukocytes also assist in the repair of damaged tissue caused
by shedding and renewal processes [41]. Despite the pres-
ence of considerable numbers of immune cells in the MG
environment, it has been suggested that the MG is immune-
compromised when compared to the rest of the body [42].
Moreover, the activities of all types of leukocytes in milk
have been shown to be reduced compared to those in blood
[28, 43, 44]. The migration of immune cells during IMI
plus desquamation of MG epithelia results in an increase of
somatic cell count (SCC) accompanied with decreased milk
production according to the severity of the process [1, 45].

Neutrophils. Polymorphonuclear neutrophils (PMNs) consti-
tute the second line of the IIS against IMI. Even under healthy
conditions, PMNs are permanently present inside the MG
environment, and nursing or milking stimuli accompanied
with milk removal were found to induce directed migration
of fresh PMN into mammary tissue [46]. Bovine neutrophils
cross the MG epithelium by diapedesis without causing
epithelial cell damage [47] unless the migration is extensive,
in which case both mechanical and chemical damage are
possible [48]. The neutrophil’s multilobulated nucleus allows
for easy and rapid migration between endothelial cells, thus
arriving as the first recruited immune cell to sites of infection
[49]. Because only small numbers of mature PMNs are stored
in the bone marrow, the number of immature neutrophils

in circulation increases as a result of mobilisation into
circulation during inflammatory conditions. Thus, the num-
ber of circulating mature neutrophils negatively correlates
with severity of mastitis [6]. Several important functions
are not fully developed in immature neutrophils, including
those pertaining to phagocytosis, intracellular killing, and
chemotaxis [50].

Neutrophils are delineated by a plasma membrane that
has a number of functionally important receptors. These
include L-selectin and 𝛽2-integrin adhesion molecules,
which promote the binding of PMNs to endothelial cells
and facilitate their migration to infected foci [39, 49, 51].
Membrane receptors for the Fc portion of the IgG2 and
IgM classes of Igs and for complement components C3b
and iC3b are necessary for the phagocytosis of invading
bacteria [52, 53]. The activation of C3b regions on bacterial
surfaces after binding with Abs promotes phagocytosis and
binding to CR1 and CR3 receptors on the PMN surface
[52]. Additionally, lectin-carbohydrate receptors found on
neutrophil cell membranes can recognise carbohydrate-rich
fimbriae of Escherichia coli in the absence of specific opsonins
[49, 54], resulting in a process referred to as nonopsonic
phagocytosis [54].

The primary function of PMNs to engulf, phagocytose,
and destroy foreign materials, including invading bacteria,
occurs via two parallel systems. The first is an oxygen-
dependent (respiratory burst) system that includes the pro-
duction of hydroxyl and oxygen radicals. The second is an
oxygen-independent system that relies on several oxygen-
independent reactants such as peroxidases, LZs, hydrolytic
enzymes, and LF [1, 41]. In addition to phagocytic activity,
PMNs also contribute to the modulation of vascular per-
meability and release several inflammatory mediators that
play crucial roles in the coordination of innate and adaptive
immune components [55]. Furthermore, the intracellular
granules of PMNs contain several bactericidal peptides
including defensins, enzymes (e.g., myeloperoxidase), and
neutral and acidic proteases (e.g., elastase; cathepsin types B,
D, and G, procathepsins) [56–58], which can kill a variety
of mastitis pathogens. Such proteases as well as plasmin
are known to permit the chemotaxis of cells in the site of
inflammation and are involved in the limitation in time of
the IR (e.g., by the cleavage of some cytokines such as IL-
2, IL-6, and IL-8) [59]. The exposure of PMNs to cytokines
and chemoattractants causes rapid mobilization of azurophil
granules (containing elastase and cathepsin G mainly) to
the cell surface [60]. Unfortunately, the released oxidants
and proteases lack specificity. In bovines, PMNs can wrongly
phagocytose milk fat globules [61], and their proteases can
degrade milk casein (caseinolysis), leading to putrefaction
of milk, and, together with their released hydroxyl radicals,
can damage the MG epithelium which contributes to the
decreased synthetic activity of the MG during IMI [62].
Once PMNs perform their tasks, they undergo apoptosis, or
programmed cell death, and are removed by macrophages
[63, 64].

Macrophages.Macrophages are produced from blood mono-
cytes that differentiate within MG tissues. They constitute
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Lymphocytes subsets in MG environment
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Figure 1: Different subsets of MG lymphocytes [27–32].

the predominant cell type found in milk and tissues of
both healthy involuted and lactating BMGs [43, 65, 66]. In
contrast to neutrophils, macrophages have large horseshoe-
shaped nuclei that make their migration between endothelial
cells more difficult [49]. Macrophages facilitate both innate
and acquired IRs through performing several specific and
nonspecific functions. Macrophages contribute to induction
of specific local IRs through antigen (Ag) processing and
presentation to lymphocytes in associationwithMHC class II
Ags [45, 67–69]. Similar to PMNs, macrophages can perform
a variety of nonspecific functions including ingestion and
phagocytosis of foreign particles, including some invading
bacteria (e.g., Staph. aureus) [70], and destroying them
with proteases and ROS [66, 70, 71]. Additionally, they can
ingest cellular debris and accumulated milk components in
involutingMGs [29].The phagocytic activity of macrophages
can be increased in the presence of opsonic Abs for specific
pathogen [72]. In cattle, MG macrophages bear receptors
for IgG1 and IgG2 [73]. Unlike neutrophils, macrophages
possess fewer Fc receptors, which decrease their phagocytic
capacity [7]. MG macrophages are considered less effective
at phagocytosis compared to blood monocytes because of
indiscriminate ingestion of milk components as well as
the fact that macrophage proteases can also contribute to
damage of MG epithelium [62, 70, 74]. A failure of efficient
killing of some mastitis pathogens (e.g., S. uberis) after
engulfing and even increased intracellular multiplication of
S. uberis as well as lesser stimulatory responses by IFN-
𝛾 to release TNF-𝛼 and bactericidal products compared to
blood monocytes have been also reported [70]. However,
it has been demonstrated that the bactericidal activity of
MG macrophages can vary according to MG secretion, and
dry-off secretion macrophages exerted higher bactericidal
activities than lactational macrophages [70]. Therefore, the
ability of macrophages to secrete substances that augment
local inflammatory processes, thereby inducing themigration
and bactericidal activities of neutrophils, is believed to be of
greater importance to nonspecific defence of the MG than
their function as professional phagocytes [7, 67, 70, 75].

Lymphocytes. Lymphocytes are a type of immune cells that
mediate specific responses to pathogens. Lymphocytes recog-
nise a variety of antigenic structures via membrane recep-
tors, which define their specificity, diversity, and memory
characteristics. T- and B-lymphocytes and natural killer (NK)
cells are distinct lymphocyte subsets that operate in the

MG (Figure 1), although they differ in function and protein
products [30]. During IMI, preferential trafficking of certain
lymphocyte subpopulations to specific mammary tissue foci
occurs [28, 76] and marked changes in milk lymphocyte
count and composition during IMIs have been reported
[45]. Once activated, lymphocytes can regulate both specific
and nonspecific IRs [77]. Additionally, the AIS response is
mainly mediated by memory lymphocytes, which respond
quickly to threats to which they have previously been exposed
[33]. It must be mentioned that the presence of specific
lymphocyte subsets can affect the total lymphocyte function
and even the whole IR. For example, the activation of CD8+
T-cells during certain bacterial IMIs, such as Staph. aureus,
can suppress important host IRs and predispose to chronic
pattern of IMI [78, 79]. Unfortunately, the exact roles of
lymphocytes during IMI and their subsets are complex and
are not fully defined. Even in healthyMGs, the composition of
the lymphocyte population varies during the lactation cycle
[28, 76, 80]; the consequences to MG immunity are still
not fully understood. Additionally, MG lymphocytes exhibit
hyporesponsiveness to mitogenic, antigenic, and allogeneic
stimuli compared to blood lymphocytes, possibly due to the
presence of distinct lymphocyte subsets, high proportion of
memory T-lymphocytes present in the MG [28], and/or less
efficient presentation of Ags by Ag-presenting MG cells [6].

In healthy BMGs, 𝛼𝛽 T-cells prevail in both MG secre-
tions and parenchyma and predominantly exhibit the CD8+
phenotype, which is in contrast to the blood, where CD4+
cells are the predominant T-cell subset [77]. Therefore, the
ratio of CD4+/CD8+ T-cells is lower in milk than in blood.
CD4+ (T-helper) cells produce a variety of immunoregu-
latory cytokines following Ag-recognition with MHC class
II molecules; and are being memory cells following Ag-
recognition [4, 7, 27, 81]. On the other hand, it is well estab-
lished that CD8+ cells can exert either cytotoxic or suppressor
functions. In coordination with major histocompatibility
complex (MHC) class Imolecules, cytotoxic T-cells recognise
and eliminate altered self-cells viaAg presentation, thus being
more specific than NK cells. However, it has been suggested
that their removal of damaged mammary epithelium could
enhance the susceptibility ofMG to infection [28]. Suppressor
T-cells are thought to play roles in control or modulation
of the MGIR [76]. However, the immunoregulatory roles of
CD8+ cells are also greatly dependant on lactation stage. Cells
obtained from midlactation dairy cattle exhibited cytotoxic
activity and mainly expressed interferon-𝛾 (IFN-𝛾), whereas
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CD8+ lymphocytes obtained during the postpartum period
exhibited no cytotoxic activity and mainly expressed inter-
leukin 4 (IL-4) [76].

Ruminants bear greater levels of 𝛾𝛿 T-lymphocytes in
secretions and parenchyma of MG relative to blood [82].
There are indications that 𝛾𝛿 T-cells can mediate cyto-
toxicity, similar to NK cells, with variable involvement of
MHC molecules; thus, they may be able to destroy altered
epithelial cells [83, 84]. 𝛾𝛿 T-lymphocytes preferentially
migrate to particular epithelial surfaces and do not exhibit
extensive recirculation [85]. Thus, it has been indicated that
𝛾𝛿 T-lymphocytes play a role in antibacterial immunity
and may provide a unique barrier function for mucosal
microenvironments against bacterial pathogens [49]. The
WC1+ subpopulation represents a minor portion of 𝛾𝛿
T-lymphocytic population in normal MG secretions [28,
86], but they markedly increase following parturition [87].
Because of restricted localisation and expression of invariant
Ag receptors, the exact contribution of these cells to MG
immunity is not fully understood. Several lines of evidence
have been accumulated suggesting that these cells perform
specific functions in comparison to circulating 𝛼𝛽 and 𝛾𝛿 T-
cells. Recently [88], it has been addressed that 𝛾𝛿 lymphocytes
exert some immunoregulatory/suppressive functions, more
precisely in the WC1.1+ and the WC1.2+ cells. On the other
hand, it has been reported that WC1+ cells are not recruited
to the MG during chronic IMIs caused by Staph. aureus [86].

One of the main roles of B-lymphocytes is to produce
Abs against invading pathogens. Unlike macrophages and
PMNs, B-lymphocytes utilise their cell surface receptors to
recognise specific pathogens and then internalise, process,
and present Ags in the context of MHC class II molecules to
T-helper cells [4]. Under certain conditions, B-lymphocyte
differentiation can be directly stimulated by an Ag such as
lipopolysaccharides (LPS) [49]. In contrast to T-lymphocytes,
the percentages of B-lymphocytes remain fairly constant
regardless of lactation stage [49, 77] or infection [86].

NK cells are large granular nonimmune lymphocytes
that differentiate and mature in bone marrow, lymph nodes,
spleen, and tonsils before passing to the circulation. NK
cells constitute the third type of cell derived from lymphoid
progenitors that also generate B- andT-lymphocytes [30]. NK
cells utilise their Fc receptors to possess a cytotoxic activity
critical to the IIS in the absence of MHC restriction [7]. NK
cells cause lysis of target cells through a diverse repertoire
of mechanisms [89], including Ab-dependent cell-mediated
cytotoxicity, granule exocytosis, release of cytolytic factors,
and receptor-mediated Ag-recognition. Additionally, they
secrete various toxic molecules that may initiate apoptosis
in altered cells [49]. Bovine NK cells, however, have not
clearly shown immunoregulatory functions [88]. NK cells
differ from natural killer T-cells in origin, respective effector
functions, and lack of specificity for Ag-recognition. How-
ever, NK cells do not require activation to kill cells that lack
self-markers of MHC class I [90]. Studies have demonstrated
the capability of NK cells to kill both Gram-positive (GPB)
and Gram-negative bacteria (GNB) and, therefore, they may
be important in preventing IMIs [91, 92].

(2) Distribution of Cellular Components in the Bovine MG
Environment.The differences in distribution of cellular com-
ponents inMG environment between healthy and inflamma-
tory conditions are detailed in Table 1.

The distribution of leukocytes in healthy MG is some-
what variable during healthy lactating and dry periods. The
percentage of PMNs tends to increase during early and late
lactation, while the percentage of lymphocytes decreases [93].
Meanwhile, the proportion of macrophages is highest (68%)
in the early postpartum period and lowest (21%) in late
lactation [80]. During the dry period, SCC canmarkedly rise.
The increase at the start of involution is most likely due to
an influx of cells resulting from cessation of milk removal,
or due to the concentration effect by removal of the liquid
phase of the secretion. SCCs in milk from uninfected glands
at the beginning of the dry period are usually higher than
1×105 cells/mLmilk, but by the 7th day of the dry period this
count can be as high as 2×107 cells/mLmilk [32]. PMNcounts
are initially high in early involutional secretions, comprising
40–80% of SCC (similar to colostrum), but are reduced again
from the 2nd to 4th week of the dry period and then return to
lactational values in the fully involuted udder [43, 66]. Unlike
in the lactation stage [43, 66] and with exception of the 1st
day of the dry period in which they exhibit higher counts
[94], macrophage concentrations are relatively low during
the remaining part of early involution and in colostrum,
with maximal proportions (30%) peaking by the mid-dry
period and remaining constant until calving [42]. Lympho-
cyte proportions were found to increase during involution
and then decrease around parturition [66]. Lymphocyte
concentrations in dry secretions are approximately 3000–
6000 times that in normal milk [43], and the proportions
of B- and T-lymphocytes are approximately 28% and 47%,
respectively, approximating proportions in peripheral blood
[31, 32].

(3) Distribution of Cellular Components in the MG Envi-
ronment of Ovines and Caprines. The milk SCCs thresholds
are higher in milk of small ruminants than in bovine milk.
Recent studies have indicated an upper SCC threshold of
2.5 × 105 cells/mL milk in healthy ewe’s udders [95] or more,
up to 6 × 105 cells/mL milk [74]. Similar to bovines, the
macrophages are the predominant cell type (46–84%) inmilk
from uninfected ewes [96, 97]. Counts of macrophages were
higher in early and midlactation milk than in late lactation
milk [74]. The rest of the SCs population consists of PMNs
(2–28%) and lymphocytes (11–20%). Meanwhile, limited data
exist on changes of leukocytes population in infected ewes’
MGs. Paape et al. [98] recorded an increase of PMNs percent-
ages to 50% at a SCC of 2 × 105 cells/mL milk and to 90% at a
SCCover 3×106 cells/mLmilk, representing the predominant
cell type at inflammatory conditions. Likewise, an increase of
PMNs andmacrophages counts within IMI of ewe’s udder has
been reported, whereas lymphocytes decreased [99].

SCC of milk from uninfected goats is higher than those
of milk of uninfected bovines and sheep. Unlike cow and
sheepmilkwheremacrophages are the predominant cell type,
PMNs comprise the major cell type in goat milk from both
infected and uninfected MGs [100–104]. In healthy status,
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Table 1: Cellular elements in the BMG environment [1, 6, 7, 27, 28, 31, 32, 41, 43, 45, 63–65, 77, 80, 86, 336].

Healthy MG Mastitic MG

SCC
Usually lower than 1 × 105 cells/mL milk. However, a
SCC higher than 2 × 105 cells/mL milk is considered to
be a more practical distinguishing threshold for IMI.

SCC is greater than 2 × 105 cells/mL milk
according to severity of IMI; with severe
IMIs, the SCC may reach 1 × 106 cells/mL
milk or more within a few hours.

Leukocytes 75% of SCC.

Dramatic increase occurs according to
severity of IMI at early stages due to
recruitment of immune cells from the
marginal pool and bone marrow into the
MG environment.

Macrophages 35–79% of total leukocytes in milk, constituting the
predominant cell type. 9–32% of total leukocytes in milk.

Lymphocytes

10–28% of total leukocytes in milk. The proportions of
T- and B-lymphocytes in milk are approximately
40–50% and 20–25%, respectively.
𝛼𝛽 T-cells prevail and are predominantly CD8+ subset
with memory characteristics (comprising
approximately 50–60% of the T-lymphocyte
population).

14–24% of total leukocytes in milk. CD4+
T-cells become the predominant activated
phenotype in response to recognition of
Ag-MHC class II complexes on
Ag-presenting cells, such as B-cells or
macrophages.
In some circumstances, such as chronic
Staph. aureus IMIs, CD8+ are
predominantly recruited compared over
CD4+ T-lymphocytes.

PMNs 3–26% of total leukocytes in milk.

The predominant cell type, constituting
up to 90% of the total milk leukocytes or
more. With chronic bacterial IMIs, PMNs
also remain as the predominant cells,
even for months.

PMNs, macrophages, and lymphocytes comprise 45–74%,
15–41%, and 9–20% of SCs population, respectively, while
epithelial cells are present in low percentage (1–6%) [98, 103,
105, 106]. With advanced lactation, the PMNs increase, while
lymphocytes and macrophages percentages are decreased
[104, 107]. Manlongat et al. [102] explained this late-lactation
rise-up on the presence of higher chemotactic activity in non-
mastitic goats udder and concluded that this phenomenon
was nonpathological and could play a physiologic regulatory
role in MG involution. Unfortunately, very little data exist on
the distribution of these cells during IMI. A study by Dulin et
al. [100] reported an elevation of PMNs to 71–86% in infected
halves, while macrophages and lymphocytes percentages are
being changed to 8–18% and 5–11%, respectively.

(4) Contribution of MG Epithelium to MG Immunity. MECs
themselves are active contributors to the innate immune and
inflammatory responses of MG [108, 109]. They express a
range of PR receptors (PRRs), most notably the TLRs [35,
36]. Additionally, the polymeric-Ig receptor (PIgR) expressed
on the mucosal epithelium facilitates the translocation of
Igs, particularly IgA, across the epithelium into the alveolar
lumen [110]. Upon bacterial stimulation, MECs secrete a
range of innate immune effectormolecules and inflammatory
mediators, which contribute to attraction and recruitment
of circulating leukocytes [38, 111]. It was shown that MECs
secrete IL-8, a potent neutrophil chemoattractant, in the
presence of GPB and their exotoxins, LPS fromGNB or IL-1𝛽

[51, 111, 112]. However, epithelial cells from lactatingMGsmay
also express IL-8 [113]. MECs constitute an important source
for host defence components as arachidonic acid metabolites
[38, 108, 114, 115], APPs [111], LF [111, 116], 𝛽-defensins [117,
118], cathelicidins and calprotectin [108], and LPS binding
protein [BP] (LPS-BP), which is involved in host recognition
of the bacterial cell wall [17, 119]. Supporting results were
obtained experimentally on bovineMECs, showing also their
ability to express IL-1𝛽, tumour necrosis factor-𝛼 (TNF-𝛼),
IL-6, IL-8, and growth related oncogene-𝛼 [GRO-𝛼] mRNA
during infection and immune stimulation [111, 114, 120, 121].

MG epithelium may exhibit protective and phagocytic
functions via the ingestion and possible digestion of phagocy-
tosed microbes and milk components, including fat globules
and casein micelles, through the formation of pseudopodia.
This effect was clearer in nonlactating glands than under
lactating conditions [122]. Experimental studies showed that
glutaraldehyde-killed streptococci, staphylococci, and E. coli
were phagocytosed by milk secretory cells [115]. Moreover,
many peptides, proteins, and lipids which are involved in host
defence and shown to have antibacterial properties (including
xanthine oxidase and sphingolipids) were found in fat globule
membranes, which originate from the apicalmembrane of the
MG epithelium [123, 124].

(5) Recognition of Invading Mastitis Causative Bacteria by
Host IIS. The initiation of rapid and effective IIR depends
mainly on recognition of the infectious agent [36, 109]. IIR
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of MG is initiated when PRRs on the surfaces or within
host cells, primarily leukocytes and MECs, bind to partic-
ular bacterial motif molecules termed pathogen/microbial-
associated molecular patterns (PAMPs/MAMPs) [109, 125,
126]. These motifs can be released during replication or
degradation of a microorganism [127]. Such PRRs belong to
three different families, namely, the TLR, nucleotide-binding
oligomerization domain- (NOD-) like receptors (NLR) 1-2,
and retinoic acid inducible gene-1- (RIG-1-) like receptors,
and each of these receptors recognizes a set of bacterialmotifs
[17, 35, 36, 109]. Activation of these PRRs initiates a signalling
transduction cascade in which nuclear factor-𝜅B plays a
pivotal role in coordinating multiple signals and directing
expression of effector response genes, including cytokines, as
well as orchestrating both the local and the systemic immune
responses [35, 120, 128–130]. In this context, it was not
surprising that the expression of PRRs increases in infected
bovine MGs tissues and epithelia [17, 130–135].

The TLRs represent a highly conserved family of PRRs
involved in microbial detection [35]. Till now, they are the
best characterized bovine PRRs and they recognize a wide
range of PAMPs. Thirteen TLRs have been identified among
mammals, 10 of which are known to occur in cattle [17,
35, 136]. TLRs are either expressed on the cell surface or
associated with intracellular vesicles [137]. Each TLR can
detect distinct PAMPs derived from microorganisms. For
example, TLR pairs such as TLR1/2 andTLR2/6 can recognise
lipopeptides or lipoproteins, whereas individual TLRs such
as TLR2, TLR4, TLR5, and TLR9, respectively, are involved
in sensing lipoteichoic acid (LTA), LPS, flagellin, and 6-base
DNAmotif consisting of an unmethylated CpG-dinucleotide
motif (CpG-DNA) [35, 36, 109, 137–140]. Besides recognizing
LPS motifs, TLR4 also can recognise bacterial-derived elas-
tases and exoenzyme-S [141, 142]. Another important PRR
found on PMNs and macrophages in the MG is CD14 [143],
which can bind to LPS and induces the synthesis and release
of TNF-𝛼 [64]. Also, the role of NOD1 and NOD2 receptors
of MECS in sensing peptidoglycans (PGs) of GNB has been
addressed [109, 144, 145].

(6) Contribution of Specific Bacterial Components to
the Identification by Host IIS and Induction of IRs

Gram-Negative Bacteria (GNB). Cell wall LPS, or endotoxin,
is central to the pathogenesis of mastitis caused by GNB. LPS
is considered the most potent immunostimulant of cell wall
components and is the key virulence factor eliciting clinical
symptoms [36, 37]. The LPS layer of the outer membrane
generally contains three regions: O-specific polysaccharide
chain, polysaccharide core, and lipid A. Lipid A was found
to be responsible for most of the pathogenic phenomena
associated with GNB IMIs, including endotoxin shock [36].
Recognition of LPS is mediated by membrane CD14, LPS-
LBP, an APP present in the bloodstream, and TLR on
MECs (primarily TLR4) [35, 37, 64, 146]. As a consequence,
initiation of acute IR results in an intense elevation of SCC
[109, 147], activation of different leukocytes and immune-
related genes [148], and subsequent production of antimicro-
bial defence proteins and peptides (e.g., LF, LZ, and LAP),

lipid mediators (e.g., cyclooxygenase-2 and 5-lipoxygenase)
[149, 150], chemokines (e.g., CXCL5, CXCL8, and RANTES)
[148, 151, 152], and cytokines, especially IL-6, TNF-𝛼 and
insulin-like growth factor-1 [35, 64, 146, 151]. Additionally,
binding of soluble CD14 to LPS stimulates MECs to produce
leukocytic chemoattractants such as IL-8 [112, 153]. Despite
the principle role of LPS in recognizing GNB by TLRs
(TLR1/2 and TLR2/6), it has been illustrated more recently
[109] that PGs fragments of E. coli, which are known to
activate the cytoplasmic NOD1 receptor, could be recog-
nized by bovine MECs and, thus, can induce inflammatory
response. Although NOD1 receptor is cytoplasmic and its
activation requires that the agonist is transported into the
host cell [154], it is possible that PGs fragments can reach
the cytoplasm of bovine MECs following invasion by E. coli,
as proven by some authors [155]. Moreover, the expression
of membrane transporters under particular circumstances
including inflammation could transport PGs fragments, as
was shown for muramyl-dipeptide (MDP), a potent NOD2
agonist [144, 145].

Gram-Positive Bacteria (GPB). In contrast to GNB, for
which LPS is the major immunostimulatory molecule, sev-
eral important compounds have been identified as immune
stimulators for GPB species, including cell wall lipoproteins
[156], LTA, which is a cell wall component of the murein
capsule [36, 119], and PGs [157] in addition to secreted
exotoxins [158]. Both PG and LTA have been shown to induce
immune cells, including monocytes and macrophages, to
produce inflammatory cytokines and chemokines [159, 160].
PG combined with LTA induced the expression of MCP-
1 and a slight increase in MCP-3 chemokine expression
[148]. In vitro studies have shown that LTA alone can induce
expression of several cytokines such as IL-1𝛽 [161, 162], IL-6,
IL-8, and TNF-𝛼 in MECs, although to a lesser extent than
LPS [125, 161–163]. Also, LTA proved to induce strongly the
secretion of the chemokines CXCL1, CXCL2, CXCL3, and
CXCL8, which target mainly neutrophils [161]. The role of
LTA and other PAMPS as muramyl-dipeptide in stimulating
IIS is not only limited to expression of specific cytokines and
chemokines, but can potentiate their subsequent effects after
production. The staphylococcal LTA or muramyl-dipeptide
enhances the expression of immune defence genes that are
induced by IL-17 in MECs in vitro [162]. However, it must
also be considered that the virulence of bacterial compounds
such as LPS and LTA may vary somewhat depending on
their bacterial origin [164]. More interestingly, LPS-BP has
been shown to bind LTA of GPB cell wall [119] although
primarily associated with GNB infection. The induction of
the gene encoding LPS-BP was observed in all tissues of MG
challenged by Staph. aureus [17], and increased concentration
of LPS-BP has been previously reported in milk and serum
after IMI with Staph. aureus [165].

TLR2 plays a major role in the recognition of a variety
of components related to GPB including LTA and lipopro-
teins. LTA activates cells via the TLR2/TLR6 heterodimer
[119, 134, 138, 139, 166], and with physical and functional
interactions with TLR1 and TLR6 it allows discriminating
the lipid portion of lipoproteins [36, 166]. Meanwhile, the
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roles of TLR1, TLR2, and TLR6 in the recognition of PG
remain controversial, and it has been suggested that PG
recognition occurs mainly intracellularly rather than from
the extracellular compartments [167]. Despite the principle
role of TLR1 and TLR6 heterodimers with TLR2, significant
increases in the expression of TLRs that recognise viral
ligands (TLR3 and TLR7) were also observed in bovine MGs
challenged with Staph. aureus [17], and a previous study [168]
has shown the role of TLR7 in recognition of GPB. Similar
results were observed in human monocytes in response to
both Staph. aureus and IL6 treatment [169]. Additionally,
expression of intracellular receptors may be important in
recognizing Staph. aureus which has the potential to invade
epithelial cells [170, 171].

(7) Other Components Contribute to Humoral Defences
Lactoferrin [LF]. LF, an iron-binding glycoprotein, was first
isolated from bovine milk in 1939 [172]. In the MG environ-
ment, it is mainly produced by the secretory epithelium and
to lesser extent by PMNs [173]. Expression of LF is inversely
related to alveolar development. Little or no expression of LF
occurs in lactating alveoli, and moderate to high expression
occurs in the epithelia lining the ducts and cisterns, while
LF expression is absent at the proximal end of the teat canal
[174]. The regulation of LF expression in MG appears to be
reciprocal to that of the other milk proteins [175]. Although
bovine colostrum contains high levels of LF (up to 5mg/mL),
these levels drop very rapidly as lactation proceeds, so that
mature bovine milk normally contains 200–485𝜇g/mL LF or
less [176, 177], depending on daily milk production and lac-
tation stage [178]. On the other hand, LF increases markedly
in dry secretions, with the maximum concentrations attained
after 3-4 weeks of involution (20–30mg/mL), nearly 100-
fold greater than during lactation [179]. The antibacterial
effect of LF is enhanced by increased bicarbonates and low
concentrations of the LF inhibitor, citrate, present during the
dry period [25, 179, 180]. The increased LF concentration
during involution strongly inhibits bacterial growth, and
it has been suggested to contribute to the low number of
naturally occurring IMIs during this early dry period [181].

LF contributes to MG immunity, immune modulation,
and transcriptional activation of variousmolecules via several
pathways. Principally, it exerts its bacteriostatic effect by
competing with bacteria for available iron [182–184] or by
binding to bacterial surfaces [185, 186]. Studies have shown
the ability of LF to damage the outer membrane of a broad
range of GNB by interacting with the lipid A portion of LPS
and performing proteins in the outer membrane (porins),
altering the integrity and permeability of the cell wall [185,
187, 188] and releasing LPS, which sensitizes the cell to
antibiotics [187]. The binding interactions of LF to GPB
are still not fully understood, although it has been shown
that LF binds to specific receptors on the cell walls of
several GPBspecies associated with IMIs, including S. uberis
[189], S. agalactiae [190], and Staph. aureus [186, 191], as
well as several coagulase-negative staphylococci (CNS) (e.g.,
Staph. epidermidis, Staph. warneri, Staph. hominis, Staph.
xylosus, Staph. hyicus, and Staph. chromogenes), hindering

their adherence to and invasion of MECs [192]. One study
[193] showed that although the antagonistic effect of bovine
LF on the adhesion and invasion of CNS strains to MECs
is weak, it significantly decreased intracellular replication
rates.

Bacteria with high iron requirements are susceptible to
the bacteriostatic activities of LF. Among mastitis-causing
bacteria, E. coli are the most susceptible followed by Staph.
aureus, but streptococci are more resistant [194]. For E. coli,
it appears that Igs are not required for LF to exert a potent
bacteriostatic effect [195]. S. uberis was found to resist the
antimicrobial effect of LF compared to Staph. aureus and
E. coli, although S. uberis challenged MG shows increased
mRNAexpression of LF-related gene [196] and stimulated the
production of LFmore than the other two organisms [197]. In
this context, some studies showed that bovine LF can enhance
adhesion of S. uberis to host cells and increase invasiveness,
suggesting that S. uberis has evolved to take advantage of
the presence of LF [198, 199]. On the other hand, bovine LF
has also been shown to inhibit many pathogenic bacteria,
including Listeria monocytogenes [200] and enterotoxigenic
E. coli [200, 201], and to increase the antibacterial effect
of antibiotics synergistically against antibiotic-resistant GPB
[186].

As a major component of the specific granules of PMNs,
LF additionally contributes to both hydrogen peroxide-
dependent and hydrogen peroxide-independent bacterial
killing [202] and promotes the adhesion and aggregation of
PMNs to the endothelial surface [203]. Another aspect of
LF’s antibacterial activity is based on activation of the CS
via the alternative pathway [204]. LF may also be important
in Ag-processing by cells of the reticuloendothelial system
and in Ab production [205]. Additionally, LF increases
NK cells activities [184] and amplifies the inflammatory
response and stimulates the phagocytic and cytotoxic prop-
erties of macrophages against invading pathogens [203, 205]
such as Staph. aureus [204] but still as a potent inhibitor
of granulocyte-monocyte colony-stimulating factor [205,
206].

During mastitis, LF levels in lacteal secretions may
increase 30-fold, corresponding to the severity of infection
[111, 149, 176, 197, 207] and depending on the causative
agent, as evidence has accumulated suggesting that differ-
ent pathogens induce different LF-mediated responses from
MECs [197]. The dramatic increase in LF concentrations
in milk during acute mastitis is consistent with the role of
LF as an acute phase response (APR) protein in the MG,
in accordance with the presence of APR elements in the
LF gene promoter region [182]. In experimentally induced
E. coli mastitis, the mean concentration of bovine LF was
2mg/mL [208], whereas in CNS mastitis it was <0.2mg/mL
[207]. The expression of LF by MECs in vitro has been
shown to be greater upon exposure to S. uberis isolated from
acute mastitis compared to S. uberis isolated from chronic
mastitis [209]. Based on the strong association between LF
concentrations and mastitis occurrence, combined with the
antibacterial properties of LF, it has been suggested that
bovine milk LF plays an important role in defence against E.
coli if concentrations exceed 200𝜇g/mL milk [185, 188, 210],
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while it has little effect against other major pathogens such as
Staph. aureus and S. agalactiae [210, 211].

Transferrin [TF]. TF is another iron-BP in the milk of dairy
ruminants, although it is present at low concentrations [25].
It was first isolated in 1960 from both human and bovine
milk [212]. The concentration of TF ranges from 1.07mg/mL
in colostrum to 0.02–0.04mg/mL in milk of third week
postpartum compared to 4-5mg/mL in serum [213, 214]. In
contrast to rodents, pigs, and rabbits, which synthesise TF in
the MGs at higher concentrations, TF in the milk of dairy
ruminants is not synthesised in the udder [116] and instead
comes from blood serum, from transcytosis in the normal
gland, and through exudation of plasma duringmastitis [215].
Like LF, TF can damage the cell membranes of GNB with the
release of LPS, thereby altering outermembrane permeability
[188]. During experimental E. coli IMIs in dairy cows, TF
concentrations were found to rise even before LF elevation,
reaching 1mg/mL in milk and paralleling the concentrations
of serum albumin [180].

Lysozymes (LZs). LZ (N-acetylmuramyl hydrolase) is one
of the components of antibacterial system in milk [4, 216,
217]. LZ has inhibitory or lytic activity mainly against GPB
and to lesser extent against GNB by cleaving the 𝛽 1,4-
glycosidic bond between N-acetylmuramic acid and N-
acetyl-D-glucosamine residues in PG [217], thereby disrupt-
ing the cell wall [4, 177]. However, milk LZ alone is not a
significant component of the BMG defence, and only a few
mastitis-causing bacteria are killed by LZ. Nonetheless, LZ
can synergize with Abs, complement, and LF [4, 25]. For
example, the binding of cationic LF to the LTAofGPB renders
staphylococci more susceptible to LZ [4, 218]. In healthy
conditions, LZ concentration of milk shows wide variation
among species and is influenced by several factors such as
the period of lactation, health, age, and the parity of animals
[217, 219]. After parturition, the LZ concentration shows
successive increase, reaching the peak (0.72mg/L milk) at
the 7th day, and then begins to decrease after the 2nd week
postpartum [220]. Nevertheless, bovine and buffalo milk
contain averages of only 0.0004 and 0.000152 g LZ/L milk,
respectively, compared to 10mg LZ/100mL in human milk
[221]. A substantial rise (10–50-fold) of lysosomal activity of
milk has been recorded duringmastitis among different dairy
species [149, 217, 222, 223]. However, buffalo may exhibit
thousandfold greater LZ activity andmoderately raised SCCs
in milk without showing signs of mastitis [224]. LZ in milk
may be derived from blood or locally synthesized [8], and
during IMI leucocytes appear to be the source of LZ [173].

Lactoperoxidase and Myeloperoxidase Systems. Next to xan-
thine oxidase, lactoperoxidase is the most abundant enzyme
in milk, constituting 0.5% of the total whey proteins
(30mg/L−1) [225, 226], and nearly similar concentration is
present in colostrum [226, 227]. As for many other indige-
nous enzymes, the level of lactoperoxidase in milk increases
with mastitis [228]. Locally synthesised lactoperoxidase, in
the presence of thiocyanate of hepatic origin and hydrogen
peroxide of either bacterial or endogenous origins, can exert

antibacterial properties against both GPB and GNB via
the generation of activated oxygen products like hypothio-
cyanate, a reactive metabolite formed from the oxidation of
thiocyanate that promotes bactericidal activity of phagocytes
[5, 177]. A close relationship between lactoperoxidase activity
and SCC in goat milk has been reported [229]. It has been
hypothesized that lactoperoxidase may have a synergistic
antimicrobial function with lingual antimicrobial peptide
(LAP), one of the host defence peptides, inMGs of dairy cows
[150].

Myeloperoxidase is a lysosomal enzyme similar to lac-
toperoxidase [225]. It is mainly located in the primary
granules of neutrophils [230], and together with peroxide
and halide it has an important role in the oxygen-dependent
antimicrobial system of neutrophils and thus in defence
against microorganisms [231, 232]. It catalyses the same per-
oxidase reaction as lactoperoxidase and additionally catalyses
the oxidation of chloride, the product of which provides the
bactericidal activity of this system [4]. In vitro, this system
has been shown to be potent against major common udder
pathogens such as Staph. aureus, S. agalactiae, S. dysgalactiae,
S. uberis, and E. coli [230]. Unfortunately, the antibacterial
properties attributed to this system are only relevant during
the dry period, whereas they were found to be completely
inhibited with lactation, mainly due to milk proteins [230].
Additionally, the levels of thiocyanate in udder are dependent
on the specific dietary composition, and the low oxygen
tension of the MG can inhibit the production of hydrogen
peroxide, thus limiting the effectiveness of this antimicrobial
system against different pathogens incriminated in mastitis
[4].

Complement System (CS). Complement is a collection of
proteins that are produced in plasma mainly by liver as
well as tissue macrophages and monocytes and for C3 a
local synthesis in the MG was suggested [233]. In support
of the assumption of a local synthesis, experimental Staph.
aureus and E. coli IMIs induced an increase of C3 mRNA-
expression in MECs [134]. Complement components elicit
their biological activities through complement receptors
located on a variety of cells [7, 134, 233]. The CS is central
to IIS because it is intimately involved in initiation and
control of inflammation, opsonisation of bacterial surfaces,
attraction and recruitment of phagocytes (chemoattractants)
(e.g., C3a and C5a cleavage fragments), recognition and
ingestion of microorganisms by phagocytes (e.g., C3 and
C4), and the killing of microorganisms, either directly or
through cooperation with phagocytic cells [53, 134, 233–235].
Nevertheless, it was also gradually appreciated that different
proteins of the CS can influence the MGIR and constitute an
important bridge between IIS and AIS [53, 235, 236].

The lowest concentrations of complement are observed in
the milk of healthy MGs during lactation, and higher levels
are observed during late lactation period, in colostrum, and
in mammary secretions obtained during involution, presum-
ably due to the mobilisation of complement components by
transudation from blood [237–240]. The alternative pathway
(AP) was found to be the sole complement pathway operating
under these healthy conditions, while the classical pathway
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(CP) is not functional due to lack or lowered presence of
C1q component compared to blood [53, 233, 241]. The AP
operates with two consequences that are greatly involved
in recruitment and activation of phagocytes, mainly PMNs:
(1) deposition of opsonic C3b and C3bi on bacteria and
(2) generation of the proinflammatory fragment C5a [75,
234, 241, 242]. However, the milk from noninflamed MG is
generally devoid of significant haemolytic and bactericidal
complement-mediated activities, especially during the mid-
lactation period [240, 241, 243, 244], due to strong anticom-
plement activity of milk on complement mediated hemolysis
and the absence of the C1q component required for activation
of the CP [5, 177, 244], except for some healthy periods of
exerting elevated complement concentrations, where these
activities exist in a weak but significant manner [237, 238,
240]. Nevertheless, this inhibitory activity does not involve
C3b/C3bi deposition on bacteria or the generation of C5a by
the AP [233]. Unfortunately, the lack of haemolytic activity in
bovine normalmilk in the absence of inflammation adversely
affects a very important function of the CS, opsonisation of
bacteria by CS components, mainly C3 [243]. However, it
has been shown a noteworthy deposition of C3 complement
fragments from neat milk of non inflamed MG on some
particular udder bacteria, as mastitis-causing Staph. aureus
[53], and S. agalactiae even in mid-lactating period [241] by
the activation of the AP. In addition, an enhanced chemilu-
minescence response of PMNs against invading pathogens
was noticed [53, 245]. On the other hand, the production
of extracellular fibrinogen-BP by Staph. aureus was found to
inhibit complement activation by blocking C3 deposition on
the bacterial surface [246].

In contrast, the highest concentrations of complement
are observed in mastitic milk, presumably due to the mobil-
isation of complement components by transudation from
blood [233, 238, 239]. Relative to the increase in com-
plement concentrations during IMI after recruiting plasma
components, both bactericidal and haemolytic activities of
CS are increased in inflamedMG, and the intensities of these
activities correlate with intensity of the IR [233, 247, 248].
GNB (e.g., E. coli) are sensitive to complement lytic action,
while some GPB (e.g., Staph. aureus) are resistant, although
all bacteria show susceptibility to the opsonizing action of
C3b and C3bi fragments after activation of the AP [53, 233,
241, 247, 248].

Cytokines, Chemokines, and Growth Factors. Cytokines are
water-soluble regulatory peptides produced during inflam-
matory processes. Most cytokines have more than one func-
tion and often have redundant effects with other cytokines
[249]. Because of the high affinity of their receptors, cytokines
are highly potent and can elicit biological responses even at
femtomolar to nanomolar concentrations [250]. Numerous
cytokines (e.g., TNF-𝛼, IFN-𝛾, GM-CSF, IL-8, and IL-12)
have been detected in normal udders [251, 252], but during
IMI a complex upregulation of specific cytokines occurs
depending on several factors. Cytokines act at both local and
systemic levels during onset, progression, and resolution of
inflammation [253, 254]. They provide relatively short-range
communications between cellular immune components, thus

linking the innate and adaptive immune branches [255], and
this short communication range is important to limit their
effects to the appropriate cells. Although cytokines play an
essential role in the host response to infection, they can also
have deleterious effects. Thus, there is a fine balance between
the positive and negative effects of cytokines on the host that
is dictated by the duration, amount, and location of their
expression [256]. A more detailed explanation of the roles
of specific cytokines, chemokines, and growth factors in MG
during IMIs is illustrated in Table 2.

Due to their important contributions to the inflammatory
process, several studies have illustrated cytokines benefits
in immunotherapy of mastitis via enhancing MG immu-
nity (e.g., interferons, mainly IFN-𝛾, IL-2) [257–261], their
contributions to control or prevention/immunisation against
mastitis pathogens especially E. coli or Staph. aureus (e.g.,
G-GSF, GM-CSF, IL-2, and IFN-𝛾) [262–264], and their
potentiating effects on response to treatment with antibiotics
(e.g., IL-1, IL-2, and IFN-𝛾) [262, 265–269]. The efficacy
of recombinant cytokines (e.g., recombinant bovine IL-2
[rBOIL-2]) in accelerating the involution of MG during dry
period, and thus reducing the time in which the MG is
particularly susceptible to infection, has been addressed [270,
271]. Intramammary infusion of IL-2 elicits a considerable
increase in SCC, which is dominated by macrophages and
plasma cells producing IgG1, IgG2, IgA, and IgM. On the
contrary, the immunotherapeutic properties of rBOIL-1 are
masked by the domination of proinflammatory nature of IL-1
[251, 271, 272].

Chemokines are important molecules involved in migra-
tion and recruiting leukocytes into MG during IMI, besides
being involved in several immunoregulatory and inflamma-
tory processes [39, 51, 151, 161]. According to arrangement
of conserved N-terminal cysteine motifs, chemokines are
grouped into 4 families: C, CC, CXC (subdivided into ELR+
and ELR−), and CX3C [151]. Members that contain the motif
(ELR+) are potent chemoattractants for neutrophils and pro-
moters of angiogenesis, whereas those that do not contain the
motif (ELR−) are potent chemoattractants for mononuclear
cells [151, 161]. Representatives of the ELR+ CXC chemokines
are structurally similar, including IL-8/CXCL8 and ENA-
78/CXCL5 [273]. Chemokines target neutrophils by inter-
acting with one (e.g., CXCL1, CXCL2, and CXCL3) or two
(e.g., CXCL8) receptors, CXCR1 and CXCR2, which are
expressed by neutrophils of several species including cattle
[274]. Several molecules whichmediate leukocytic trafficking
are expressed in the MG tissues and MECs in response to
LTA from GPB (e.g., CXCL1, CXCL2, CXCL3, and CXCL8)
or LPS from GNB (e.g., RANTES, CXCL5, CXLX8, MCP-1,
MCP-2, andMCP-3) and can be also detected in milk [39, 51,
127, 135, 151, 152, 161, 165, 275]. The remarkable induction of
chemokine gene expression by the epithelial cell lends strong
support to its role in stimulating migration of leukocytes into
the MG [39, 63].

Host Defence Peptides (HDPs).Host defence peptides (HDPs)
are a large family of innate immune effector molecules. They
are predominantly synthesised in PMNs and epithelial cells
[56–58, 132, 276] and have been shown to be important in the
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Table 3: Igs in bovine colostrum and milk.

Igs (g/L) Cow Buffalo Goat References
Milk Colostrum Milk Colostrum Milk Colostrum

IgA 0.05–0.14 1–6 0.01–0.03 0.18–0.57 0.03–0.08 0.9–2.4 [286, 371–376]
IgM 0.05–0.1 3–9 0.04 0.47–0.57 0.01–0.04 1.6–5.2 [286, 371–376]
IgG total 0.15–0.8 20–200 0.46–1.34 29.75–36.0 0.1–0.4 50–60 [286, 371–376]
IgG1 0.3–0.6 15–180 0.36–1.15 27.72–34.08 — — [286, 374–376]
IgG2 0.02–0.12 1–3 0.10–0.19 1.91–2.03 — —

resolution of local infection through both antimicrobial and
immune-regulatory properties [58]. Defensins are an impor-
tant family of HDPs in cattle owing to variable bactericidal
properties [57, 276] and are considered as effector arm of
IIS as well as representing a putative link between IIS and
AIS [58, 117, 132, 277]. Several 𝛽-defensins, including LAP,
tracheal antimicrobial peptide (TAP), and bovine neutrophil
𝛽-defensins 1, 4, and 5 (DEFB1, DEFB4, and DEFB5), are
expressed in MG tissues in both a constitutive and an
inducible manner, or even excreted in milk, in response to
bacterial challenge [17, 57, 117, 118, 131, 132, 150, 278]. Also,
an increase in LAP mRNA expression in the bovine alveolar
tissue at 192 h aftermilking upon involutionhas beendeclared
[40]. A broad spectrum of antimicrobial activities has been
demonstrated for several bovine 𝛽-defensins, in particular
against several species that cause mastitis as Staph. aureus, E.
coli, Kl. pneumoniae, and Ps. aeruginosa [57, 118, 279].

2.2.2. AIS and Its Related Components. The specific or adap-
tive immune system [AIS] recognises specific determinants
of a pathogen mainly via Abs molecules, macrophages, and
several lymphoid populations, which subsequently facilitate
selective elimination [7, 27]. Because of thememory function
of certain lymphocytes, specific IRs can be augmented by
repeated exposure to a pathogen [7]. Immunoglobulins (Igs)
are the most important specific soluble humoral factors
in adaptive immune defence, linking various parts of the
cellular and humoral immune system, and they constitute
the main component of the AIS present in colostrum and
milk [33, 280]. They are able to prevent adhesion of microbes
to tissues, inhibit bacterial metabolism, agglutinate bacteria,
augment opsonisation and phagocytosis of bacteria, kill
bacteria through activation of complement-mediated bacte-
riolytic reactions, and neutralize toxins and viruses [281, 282].
Igs account for up to 70–80% of the total protein content
in colostrum (20–150 g/L) to confer passive immunity to
newborns, whereas in milk they account for only 1-2% of
total protein (0.5–1 g/L) [31, 226, 227, 247]. However, Ig
concentrations in the BMG vary during the lactation cycle,
and an increase occurs at the end of lactation [283]. The
Ig content of both milk and colostrum increases during
inflammatory conditions [8].

Igs in milk may be blood-derived or may be produced in
situ by Ag-activated plasma cells, which traffic to the udder
from the blood [77, 284] mediated by chemokines produced
locally during IMI [285]. The MG plays an active role in
regulating the levels of different Igs present in colostrum

and milk, although the mammary epithelium itself does not
synthesise Igs. The majority of Igs are transported into mam-
mary secretions via specialised receptors (selective receptor-
mediated intracellular route) [33]. There are four different
classes of Igs that play dominant roles in MG defence against
bacterial pathogens: IgG1, IgG2, IgM, and IgA (Table 3).
Functionally, IgG1, IgG2, and IgM act as opsonins and
facilitate phagocytosis by PMNs and macrophages [49, 247],
while IgA is thought to play roles in toxin neutralisation and
bacterial agglutination, thereby hindering bacterial spread
and colonisation [247, 284]. Bovine colostrum contains IgG1,
IgA, and IgM in concentrations exceeding those of blood.
The colostrum/blood ratios for IgG1, IgA, and IgM are
approximately 4 : 1, 13 : 1, and 2 : 1, respectively [286].Themost
abundant Ig class in bovine milk and colostrum is IgG1 [287–
289], while IgG2 increases substantially during inflammatory
states [247]. In contrast, IgA and IgM are present at much
lower concentrations in healthy BMGs [286, 290].

3. Coordination of MG Innate and Adaptive
Immune Arms during IMI

Asmentioned, both innate and adaptive IRs are coordinating
and operating together in very complicated pathways to
provide the optimal defence against infections. PR and
Ag presentation by innate immune components initiates a
proinflammatory response with quantitative and qualitative
changes of different immune components in a complex
manner. Different cytokines and chemokines appear to play
essential roles in this process by acting through their variable
immunoregulatory roles, thus coordinating MGIR.

Once bacteria contact leukocytes in the milk or the lining
MG epithelium accompanied by exerting various virulence
mechanisms and liberating toxins, irritation or even damage
to MG epithelium and, thereby, activation of the IIS occur
through the transcriptional activation of key response genes
[126]. Inflammatory products from damaged epithelium
induce locally located leukocytes and healthyMG epithelium
to release several chemoattractants for the migration and
recruitment of both bone marrow and circulating immune
cells into the MG environment, mainly neutrophils [39, 63,
151, 255, 291, 292]. Proinflammatory cytokines (IL-1𝛽, IL-
6, and IL-17) as well as IL-8 and TNF-𝛼 are the main
effectors to initiate the inflammatory responses at both local
and systemic levels [121, 162, 291, 293, 294]. They act in
collaboration with TGF-𝛼, GM-CSF, and several chemotactic
factors (e.g., C3a andC5a complement fragments, leukotriene



14 Journal of Veterinary Medicine

B4, PAF, eicosanoids [as Prostaglandin-F2𝛼], oxygen radicals,
and APPs) to potently trigger circulation-into-MGmigration
of neutrophils via induction of vascular endothelial adhe-
sion molecules expression (mainly for E- and P-selectins),
thereby promoting neutrophil transendothelial migration to
the infected foci [291, 295, 296]. As a consequence, enhanced
expression and adhesiveness of another neutrophil adhesion
molecule, Mac-1 (known also as CD11b/CD18), occur, which
allows neutrophils to bind tightly to activated endothelium
in collaboration with another endothelial adhesionmolecule,
ICAM-1 [27]. This adhesive interaction allows neutrophils to
migrate along the endothelial surface and into MG tissues
up a concentration gradient of chemoattractants; one of the
most potent with long-lasting effect is IL-8 [75, 256, 291,
292, 297]. It is thus clear that the migration of immune
cells to MG is not a random process and a collaboration of
several molecules, chemoattractants, selectins, and integrins
is greatly needed to regulate chemotaxis. IL-17 has been
suggested to enhance leukocytic recruitment into MG via
regulating IL-8 expression and enhancing expression of sev-
eral chemokines targeting not only neutrophils (CXCL3 and
CXCL8) but also mononuclear leucocytes (CCL2, CCL20)
[121, 162, 294].

Leukocytes that freshlymigrated express greater numbers
of cell surface receptors for Igs and complement and aremore
phagocytic than their counterparts in blood [49]. Stimulation
of microbicidal activities of various leukocytes located inside
infected tissues is mainly regulated by certain proinflamma-
tory cytokines (Table 2). The activation status and enhancing
functions of neutrophils are stimulated mainly by IL-1, IL-8,
IFN-𝛾, TNF-𝛼, and G-CSF; macrophages by IL-12, M-CSF,
and GM-CSF; and NK cells by IL-2 and IL-12. Meanwhile, B-
lymphocyte differentiation is driven mainly by IL-2 and IL-6
[27, 256, 298–305].

Systematically, several physiologic responses occur as a
result of IMI: (1) generation of febrile response [293, 296, 301,
306, 307], (2) alterations in metabolism and gene regulation
in the liver, resulting in elevation of APPs levels as well
as serum cortisol levels [308], and (3) changes in vascular
permeability, tone, and activation [257, 293, 296, 309]. Some
cytokines such as TNF-𝛼, IL-1𝛽, and IL-6 are responsible for
generation of febrile response, and the latter one specifically
contributes to the great extent for regulation of the APR
through the synthesis of APP [310]. IL-17 greatly synergizes to
generation of inflammatory reactions via enhancing produc-
tion of IL-6 [121, 162], IL-8, andGro𝛼 [121] and the expression
of inflammatory cytokines TNF-𝛼 and IL-1𝛽 [162] (Table 3).
Likewise, TGF-𝛼 has been shown to have a potential role in
mediating IIR and promoting inflammation by upregulating
the production of prostaglandins and synergistically enhanc-
ing the effects of IL-1𝛽 and TNF-𝛼 [311–313]. Additionally,
TGF-𝛼 has the ability to directly stimulate IL-8 [313] and to
induce expression of antimicrobial peptides [314].

Ags from invading mastitis-causing bacteria are pro-
cessed mainly within macrophages and B-lymphocytes and
appear on the membranes in association with MHC class I
or II; thus they can be recognised by different lymphocytes
[27, 45, 67–69]. IFN-𝛾 greatly contributes to upregulating
of the MHC-I expression and MHC-II Ag presentation,

thus increasing cytotoxic T-cell recognition for foreign
peptides, and inducing CD4+ T-cell activation [256, 303].
Upon recognition of Ag-MHC class II on B-lymphocytes
or macrophages, CD4+ cells are activated and produce
cytokines that have roles in the activation and polarisation
of B- and T-lymphocytes, macrophages, and various other
cells that participate in the IR [4, 7, 27, 81]. Depending on the
repertoire of cytokines produced, the T-helper cell response
can facilitate either a cell-mediated (Th1 type) or a humoral
(Th2 type) IR [315]. IL-2 and IFN-𝛾 are the major cytokines
secreted by Th1 cells, and they stimulate cellular responses
against intracellular pathogens. In contrast, IL-4, IL-5, and
IL-10 are secreted by Th2 lymphocytes; these cytokines
promote humoral immunity and regulate both macrophage
functions and the activity of cytokine production [27, 316].
On the other hand, inflammatory-inducer IFN-𝛾 and regula-
tory IL-4 are themain cytokines produced byCD8+ cytotoxic
and CD8+ suppressor T-cells, respectively. Inflammatory
cytokines produced by T-cells in turn induce the proliferation
and differentiation of the B-lymphocytes into either Ab-
producing plasma cells or memory cells [27, 49], and some of
them are responsible for increasing Fc receptors for IgG2 [81].
Synergistically, activated macrophages release chemotactic
signals for neutrophils, thereby amplifying the inflamma-
tory response [67]. Macrophages secrete prostaglandins and
leukotrienes that augment local inflammatory processes [75,
317] as well as specific cytokines that are known to regulate
T-cell differentiation, mainly IL-12 [318].

Regulation of polarising T-helper subsets into either Th1
or Th2 is the main axis on which some regulatory cytokines
(IL-4 and IL-12) work [319]. IL-12 is produced in response
to bacteria and bacterial products [318]. IL-12 contributes to
the IR by favouring the polarising CD4+ T-cells towards Th1
responses and enhancing the generation of cytotoxic-IFN-𝛾
producing CD8+ cells and also acts as a growth factor for
NK cells and an inducer of their cytotoxic activities [254, 318,
320]. Thus, it contributes to the production of IFN-𝛾 from
lymphocytes as well as NK cells [254, 318]. In contrast to IL-
12, IL-4 favours the development of Th2 subsets and exerts a
clear inhibitory effect on IFN-𝛾 production [321]. Compared
to the anti-inflammatory IL-10 cytokine, the inhibitory effect
of IL-4 on monokine synthesis is lesser [322]. Based on the
effects of IL-4 and IL-12 on polarisation of T-cell subsets, the
early preference expressed in the IR is greatly dependent on
the balance between IL-12 and IL-4 [318].

Resolution of the IMI is mediated by upregulation of
several inflammatory-antagonist cytokines, including IL-10,
and TGF-𝛽, and in corporation to anti-inflammatory effects
elicited by IL-6 and IL-4. IL-10 is the most potent contributor
to this process as it downregulates both the generation of
all subtypes of T-helper cells [323] and the production of
proinflammatory cytokines, chemokines, and eicosanoids
by monocytes, macrophages, and neutrophils [85, 253, 291,
324]. IL-10 potently inhibits the ability of macrophages to
stimulate Th1 cells to produce cytokines, principally IFN-
𝛾 [316], and has an inhibitory effect on LPS-induced pro-
duction of IL-1, IL-6, and TNF-𝛼 by macrophage cell lines
[322]. In cooperation with IL-6, IL-10 also upregulates IL-
1 receptor antagonist and soluble TNF receptors, impairing
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the ability of the proinflammatory cytokines IL-1 and TNF-
𝛼, respectively, to exert their effects [256]. In contrast, IL-
10 does not inhibit cytokine production by B-lymphocytes
nor does it affect the ability of different phagocytes to
stimulate cytokine production by Th2 cells [316]. Like IL-10,
themajor role of TGF-𝛽 is to suppress the IRs, although some
proinflammatory properties have been reported [325, 326].
The anti-inflammatory role of TGF-𝛽 is exerted through its
ability to (1) inhibit macrophage production of chemokines,
proinflammatory cytokines, nitric oxide, and ROS; (2) limit
IFN-𝛾 production; (3) increase expression of the IL-1 receptor
antagonist; and (4) enhancemacrophage clearance of bacteria
and cellular debris [325, 326]. The repair of damaged MG
epithelium is mainly mediated by TGF-𝛼, which promotes
epithelial proliferation and tissue remodelling [327]. TGF-
𝛽, on the other hand, promotes extracellular matrix depo-
sition, fibrosis, and scarring [328]. Thus, restoring healthy
structure/homeostasis and scar formation is controlled by
the balance between the two TGF types. During the whole
process, altered cells aremainly removed bymacrophages and
cytotoxic T-cells, which recognise and eliminate altered self-
cells via Ag presentation, with the help of 𝛾𝛿 T-cells and NK
cells, whichmediate cytotoxicity with variable involvement of
MHC molecules [27, 83, 84].

4. MGIR towards Certain Common
Mastitis-Causative Bacteria

In addition to investigating the pathogen virulence mech-
anisms and the resulting histopathological changes, study
of the immunological profile of the MG against a partic-
ular pathogen will help provide a better understanding of
the nature, rate of development, and severity of mastitis
caused by such pathogen and is considered a prerequisite
to the development of novel and effective diagnostics and
therapeutics. The sensitivity and responsiveness of the MG
in terms of specific immune factors varies greatly against
different bacteria [37, 131, 134, 165, 196, 275, 329–331] and
their associated toxins [125, 148, 332, 333]. Thus, the high
sensitivity of the MG to some mastitis pathogens results in a
robust IR, invoking an acute response to infection and likely
predisposing to rapid elimination of the invading bacterium
with proper host immunity and animal management. In
contrast, the failure to eliminate certain bacteria as Staph.
aureus and some CNS may result in subclinical or chronic
IMIs as a result of poor responsiveness of MG immunity.
In attempt to understand the pathogenesis of IMIs caused
by different bacterial species, several studies have assessed
the mammary IRs towards particular mastitis pathogens, as
shown in Table 4.

Unfortunately, most studies regarding mammary IRs
towards particular pathogens in bovines have focused on
Staph. aureus and E. coli, being of the most commonly
mastitis-incriminated bacteria. Most bacterial species caus-
ing coliform mastitis elicit a marked acute inflammatory
response in comparison to Staph. aureus, mainly due to the
presence of LPS. However, the IIR varies among different
mastitis-causative species. A strong TNF-𝛼 response to LPS
was found to be central to the earliest initiation of MGIRs

and in the development of pyrexia associated with coliform
mastitis, endotoxic shock in per acute form [127, 334, 335],
leukopenia in peripheral blood, and concurrent increases
in milk leukocytes [62, 336, 337]. The powerful chemotaxis
and recruitment of leukocytes, mainly PMNs, and robust
production of a wide variety of cytokines reflect the MG’s
sensitivity to and response against E. coli compared to
Staph. aureus [114, 127, 131, 165, 239, 307, 311, 329, 338, 339].
When similar concentrations of heat-inactivated E. coli and
Staph. aureus bacteria were used to stimulate isolated MECs,
expression of TNF-𝛼, IL-1𝛽, IL-6, and IL-8 was greater in cells
stimulated by E. coli [134]. Experimental studies conducted
on ovines revealed similar results regardingMGIR towards E.
coli, and increases in leukocyte recruitment (mainly PMNs)
and proinflammatory cytokine levels (including IL-1𝛽, IL-8,
and TNF-𝛼 [255, 340]) have been reported in response to
either E. coli or its endotoxin. Occasional increases in GM-
CSF and IFN-𝛾 have also been shown [255, 340]. These data
explainwhyE. coli IMIs follow acute form andwhy these IMIs
may resolve spontaneously within a short period as declared
in previous studies [341, 342].

Depending on the levels of chemoattractants and proin-
flammatory, inflammatory, and regulatory cytokines, the
IIR is also robust towards Kl. pneumoniae [275] and Ps.
aeruginosa [37], reflecting the strong MGIR towards these
bacteria. Against S. marcescens, however, the MGIR is com-
paratively modest [337, 343].The number of bacteria isolated
from MGs of S. marcescens-infected cows as well as SCCs
dropped precipitously 24 h and 48 h following infection (PI),
respectively, which could reveal elimination of bacterium by
MG immune system [343]. Though several studies reported
strong systemic responses and clinical signs in animals
infected with several species of GNB [343–345], the accurate
investigations focused on the IIR towards GNB other than
E. coli are considered rare and mostly experimental. Further
in vivo and in vitro studies are required. Although Ps.
aeruginosa elicits a strong MGIR, studies on Ps. aeruginosa
infection in humans have revealed that secretion of exotoxin
A, exoenzyme S, and elastase by such bacterium inhibits
monocyte and neutrophil chemotaxis and respiratory burst,
thus altering the IR [346, 347].

Unlike the case with E. coli, MGIR against Staph. aureus
was found to be insufficient to eliminate the bacterium,
allowing persistence of infection and eventually leading to
subclinical or chronic patterns of IMI. Comparative studies
[131, 135] showed that E. coli but not Staph. aureus IMI
induced strongly IL-8 and TNF-𝛼 gene expression in the MG
tissue as well as strong activation of NF-𝜅B in MECs [135]
and triggered a rapid early expression of 𝛽-defensin, TLR2,
and TLR4 in the inoculated MG and lymph nodes [131],
while impaired proinflammatory activation was paralleled
by a complete lack of NF-𝜅B activation in MECs challenged
by Staph. aureus or LTA [135], and only expression of 𝛽-
defensin occurred later than 48 h in inoculated quarters with
Staph. aureus [131]. In a contradictory study [17], although
all 10 TLRs’ and NOD 1-2 expression was upregulated in
MG tissues challenged with Staph. aureus, with TLR8 hav-
ing the least expression in comparison to the other PRRs,
immunohistochemistry analysis of tissues from both Staph.
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aureus challenged and control animals reported low levels
of immune cells. This variability in the expression of PRRs
could be attributed to different strains, but in all conditions
how the IR of MG towards Staph. aureus is being translated
remains as a crucial point. In the last study [17], expression of
proinflammatory cytokines (IL6, IL17A, and IL8) and anti-
inflammatory cytokine (IL10) was induced in infected MG
tissues with Staph. aureus. Meanwhile, the production of
these cytokines varied among studies (Table 4), which reveal
the complexity of MGIR towards Staph. aureus and illustrate
that MGIR could be modulated due to pathogen factors
suppressing the production of these cytokines. Reduced
expression and induction of some inflammatory cytokines,
includingTNF-𝛼 by LTA, the principle immune-stimulator of
Gram-positive cell wall [17, 125, 126, 163], impaired activation
of NF-𝜅B [135] and reduced expression and production
of chemokines (IL-8 and RANTES) [134, 165], involved in
recruiting leukocytes, which may reflect why the SCCs are
not elevated in MGs challenged by Staph. aureus as SCCs
fromMGs challenged by E. coli did. It has been hypothesized
that decreased expression of immune-modulator 𝛼-1 acid
glycoprotein in the alveolar region of MG experimentally
challenged with Staph. aureus may inhibit the early recruit-
ment of neutrophils to the MG and could be a result of mod-
ulation of the host’s IR by the pathogen in order to enhance
survival [17]. Also, since it has been suggested that TGF-𝛽
was found to block the TLR signalling [348], the expression
of TGF-𝛽 in IMI caused by Staph. aureus was suggested
to be a reason of impaired IR towards this pathogen [135].
Additionally, various studies have shown that staphylococcal
enterotoxins (SEA, SEB, SEC, and toxic shock syndrome
toxin-1) act as super Ags by activating specific types of T-
lymphocytes (mainly CD8+ suppressors) and stimulating
release of specific cytokines [332, 333, 349]. The presence
of high numbers of suppressor CD8+ T-cells compared to
CD4+ T-cells significantly suppresses lymphocyte IRs and
recruitment [78, 86]; and in addition to unstable expression
and release of inflammatory inducers (IL-1𝛽, IL-8, and TNF-
𝛼) [17, 86, 114, 131, 134, 165, 239, 329], compromised expression
and release of inflammatory cytokines (depressed IL-2 and
C5a levels) [17, 86, 114, 239, 350] and unstable release of anti-
inflammatory IL-10 [114] could greatly reflect and provide
explanation for the suppressive nature of mastitis-causative
Staph. aureus and why IMIs caused by such bacterium do not
usually undergo resolution and follow subclinical or chronic
patterns with persistence of the pathogen.

CNS are known to cause IMImainly of subclinical nature.
In addition to causing a marked increase in SCC, CNS can
persist similar to Staph. aureus and cause a similar type of
histopathological MG damage [351–353]. Unfortunately, few
studies have investigated the bovine MGIR against CNS, and
the majority were conducted in ovines or investigated only
few aspects of MGIRs. In both bovines [354] and ovines
[355, 356], the IMIs caused by Staph. epidermidis and Staph.
simulans were associated with a decline in leukocyte counts
for a short period after initiation of the inflammatory process
[355] and the absence of amarked systemic cytokine response
[354]. However, some proinflammatory cytokines, including
IL-1𝛽, IL-8, and TNF-𝛼, were elevated in milk [354–356].

These observations likely reflect the unsuccessful combat of
MG against the invading bacterium and that the sensitivity
or responsiveness of MG to inflammatory signals decreased
as infection progressed. In experimentally induced ovine IMI
by Staph. epidermidis, counts of leukocyte subsets (including
CD4, CD8, WC1, and MHCII) temporarily decreased and
then subsequently increased, while the expression of some
adhesion molecules (CD11b and CD18) on PMNs decreased
after 24 h [355]. An experimental study [357] in bovines
revealed a mild host IR against Staph. chromogenes as mea-
sured by systemic signs, SCC,milk yield, bacterial counts, and
some inflammatory indicators (including enzymatic activity
and APP levels), but cellular and other soluble factors of MG
immunity have not been studied. In addition, Staph. warneri,
Staph. simulans, Staph. chromogenes, and Staph. xylosus have
been shown to cause cellular responses in both ovines [358,
359] and caprine [360] udders, as indicated by increased
SCC and leukocyte counts in milk and severe infiltration
of MG tissues with mononuclear cells and neutrophils on
histopathological investigations. Further studies are required
regarding the MGIR towards several species of CNS.

Unfortunately, few studies have focused on MGIRs
against streptococci, despite their substantial contribution
to mastitis. To our knowledge, only one study [361] has
evaluated the MGIR towards S. dysgalactiae subsp. dysgalac-
tiae, and few studies were conducted on S. uberis [196, 209,
336, 337, 362–364]. Although not completely comprehensive,
MGIR towards S. dysgalactiae subsp. dysgalactiae in one study
was represented by increased expression of TLR4 plus release
of various cytokines (IL-1𝛽 and TNF-𝛼).

Most experimental challenge studies showed that MGIR
against S. uberiswas not sufficient to allow successful elimina-
tion of the bacterium, although increased expression and pro-
duction of several inflammatorymediators and antimicrobial
components as IL-1𝛽, IL-8, IL-10, IL-12, IFN-𝛾, TNF-𝛼,
sCD14, LPS-BP, C5a, and LF have been declared during IMIs
caused by S. uberis. In S. uberis-experimentally infected cows,
both numbers of bacteria in milk and SCCs remain highly
elevated for long time PI, compared to S. marcescens infected
cows [343]. Neither the influx of PMNs into MG infected
with S. uberis [336, 337, 365] nor intracellular engulfment by
macrophages [70, 366], have resulted in effective reduction in
the number of bacteria, and in contrast intracellular replica-
tion of S. uberis inside macrophages increased. Additionally,
it has been accumulated that MGIR towards S. uberis is very
complex, and different strains of S. uberis can elicit different
IRS. Some studies showed that strain-specific pathogenicity
greatly modulates the IR, implying that pathogen factors
rather than host factors play an important role in modifi-
cation of MGIR [209, 364]. Contradictory results have been
obtained in different study [196] when a strain of S. uberis
used to induce CM in vivo failed to cause a change in the
mRNA levels of the immune-related genes by bovine MECs
in culture, suggesting that the expression of immune-related
genes by MECs may be initiated by host factors and not
S. uberis. However, in the same study, challenging bovine
MECs with different S. uberis strains resulted in an increase
in the mRNA expression of a subset of the immune-related
genes measured. Also, MGIRs towards different strains of S.
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uberis isolated from different IMI cases of different intensities
varied. Expression of IL-1𝛽 and IL-8 from MECs in vitro has
been shown to be greater with exposure to living and heat-
inactivated S. uberis isolated fromacutemastitis than S. uberis
isolated from chronic mastitis [209]. More interestingly, a
strain of S. uberis that induced acute mastitis in vivo caused
twofold and fourfold higher expression of IL-8 and IL-1𝛽,
respectively, in isolated MECs in vitro than a strain isolated
from a case of chronic mastitis [363]. Similar results were
obtained in a separate study [209], indicating that the severity
of mastitis induced by different S. uberis strains in vivo can be
reflected at the level of the MGIR in vitro. In another in vitro
study, heat-inactivated S. uberis did not trigger an IR from
MECs, although inactivated Staph. aureusdid, despite the fact
that both bacteria are Gram-positive and contain LTA in their
cell walls [330]. Continued to particularity of MGIR towards
S. uberis, an emergence of S. uberis-specific bactericidal T-
cells in the MGS of cows after infection or environmental
exposure to S. uberis has been documented, suggesting that
these specific cells may play a role in control of IMI caused by
this bacterium [367].

To the best of our knowledge, no studies have been
performed to assess the MGIR of bovines to the major
contagious bacterium S. agalactiae. In a study of S. agalactiae
IMI in mice [368], the IR manifested as a massive infiltration
of MG by PMNs and the release of IL-1𝛽, IL-6, and TNF-𝛼 in
the first 72 h PI; these cytokine levels decreased concurrently
with increased levels of IL-12 and IL-10.

Results obtained from different studies investigated the
MGIR towards different mastitis pathogens, demonstrating
the complexity of the MGIR to an infecting pathogen and
indicating that a coordinated response exists between the
resident, recruited, and inducible immune factors.

5. Future Perspectives

In recent years, there has been considerable expansion
of our knowledge concerning host MG immune defence
against bacterial infections. This defence involves sophisti-
cated mechanisms for detecting various invading bacteria
and combating them by the innate and acquired IRs. To
improve dairy animal resistance against IMIs, further inves-
tigation concerning MG immunology should focus on the
following: (1) enhancement of immune functions or at least
the maintenance of these functions at normal levels under
various lactating and nonlactating conditions, especially dur-
ing periods of immune suppression; (2) clarifying the roles of
specificmammary immune cells, primarily lymphocytes, and
in particular the roles of NK cells and 𝛾𝛿 cells, which are not
fully defined; (3) in vivo and in vitro investigation of MGIRs
against certain common bacteria in bovines, including S.
uberis, S. dysgalactiae, S. agalactiae, coliforms other than
E. coli, and CNS because most research studies concerning
MGIRs have focused on Staph. aureus and E. coli, as most
studies using other pathogens have involved experiments in
ovines and focused on cytokine levels only without detailing
the cellular responses; (4) clarifying the roles of certain

chemokines as RANTES and cytokines such as IL-17, TGF,
and CSF in MG, as well as LF effect against GPB because its
role is not clearly understood; and (5) Changes of leukocytes
population in MGs of ovines and caprines during IMIs.
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[223] Å. Carlsson, L. Björck, and K. Persson, “Lactoferrin and
lysozyme in milk during acute mastitis and their inhibitory
effect in Delvotest P,” Journal of Dairy Science, vol. 72, no. 12,
pp. 3166–3175, 1989.

[224] S. Priyadarshini and V. K. Kansal, “Purification, character-
ization, antibacterial activity and N-terminal sequencing of
buffalo-milk lysozyme,” Journal of Dairy Research, vol. 69, no.
3, pp. 419–431, 2002.

[225] P. F. Fox and A. L. Kelly, “Indigenous enzymes inmilk: overview
and historical aspects—part 1,” International Dairy Journal, vol.
16, no. 6, pp. 500–516, 2006.

[226] H. Korhonen and A. Pihlanto, “Bioactive peptides from food
proteins,” inHandbook of Food ProductsManufacturing: Health,
Meat, Milk, Poultry, Seafood, and Vegetables, Y. Hui, Ed., pp. 5–
38, John Wiley & Sons, Hoboken, NJ, USA, 2007.

[227] H. Korhonen and A. Pihlanto, “Food-derived bioactive
peptides—opportunities for designing future foods,” Current
Pharmaceutical Design, vol. 9, no. 16, pp. 1297–1308, 2003.

[228] P. F. Fox, “Significance of indigenous enzymes in milk and
dairy products,” inHandbook of Food Enzymology, pp. 255–278,
Marcel Dekker, New York, NY, USA, 2003.

[229] E. Seifu, E. F. Donkin, and E. M. Buys, “Potential of lactoperox-
idase to diagnose subclinical mastitis in goats,” Small Ruminant
Research, vol. 69, no. 1-3, pp. 154–158, 2007.

[230] R. Cooray and L. Björck, “Bactericidal activity of the bovine
myeloperoxidase system against bacteria associated with mas-
titis,” Veterinary Microbiology, vol. 46, no. 4, pp. 427–434, 1995.

[231] R. Cooray, “Use of bovine myeloperoxidase as an indicator of
mastitis in dairy cattle,” Veterinary Microbiology, vol. 42, no. 4,
pp. 317–326, 1994.

[232] S. J. Klebanoff, “Myeloperoxidase: occurrence and biological
function,” in Peroxidases in Chemistry and Biology, vol. 1, pp.
1–35, CRC Press, Boca Raton, Fla, USA, 1991.

[233] P. Rainard, “The complement in milk and defense of the bovine
mammary gland against infections,” Veterinary Research, vol.
34, no. 5, pp. 647–670, 2003.

[234] M. M. Frank and L. F. Fries, “The role of complement in
inflammation and phagocytosis,” Immunology Today, vol. 12, no.
9, pp. 322–326, 1991.

[235] D. E. Shuster, M. E. Kehrli Jr., P. Rainard, and M. Paape,
“Complement fragment C5a and inflammatory cytokines in
neutrophil recruitment during intramammary infection with
Escherichia coli,” Infection and Immunity, vol. 65, no. 8, pp.
3286–3292, 1997.

[236] K. Reid, “The complement system; a major effector mechanism
in humoral immunity,” Immunologist, vol. 3, pp. 206–208, 1995.

[237] J. H. Brock, F. Ortega, and A. Pineiro, “Bactericidal and
haemolytic activity of complement in bovine colostrum and
serum: effect of proteolytic enzymes and ethylene glycol
tetraacetic acid (EGTA),” Annales d’Immunologie, vol. 126, no.
4, pp. 439–451, 1975.

[238] P. Rainard, B. Poutrel, and J. P. Caffin, “Assessment of hemolytic
and bactericidal complement activities in normal and mastitic
bovinemilk,” Journal of Dairy Science, vol. 67, no. 3, pp. 614–619,
1984.

[239] C. Riollet, P. Rainard, and B. Poutrel, “Differential induction of
complement fragment C5a and inflammatory cytokines during
intramammary infections with Escherichia coli and Staphylo-
coccus aureus,” Clinical and Diagnostic Laboratory Immunology,
vol. 7, no. 2, pp. 161–167, 2000.

[240] W. P. Eckblad, K. M. Hendrix, and D. P. Olson, “Total comple-
ment hemolytic activity of colostral whey and sera from dairy
cows,”The Cornell Veterinarian, vol. 71, no. 1, pp. 54–58, 1981.

[241] P. Rainard and B. Poutrel, “Deposition of complement compo-
nents on Streptococcus agalactiae in bovine milk in the absence
of inflammation,” Infection and Immunity, vol. 63, no. 9, pp.
3422–3427, 1995.

[242] P. Rainard, P. Sarradin, M. J. Paape, and B. Poutrel, “Quantifi-
cation of C5a/C5a(desArg) in bovine plasma, serum and milk,”
Veterinary Research, vol. 29, no. 1, pp. 73–88, 1998.

[243] R. Mueller, E. J. Carroll, and L. Panico, “Complement C3
levels and haemolytic activity in normal and mastitic whey,”
Zentralblatt für Veterinarmedizin B, vol. 29, no. 2, pp. 99–106,
1982.

[244] R. Mueller, E. J. Carroll, and L. Panico, “Hemolytic complement
titers and complementC3 levels in endotoxin-inducedmastitis,”
The American Journal of Veterinary Research, vol. 44, no. 8, pp.
1442–1445, 1983.

[245] P. Rainard, P. Sarradin, and B. Poutrel, “Phenotypic variabil-
ity of X-protein expression by mastitis-causing Streptococcus
agalactiae of serotype NT/X and opsonic activities of specific
antibodies,” Microbial Pathogenesis, vol. 16, no. 5, pp. 359–372,
1994.
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