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Abstract: Protease inhibitors are key components in the chemotherapy of HIV infection. However, the
appearance of viral mutants routinely compromises their clinical efficacy, creating a constant need for
new and more potent inhibitors. Recently, a new class of epoxide-based inhibitors of HIV-1 protease
was investigated and the configuration of the epoxide carbons was demonstrated to play a crucial role
in determining the binding affinity. Here we report the comparison between three crystal structures
at near-atomic resolution of HIV-1 protease in complex with the epoxide-based inhibitor, revealing
an in-situ epoxide ring opening triggered by a pH change in the mother solution of the crystal.
Increased pH in the crystal allows a stereospecific nucleophile attack of an ammonia molecule onto an
epoxide carbon, with formation of a new inhibitor containing amino-alcohol functions. The described
experiments open a pathway for the development of new stereospecific protease inhibitors from a
reactive lead compound.

Keywords: HIV-1 protease; epoxide-based inhibitor; reactions in crystals; X-ray crystallography;
stereospecific inhibitors

1. Introduction

HIV-1 protease (PR) is an excellent target for antiretroviral therapy due to its crucial role in the
life cycle of the human immunodeficiency virus (HIV). HIV-1 protease is a homodimer, with both
chains participating in forming the active site of the enzyme. It processes the polyproteins into the
structural proteins and enzymes during virion maturation [1]. Inhibitors of PR target the active site of
PR to inhibit the activity of the enzyme, thus preventing cleavage of Gag and Gag-Pol polyproteins
and resulting in production of non-infectious virus particles [1].

Different approaches have been employed in the design of PIs. Peptidomimetics reversibly inhibit
the enzyme by competing with the substrate for the active site [2–4], while irreversible inhibitors form
a covalent adduct with the target protease [5,6]. Some of these inhibitors were designed with the aid of
X-ray crystallography [7,8], molecular docking [9,10], and click chemistry [11].

PIs-based therapies have had good success in improving the lives of infected people, especially
when administered in the form of antiretroviral therapy (ART) which is based on a cocktail
of two nucleoside reverse transcriptase inhibitors (NRTIs), together with a non-NRTI (NNRTI),
a ritonavir-boosted protease inhibitor (PI) (atazanavir or darunavir) or an integrase strand-transfer
inhibitor [12]. However, prolonged treatment regimens eventually face the challenge of drug resistance,
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an ever-escalating problem in AIDS management [13,14]. This has led to global research efforts directed
towards overcoming drug resistance in HIV [15]. The development of irreversible inhibitors could
represent a valuable tool in overcoming drug resistance considering that covalent binding might be
less sensitive to mutations that reduce the binding affinity of the enzyme for inhibitors [5,6,16]. To date,
a few epoxide-based inhibitors of PR have been reported that inhibit PR with high selectivity [16–19].

It is widely acknowledged that structural information on protein targets complexed with inhibitors
helps guide improved synthesis of lead compounds [20–24]. However, the direct use of protein crystals
in making new ligands for a particular protein target by in-situ synthesis is just emerging [25]. Recently,
we reported how the configuration of the epoxide carbons plays a crucial role in determining the
binding affinity of an inhibitor [16]. PR was complexed with a new potent inhibitor containing an
epoxy moiety within a Phe-Phe pseudodipeptide fragment (Figure 1).
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2. Results 

Previous crystallographic studies on PR/EPX complex evidenced that the β-carboxylate group 
of the catalytic aspartate residue 25B is involved in hydrogen bonding with the hydroxyl group of 
the inhibitor, contributing to successfully stabilizing the inhibitor in the active site (Figure 3a) [16]. 
This carboxyl group is rather far from the epoxide carbon atoms. Conversely, the carboxyl group of 
the other aspartic acid 25A is in very close contact with one of the carbons of the oxirane ring. The 

Figure 1. Structure of EPX inhibitor, (C31H36N2O5). MW = 516.63 g/mol.

Analysis of the crystal structure of PR/EPX complex at 1.45 Å shows that the active site of PR
is fully occupied by EPX in a single conformation with a surprisingly intact epoxide ring (Figure 2a).
This result is in contradiction with the general behavior of epoxide-containing molecules that usually
show high reactivity towards nucleophiles, leading to ring opening [16]. The presence of a reactive
molecule trapped in the catalytic channel of PR opened the possibility to study solid state reactions.
In particular, here we investigate triggering of an in-situ reaction in crystals of PR/EPX complex and
suggest it as a possible route for developing stereospecific inhibitors of the HIV-1 protease.
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Figure 2. Comparison between electron density 2Fo-Fc maps (contour level 1.2 σ) near the active
site of PR (cartoon). (a) pH 6.0, pseudopeptide epoxide inhibitor, EPX with unreacted/closed ring
and catalytic aspartates in sticks; (b) pH 9.0, reacted pseudopeptide epoxide inhibitor showing open
epoxide ring and formation of the amino diol derivative.

2. Results

Previous crystallographic studies on PR/EPX complex evidenced that the β-carboxylate group of
the catalytic aspartate residue 25B is involved in hydrogen bonding with the hydroxyl group of the
inhibitor, contributing to successfully stabilizing the inhibitor in the active site (Figure 3a) [16]. This
carboxyl group is rather far from the epoxide carbon atoms. Conversely, the carboxyl group of the
other aspartic acid 25A is in very close contact with one of the carbons of the oxirane ring. The distance
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between the two atoms is only 3.10 Å and the carboxylate oxygen atom is well aligned with the epoxide
ring forming an angle of 95◦ with the carbon–carbon bond of the ring (Figure 3a). This value is close
to the optimal trajectory calculated for the epoxide opening by Asp25 nucleophiles in HIV protease
models by Mavri, who suggested that the deprotonated aspartate should attack the oxirane upon
proton transfer to the leaving oxygen by the other protonated aspartic residue [26]. This proton transfer
is clearly not possible in our case, as the epoxide oxygen is oriented upwards and far from the aspartic
side chains. However, a water molecule was found at hydrogen-bond distance from the oxygen and
could provide protons to assist the epoxide opening. This evidence suggested that the reaction did not
occur at pH 6.0, as described by the reported crystal structure [16], because Asp25A was not available
as a nucleophile in the catalytic site, since it was protonated.
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Figure 3. PR/EPX structures showing interactions with catalytic aspartates in PR/EPX before and
after triggered reaction. (a) pH 6.0, PR/EPX structure showing interactions with catalytic aspartates.
The carboxylate oxygen atom of the catalytic aspartate, in close contact to the oxirane carbon
(green dashed line), forms an angle of 95◦ with the carbon–carbon bond of the ring; (b) pH 9.0,
reacted pseudopeptide epoxide inhibitor produces a serinol derivative. The amino group forms a
strong H-bond with a carboxylate oxygen atom of a catalytic aspartate. Interatomic distances are
depicted as yellow dashed lines, except otherwise stated, with distance value in Angstrom.

The crystal structure of the PR/EPX complex with its intact oxirane ring (Figure 2a) suggested the
possibility of investigating the ring opening reaction directly in the protein crystal. To promote the
nucleophilic attack and the formation of an inhibitor covalently bound to PR, the deprotonation of
the Asp25A was attempted by increasing the pH of drops containing the crystals. Thanks to the high
degree of order present in the crystalline state of PR/EPX, as revealed by the electron density maps,
the effect of triggering a reaction on the epoxide ring was investigated by a diffusion-based technique
directly in the protein crystals.

In the soaking technique, the diffusion time is an important parameter to take into account for
the diffusion of molecules into the crystal channels. Short diffusion times do not allow diffusion of
molecules in the crystal, while prolonged diffusion periods put the crystal at risk of damage due
to perturbation of the mother solution. The optimal time for diffusion was theoretically calculated
taking into account the volume and shape of the crystals, the volume of channels accessible to the
solvent present in the crystal structure, the concentration and size of the diffusing molecules [27].
The simulations of diffusion performed for small basic molecules such as OH− or NH3, showed the
possibility of saturating the crystals with the typical dimensions used in the experiments within few
minutes. However, to avoid problems related to the kinetics of ring opening of the epoxide, in the final
experiments, the system was allowed to equilibrate for a few hours before collecting X-ray diffraction
data. The pH variation from 6.0 to 9.0 showed no damage to the PR/EPX crystals. On the contrary,
severe crystal damage was observed lowering the pH below 6.0 in attempts to directly protonate the
epoxide ring.
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The X-ray structures determined to high resolution (in the range of 1.1 to 1.24 Å) by single
crystal diffraction from synchrotron radiation show that the ring opening reaction was achieved in
the PR/EPX crystals equilibrated with a pH 9.0 reservoir solution (Figure 2b). While the epoxide
ring was found intact in the complex obtained at pH 6.0 (Figure 2a), at pH 9.0 the ring had opened.
The electron density maps clearly proved that a stereospecific reaction had occurred at the oxirane ring
with formation of new amino and alcohol functional groups. The chemical reaction of ring opening
was achieved in PR/EPX crystals by diffusion of ammonia which acts as nucleophile.

In situ opening of epoxide ring led to the formation of a new stereospecific inhibitor containing
amino-alcohol functions with a geometry defined by the catalytic site. The new functional groups
contribute to the stabilization of EPX in the catalytic site of PR by providing a direct and strong H-bond
interaction (2.44 Å) between the amino function of the inhibitor and a carboxylate oxygen atom of the
catalytic aspartate Asp25A (Figure 3b).

Two different crystal forms, monoclinic and orthorhombic, related by a group/subgroup
transformation (Figure 4), were characterized from crystals soaked in ammonia-citrate buffer, both of
them showing a complete ring opening reaction, without crystallographic disorder in the catalytic site.
Neither of the crystal lattices were disrupted or damaged in the reaction process, and the resolution
limits of diffraction data, 1.24 Å for the monoclinic form and 1.12 Å for the orthorhombic, were even
improved with respect to the initial data collected with the unreacted PR/EPX crystals (1.45 Å).
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Figure 4. Group/subgroup relations in PR/EPX crystal forms. (a) Transformation of the
asymmetric orthorhombic form (space group P212121) in that of monoclinic form (space group P21).
The transformation matrix and the translation vector of the atomic coordinates are also reported;
(b) Superposition of the P212121 space-group diagram of the orthorhombic form (black) with the
space-group diagram of the maximal non-isomorphic sub-groups P21 of the monoclinic form (blue)
shows the origin shift (1/4, 0, 0), the axes swapping (−a, c, b) and the missing symmetry operators
(red symbols) to transform the lattice of orthorhombic form to that of monoclinic form.
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3. Discussion

The striking result obtained in this study is that the pH increase did not promote deprotonation of
the catalytic aspartate with formation of irreversible covalent bond inhibitor. Rather, the nucleophilic
ammonia molecule, produced by increasing the pH, diffused into the crystal and directly attacked the
inhibitor and opened the epoxide ring. The opening of the epoxide ring led to the formation of a new
inhibitor with two additional functional groups, hydroxyl and amine. Then, the nucleophilic attack of
ammonia on oxirane ring of the inhibitor produced an amino diol derivative with common designation,
serinol because it is a structural analogue to the amino acid serine [28]. The high-resolutions X-ray
data collected after crystal perturbation suggests that the inhibitor reacted while bound to the active
site of the enzyme, since an exchange with a preformed amino diol derivative with release of the
epoxide inhibitor would require a large rearrangement of the protein domains [29,30] and a decrease
in the order of the crystal. Such a hypothesis is also supported by simulation studies of the entire
kinetic process which includes diffusion of small molecules into protein crystals, binding and release of
inhibitors, and reaction with ammonia in or out of the crystal (Table S2). Two scenarios are presented
in Figure 5 elaborated using COPASI [31] (a software application for simulation and analysis of
biochemical networks and their dynamics) and the algorithm for simulation of diffusion processes in
protein crystals earlier described [27]. With the hypothesis of reaction inside the crystal (Figure 5a),
about 3 h are theoretically required to saturate the active site with amino diol derivative. On the
contrary, the hypothesis which shows that the amino diol derivative is generated exclusively in the
mother solution with the excess of the inhibitor and then it diffuses and replaces the EPX inhibitor in
the protein crystal is presented in Figure 5b. The simulation (Figure 5b) shows a much slower process,
with a very long duration, about one week, required to saturate the enzyme with the new inhibitor.
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The acid-base behavior of amino acids is very important and plays crucial role in enzyme
catalysis, substrate binding and protein structure [32]. Changing pH provides new insights into
the mechanisms involved in protein activity [33]. In fact, Richman et al. reported that hydrogen
exchange experiments promoted by altering pH in their study on the protein Nitrophorin 4 suggested
backbone conformational fluctuations in the protein [34]. Regioselective ring-opening reactions of
epoxides have been reported under basic conditions involving synthesis of biologically important
intermediates [35]. In this work, ethyleneimine generated in situ from β-chloroethylamine was used
as a nucleophile to open the epoxides in an aqueous environment. Another study demonstrated
that primary amines undergo efficient ring opening reaction with epoxides [36]. The uniqueness of
our results lies in the ability of triggering the ring-opening reaction of epoxide in a protein crystal.
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Chemical reactions within single crystals are rare due to the loss of crystallinity associated with
atomic rearrangements [37]. However, the soaking technique was recently used to capture the
reaction pathway in near-atomic-resolution crystal structures of PR [38,39]. In these protein structures,
tetrahedral intermediates with short ionic hydrogen bonds to catalytic aspartates were observed.

It is likely that the ring opening reaction proceeded through a pseudo SN2 mechanism.
The cleavage of the C-O bond and attack by the nucleophile, NH3, on the less sterically hindered carbon
occurred in a single step. The water molecule, found at hydrogen-bond distance from the oxygen of the
oxirane ring, assists the epoxide opening providing the required proton for formation of the hydroxyl
group. This is similar to the reported mechanism of nucleophilic ring opening reaction of epoxide
predicted using enzymatic model of HIV-1 protease and density functional theory methods [40].

From the stereochemical point of view, both oxirane carbon atoms of the EPX inhibitor, selected
by PR, have absolute R-configuration (Figure 1). The carbon atoms of the epoxide ring opened to
form hydroxyl and amine groups, the additional groups of the bound inhibitor, and conserved the
R-configuration. It is well known that if the leaving group and the entering nucleophile have the
same Cahn-Ingold-Prelog priority, such as in this case, the SN2 reactions should lead to an inversion
of the absolute configuration of the reacting carbon atom. However, it should be noted that such
incongruence is only apparent because the two alkyl groups of the R1R2CHNH2 stereogenic center
switched their priority when the epoxide ring opened. It is interesting to observe that the ammonia
attack occurred on the less sterically hindered but more interior oxirane carbon, occupying the protease
P1 pocket. The newly formed stereospecific inhibitor with the amino function is particularly fascinating
because it was recently suggested that introduction of a positive charge in an inhibitor at the active site
of PR would create favorable charge-charge interactions with a deprotonated catalytic residue isolated
from solvent [41].

The analysis of the hydrophobic and hydrogen bond interactions between PR and EPX (Figure S1)
show many hydrophobic interactions between EPX and amino acid residues proline 81A, isoleucine
84A, glycine 27B, glycine 49A, valine 82B, proline 81B, and glycine 49B of PR, in addition to specific
hydrogen bonds between EPX and the protein backbone of PR. In particular, EPX forms two hydrogen
bonds with the carbonyl O atoms of 27A and 48A glycine residues, acting as acceptor, and a hydrogen
bond with the NH of aspartate 29A, acting as donor. As recently reviewed, enhancing protein backbone
binding in the active site is a fruitful strategy for combating drug-resistant HIV because the catalytic
scaffold must be conserved to maintain functionality [42]. Interestingly, the interactions were very
similar in the PR/EPX crystal structure with unreacted ring and PR/EPX crystal structure with
triggered reaction on the epoxide ring (Figure S1). This is really striking because triggering of reaction
in PR/EPX crystals did not disrupt the crystal lattice of PR. Actually, the diffraction resolution limit
improved after increasing the pH.

Finally, two different crystal forms, orthorhombic and monoclinic, were obtained for PR/EPX
complexes (Figure 4). The structural models obtained from the triggered reaction on the epoxide ring
from both crystal forms overlap almost perfectly. In order to investigate the reason for this result,
the group/subgroup relations and crystal packing of the two crystal forms were examined. In fact,
the recognition of group-subgroup relations between space groups of different crystal structures can
provide interesting insight into protein packing [43,44].

The two crystal forms of PR/EPX complexes reported in this paper, monoclinic and orthorhombic
are related by a group-subgroup relation as shown in Figure 4a. The P212121 space group of the
orthorhombic form is a minimal non-isomorphic supergroup of the P21 space group of the monoclinic
structure. Space-group and packing diagrams are particularly useful to find the possible relationship
between these two structures (Figure 4b) which show very similar intermolecular positions and
contacts. This analysis confirms the evidence that the two crystal forms have very similar crystal
packing, therefore the analogous behavior with respect to the reaction within crystal of these two
crystal forms is not surprising.
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In conclusion, this study has unveiled a new possibility for reaction initiation by diffusion based
technique. Triggering of reactions in crystals of PR complexes confirms that the crystalline state is not
a barrier and reactions can be completed in protein crystals. Thanks to their high solvent content that
permits some molecular flexibility, protein crystals can be exploited to gain a better understanding of
their function in molecular terms. The reaction mechanism in PR/EPX crystals might be the starting
point for developing stereospecific inhibitors of PR and potential prodrugs with a pH-triggered
activation profile. In particular, it is an example of a reactive lead compound that can produce in
situ a stereospecific inhibitor. These results should be valuable in the design of future generations of
stereospecific inhibitors of PR and epoxide based antiviral drugs capable of combating the escalating
problem of drug resistance.

4. Materials and Methods

4.1. Expression, Purification and Refolding of HIV-1 Protease

HIV-1 protease, PR (Genbank HIVHXB2CG) was stabilized by five mutations: Q7K, L33I, L63I to
minimize the autoproteolysis, and C67A and C95A to prevent cysteine-thiol oxidation/aggregation
by the formation of disulfide bonds. The PR was expressed in Escherichia coli BL21-Gold (DE3)pLysS
competent cells. The expressed PR was purified from inclusion bodies by a modified method of
Louis and co-workers [45]. Using consolidated refolding and crystallization protocols [23], the protein
(1–2 mg·mL−1) was preincubated with a 5-fold molar excess of the inhibitor, EPX.

4.2. Crystallization and Triggering of Reactions in Crystals of PR/EPX

The crystallization drops were formed using 1 µL of reservoir solution (0.25 M sodium citrate pH
6.0, 10% DMSO, and 40%–60% saturated ammonium sulfate) and 1 µL of a solution of protein with
inhibitor. Crystals of typical dimension 0.4 mm × 0.2 mm × 0.3 mm were grown at 20 ◦C by vapor
diffusion using the hanging drop method. X-ray structures of PR/EPX crystals showed non-covalent
binding of EPX with closed ring of the epoxide in the active site of PR [16]. Successive experiments
were performed on crystals of PR/EPX grown at pH 6.0. The pH of drops containing crystals was
varied by vapor diffusion through altering pH of the reservoir solutions in the range of pH 2.0 to 12.0.
The minimum time of diffusion of small ions or molecules such as hydroxonium, hydroxyl or ammonia
in the crystal was evaluated with an algorithm earlier described [27] for the simulation of diffusion
of small molecules inside protein crystals using the COPASI program [31]. In final experiments, the
crystals in drops were allowed to equilibrate for about 6 h against a reservoir added with saturated
ammonium sulfate at pH 10.0, before collecting diffraction data. The final pH of the reservoir solution
was later measured to be 9.0.

4.3. Crystallographic Analysis

Data were collected for PR/EPX crystals on the XRD1 diffraction beam-line of the ELETTRA
Synchrotron, Trieste, Italy (Table S1). Crystals were cryoprotected with 20% glycerol, mounted on
a nylon loop and flash-frozen in liquid nitrogen. Data collections were performed at 100 K on a
MAR-CCD detector (Rayonix, L.L.C, Evanston, IL, USA) and were processed using Mosflm and
CCP4 suite [46,47]. Structure refinement was conducted using REFMAC [48] and Coot [49], starting
from isomorphic crystal structures (PDB code: 2NMZ). Alternative conformations for residues were
modeled where appropriate, and water molecules were inserted in the model based on peaks greater
than 3 σ in Fobs-Fcalc maps. The ions and solvent molecules were identified by the shape of the 2Fo-Fc

electron density map and their inter-atomic distances. All figures were made using PyMol [50] and
coordinates for the structures have been deposited in Protein Data Bank. PDB codes: 3TOF for PR/EPX
structure at pH 6.0, 3TOG and 3TOH for PR/EPX structures at pH 9.0.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
11/1458/s1. Table S1: X-ray Data collection and Refinement Statistics, Figure S1: LIGPLOT representations of

http://www.mdpi.com/1420-3049/21/11/1458/s1
http://www.mdpi.com/1420-3049/21/11/1458/s1
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the interactions between EPX and PR (Figure S1), Table S2: Parameters used for COPASI simulation of diffusion,
formation and complexation of serinol derivative in PR/EPX crystals. Atomic coordinates of protein-inhibitor
complexes are deposited with the Protein Data Bank (PDB), PDB codes: 3TOF for PR/EPX structure at pH 6.0,
3TOG and 3TOH for PR/EPX structures at pH 9.0.
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40. Kóňa, J. Theoretical study on the mechanism of a ring-opening reaction of oxirane by the active-site aspartic
dyad of HIV-1 protease. Org. Biomol. Chem. 2008, 6, 359–365. [CrossRef] [PubMed]

41. Adachi, M.; Ohhara, T.; Kurihara, K.; Tamada, T.; Honjo, E.; Okazaki, N.; Arai, S.; Shoyama, Y.; Kimura, K.;
Matsumura, H.; et al. Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined
by high-resolution X-ray and neutron crystallography. Proc. Natl. Acad. Sci. USA 2009, 106, 4641–4646.
[CrossRef] [PubMed]

42. Ghosh, A.K.; Anderson, D.D.; Weber, I.T.; Mitsuya, H. Enhancing protein backbone binding—A fruitful
concept for combating drug-resistant HIV. Angew. Chem. Int. Ed. Engl. 2012, 51, 1778–1802. [CrossRef]
[PubMed]

43. Geremia, S.; di Costanzo, L.; Randaccio, L.; Engel, D.E.; Lombardi, A.; Nastri, F.; DeGrado, W.F. Response of
a designed metalloprotein to changes in metal ion coordination, exogenous ligands, and active site volume
determined by X-ray crystallography. J. Am. Chem. Soc. 2005, 127, 17266–17276. [CrossRef] [PubMed]

44. Di Costanzo, L.; Forneris, F.; Geremia, S.; Randaccio, L. Phasing protein structures using the group-subgroup
relation. Acta Crystallogr. Sect. D Biol. Crystallogr. 2003, 59, 1435–1439. [CrossRef]

45. Louis, J.M.; Wondrak, E.M.; Kimmel, A.R.; Wingfield, P.T.; Nashed, N.T. Proteolytic processing of HIV-1
protease precursor, kinetics and mechanism. J. Biol. Chem. 1999, 274, 23437–23442. [CrossRef] [PubMed]

46. Leslie, A.G.W. Joint CCP4 and ESF-EACMB Newsletter on Protein Crystallography No. 26; Daresbury Laboratory:
Warrington, UK, 1992.

47. Collaborative Computational Project, Number 4. The CCP4 Suite: Programs for Protein Crystallography.
Acta Crystallogr. Sect. D Biol. Crystallogr. 1994, 50, 760–763.

48. Murshudov, G.N.; Vagin, A.A.; Dodson, E.J. Refinement of macromolecular structures by the
maximum-likelihood method. Acta Crystallogr. Sect. D Biol. Crystallogr. 1997, 53, 240–255. [CrossRef]
[PubMed]

49. Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. Sect. D
Biol. Crystallogr. 2004, 60, 2126–2132. [CrossRef] [PubMed]

50. DeLano, W.L. The PyMOL Molecular Graphics System; DeLano Scientific: San Carlos, CA, USA, 2002. Available
online: http://www.pymol.org (accessed on 12 January 2005).

Sample Availability: Samples of the amino diol derivative are not available.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/ol0529703
http://www.ncbi.nlm.nih.gov/pubmed/16524274
http://dx.doi.org/10.1016/j.crci.2012.11.020
http://dx.doi.org/10.1016/S0022-2836(02)00771-4
http://dx.doi.org/10.1021/bi3008092
http://www.ncbi.nlm.nih.gov/pubmed/22963370
http://dx.doi.org/10.1021/ja100002b
http://www.ncbi.nlm.nih.gov/pubmed/20397633
http://dx.doi.org/10.1039/B715828A
http://www.ncbi.nlm.nih.gov/pubmed/18175006
http://dx.doi.org/10.1073/pnas.0809400106
http://www.ncbi.nlm.nih.gov/pubmed/19273847
http://dx.doi.org/10.1002/anie.201102762
http://www.ncbi.nlm.nih.gov/pubmed/22290878
http://dx.doi.org/10.1021/ja054199x
http://www.ncbi.nlm.nih.gov/pubmed/16332076
http://dx.doi.org/10.1107/S0907444903012538
http://dx.doi.org/10.1074/jbc.274.33.23437
http://www.ncbi.nlm.nih.gov/pubmed/10438521
http://dx.doi.org/10.1107/S0907444996012255
http://www.ncbi.nlm.nih.gov/pubmed/15299926
http://dx.doi.org/10.1107/S0907444904019158
http://www.ncbi.nlm.nih.gov/pubmed/15572765
http://www.pymol.org
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Expression, Purification and Refolding of HIV-1 Protease 
	Crystallization and Triggering of Reactions in Crystals of PR/EPX 
	Crystallographic Analysis 


