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SnSe2 nanosheet is a common anode for lithium-ion batteries (LIBs), but its severe

agglomeration hinders its practical application. Herein, a three-dimensional (3D) SnSe2
nanoflower (F-SnSe2) composed of non-stacking vertical upward hexagonal nanosheets

was prepared through a colloidal method as an anode material for LIBs. Benefiting

from the advantages of fast reaction-diffusion kinetics and buffering unavoidable volume

variation during cycling, the F-SnSe2 electrode displays remarkable specific capacity

of 795 mAh g−1 after 100 cycles at 100mA g−1 and superior rate performance (282

mAh g−1 at 2,000mA g−1). This work provides an effective way to get non-stacking

nanosheets in energy storage field.
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INTRODUCTION

In recent years, lithium-ion batteries (LIBs) have been widely employed as an energy storage system
for portable electronic devices and electric or hybrid vehicles (EVs) due to their high energy density
(Jiang et al., 2019; He et al., 2020). However, current LIBs are still hard to satisfy the stringent
demand for security, capacity, and cost (Chu et al., 2019; Wang et al., 2019). The anode material is
one of the most crucial components that can determine the battery performance directly. Recently,
a variety of electrode materials, such as carbon, alloys, and transition metal chalcogenides (TMDs),
have been widely investigated as anode materials for LIBs (Chen K. et al., 2018; Zhang et al., 2019;
Li et al., 2020). Typically, as one of the most promising anode candidates, Sn-based materials have
attracted great attention due to their high theoretical capacity and abundant resource (Lee and Park,
2017). Besides, Se-based and S-based anodes have been widely investigated for LIBs and sodium ion
batteries (NIBs) recently due to their high theoretical capacity, fast ion transportation, and decent
redox reversibility (Hu et al., 2019; Han et al., 2020). However, there still remains a great challenge
owing to its low electronic conductivity and extremely large volume expansion, resulting in poor
cyclic stability (Wei et al., 2018).

SnSe2 as a typical two-dimensional (2D) layered material has attracted intensive attention
as a promising anode material for LIBs owing to its high theoretical capacity, tunable spacing
structures, and non-toxicity (Du et al., 2016; Huang et al., 2018). However, inherently poor
conductivity and high-cost synthesis methods of SnSe2 such as complex reaction routes, high
temperature, and some toxic reagents limit practical applications (Chen R. et al., 2018; Ren
et al., 2018). One of the most popular approaches is to construct SnSe2 nanomaterials with
various morphologies and structure, which can effectively improve ion transport kinetics and
reduce unavoidable volume expansion. Therefore, it is necessary to search for an effective method
to fabricate functional morphology SnSe2 materials with a good electrochemical performance.
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Herein, we report a facile colloidal synthetic method to
prepare three-dimensional (3D) flowerlike SnSe2 (F-SnSe2). The
as-prepared SnSe2 is composed of non-stacking vertical upward
hexagonal nanosheets, which can restrain self-agglomeration
during a chemical reaction, improve electron and ion transport,
and accommodate volume expansion during lithium-ion
intercalation/extraction. When employed as LIB anode, the
F-SnSe2 exhibits good lithium-ion storage performance with
a high reversible capacity of 795 mAh g−1 after 100 cycles at
100mA g−1 and superior rate performances, much better than
bulk SnSe2 electrode.

EXPERIMENTAL SECTION

Material Synthesis
F-SnSe2 was synthesized by a simple colloid method. First,
0.2 mmol of stannous chloride was put into a 25-ml single-
neck flash along with 10-ml oleylamine (OAm). The mixtures
were magnetically stirred for 30min at 90◦C to form a milky

FIGURE 1 | (A) X-ray diffraction (XRD) patterns, (B,C) field-emission scanning electron microscopy (FESEM) images, and (D,E) transmission electron microscopy

(TEM) images of F-SnSe2. (F) High-resolution transmission electron microscopy (HRTEM) image of the F-SnSe2 and the corresponding (G) selected area electron

diffraction (SAED) pattern. (H) High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image, (I–K) element mapping of Sn and Se

and the corresponding (L) energy-dispersive spectroscopy (EDS) spectrum.

suspension. After the solution was cooled down to room
temperature, 0.4 mmol dibenzyldiselenide was added into the
mixture and then heated to 240◦C for 2 h with a heating rate of
8◦C min−1. Finally, the obtained black solution was washed with
ethanol and cyclohexane several times and vacuum dried at 70◦C
overnight, and the collected sample was marked as F-SnSe2.

Materials Characterization
X-ray diffraction (XRD) was performed on a Smart-lab using
Cu Kα radiation from 10 to 90◦ at a scan rate of 10◦ min−1.
The field-emission scanning electron microscopy (FESEM,
Hitachi SU8010) and transmission electron microscopy (TEM,
JEOL JEM-2100F) were used to characterize the morphology
of the samples. The atomistic structural information and
microtopography were characterized using high-resolution (HR)
TEM (JEM-2200FS), selected area electron diffraction (SAED),
and equipped with an energy-dispersive spectroscopy (EDS)
mapping by high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM). The specific surface area
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FIGURE 2 | (A) N2 adsorption–desorption isotherms of F-SnSe2; inset is the corresponding pore size distribution curve. (B) Raman spectra and high-resolution X-ray

photoelectron spectroscopy (XPS) spectra of (C) Sn 3d and (D) Se 3d in F-SnSe2.

of samples was degassed for 6 h at 200◦C, then nitrogen
adsorption was done for 20 h by using the Brunauer–Emmett–
Teller (BET) (ASAP 2460) method. Raman spectra (Lab RAM-
HR Evolution, 532 nm laser) with a power of 0.2 mW and
the exposure time of 1 s and X-ray photoelectron spectroscopy
(XPS, AXIS ULTRADLD Scientific) were conducted to reveal the
chemical compositions and surface electronic states.

Electrochemical Measurement
The purchased bulk SnSe2 and F-SnSe2 anodes were prepared
by pasting a slurry consisting of active material (70 wt%),
acetylene black (20 wt%), and polyvinylidene fluoride (PVDF,
10 wt%) in N-methyl-pyrrolidone (NMP) onto a copper foil
current collector. After being dried at 80◦C in vacuum overnight,
they were cut into disks in the diameter of 10mm with a
mass loading of about 1.1mg cm−2. Then, 2032-type coin cells
were assembled in an argon-filled glove box using Whatman
GF/D glass fiber filter as a separator, lithium foil as the
reference/counter electrode, and electrolyte solution consisted of
1.0M LiPF6 dissolved in 1:1 volume ratio of ethylene carbonate
and diethyl carbonate. A LAND CT2001A multichannel battery
tester system was used to measure the Li storage performances
within the voltage range of 0.01–2.5V (vs. Li/Li+). Cyclic
voltammetry (CV, at a scan rate of 0.1mV s−1) tests and the
electrochemical impedance spectroscopy (EIS, frequency range

of 0.01–100 kHz) were recorded on a CHI 604E electrochemical
workstation (Shanghai Chenhua Corp.).

RESULTS AND DISCUSSION

Figure 1A shows the XRD pattern of the as-prepared F-SnSe2
which possesses a rhombohedral crystal structure (JCPDS No.
89-3197) (Gurung et al., 2016), and the sharp diffraction
peaks reveal the high-crystallinity SnSe2 phase. The morphology
and nanostructure of F-SnSe2 were investigated via the
field emission scanning electron microscopy (FESEM) and
transmission electron microscopy (TEM). Figure 1B shows the
SEM image of SnSe2 that presents a uniform nanoflower-like
structure, while the purchased bulk SnSe2 shows a multilayer
stack structure (Figure S1). Figure 1C shows that the F-SnSe2
nanoflower shows a self-assembly 3D structure with size in the
range of 2–3µm, which is composed of numerous nanosheets.
TEM images (Figures 1D,E) illustrate that the size of F-
SnSe2 is composed of non-stacking vertical upward hexagonal
nanosheets with a size of around 500 nm, which are derived
from a preferable growth of SnSe2 along (011) crystal plane
(Im et al., 2014). Moreover, the detailed microstructure of F-
SnSe2 is further investigated using high-resolution transmission
electron microscopy (HRTEM), as shown in Figure 1F. The
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FIGURE 3 | (A) Cyclic voltammogram analysis of F-SnSe2 between 0.01 and 2.5 V at a scan rate of 0.1mV s−1 for lithium-ion batteries (LIBs). (B) Charge and

discharge curves from 2nd to 100th cycles of F-SnSe2 electrode at a current density of 100mA g−1. (C) Cycling performance of F-SnSe2 electrode at a current

density of 100mA g−1. (D) Comparison of electrochemical impedance spectroscopy plots of bulk SnSe2 and F-SnSe2 electrodes. (E) Comparison of rate capability of

bulk SnSe2 and F-SnSe2 electrodes at various current densities from 100 to 2,000mA g−1, respectively. (F) Long cycling stability of F-SnSe2 electrode at a high

current density of 1,000mA g−1.

(101) and (011) crystal planes with lattice spacing of 0.29 nm
(Zhang et al., 2016), which is consistent with the corresponding
selected area electron diffraction (SAED) pattern (Figure 1G)
that shows well-defined spots, suggest a single crystalline nature
of the as-grown F-SnSe2. Furthermore, Figures 1H–K display
the HAADF-STEM and EDS element mapping of F-SnSe2,
confirming that Sn and Se elements are distributed uniformly in
the whole nanoflower. As expected, EDS analysis (Figure 1L) of
F-SnSe2 demonstrates that the obtained atomic ratio of Sn to Se
approaches 1:2.

Figure 2A exhibits the nitrogen absorption–desorption curve
for the F-SnSe2 with type IV isotherms, demonstrating the
presence of meso/micropore structures. The corresponding
Barrett–Joyner–Halenda (BJH) porosity distribution curve
is shown Figure 2B, and the calculated specific pore size

distribution of F-SnSe2 is estimated to be 1–10 nm. Raman
spectra (Figure 2B) present two characteristic peaks located
at 116 and 185 cm−1, corresponding to the Eg and A1g
mode of SnSe2, respectively (Chen M. et al., 2018). The
surface chemical states of F-SnSe2 were further studied
by XPS as shown in Figure S2. Specifically, in the high-
resolution XPS spectrum of Sn 3d (Figure 2C), two peaks
located at 485.9 and 494 eV are assigned to 3d 5/2 and 3d
3/2 of typical values of Sn4+ ions, respectively (Saha et al.,
2016). Correspondingly, two peaks are observed at 53.2 and
54 eV in the Se 3d 5/2 spectrum (Figure 2D), which can be
attributed to 3d 5/2 and 3d 3/2 of Se2− in SnSe2 (Zhang et al.,
2018).

The lithium storage behaviors of F-SnSe2 were evaluated
by CV at a scanning rate of 0.1mV s−1 between 0.01 and
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2.5V (Figure 3A). During the first cathodic scan, two large
sharp cathodic peaks at around 1.39 and 0.75V and some
small peaks were observed, which disappear in the subsequent
cycles, ascribed to lithium intercalation of SnSe2 interlayers
without phase transition and the formation of irreversible
solid electrolyte interphase (SEI) film (Du et al., 2016). The
cathodic peaks that shift to 2.03, 1.52, and 1.35V in the
following scans can be assigned to the conversion and alloying
reactions (Yuan et al., 2018). Conversely, two pairs of delithiation
peaks at around 0.52 and 1.18V in all cycles are almost
completely overlapped, implying good reversibility of the F-
SnSe2 electrode.

Figure S3 and Figure 3B show the galvanostatic charge–
discharge profiles of the F-SnSe2 electrode at a current density
of 100mA g−1 from the first cycle to 100 cycles. The F-
SnSe2 electrode delivers an extremely high initial capacity
(Figure S3), which is attributed to irreversible side reactions
with the electrolyte and the formation of the SEI layer on
the surface of the F-SnSe2 electrode (Lao et al., 2017). It
is worth noting that the initial Coulombic efficiency (CE)
should be improved, such as optimizing the electrolyte, pre-
lithiation, or compound with carbon matrix to reduce the excess
formation of SEI and other irreversible side reactions (Ge et al.,
2019; Huang et al., 2020). In addition, the shape of voltage
profiles almost overlaps after the initial cycle (Figure 3B), which
is consistent with the CV results. As shown in Figure 3C,
the F-SnSe2 anode exhibits excellent cyclic stability, which
delivers a high reversible discharge specific capacity of 795
mAh g−1 after 100 cycles at 100mA g−1 with a high CE
of nearly 100%, while bulk SnSe2 electrode only exhibits
a relatively low capacity of 370 mAh g−1 after 30 cycles
(Figure S4).

Furthermore, EIS was performed with F-SnSe2 and bulk SnSe2
anode to investigate the kinetic behavior in LIBs. As indicated
in Figure 3D, it can be observed that the semicircle of the F-
SnSe2 electrode is much smaller than that of the bulk SnSe2
electrode, which suggests lower charge transfer resistance of the
F-SnSe2 electrode (Hong et al., 2019). The improved charge
transfer is attributed to 3D flower-like nanostructure of F-SnSe2
that enhances fast ion transfer kinetics. As expected, the rate
performance of F-SnSe2 was significantly better than that of bulk
SnSe2 (Figure 3E). For the F-SnSe2 electrode, it could deliver
invertible capacity of 892, 694, 554, 483, 430, 393, and 282mA
h g−1 at 100, 200, 400, 600, 800, 1,000, and 2,000mA g−1,
respectively. When the current density is switched to 100mA
g−1 again, a reversible capacity of 745mA h g−1 is recovered.
It is necessary to point out that the partial capacity drop in
the first 10 cycles for F-SnSe2 electrode can be ascribed to
stabilization of the SEI film and activation process as well as
some irreversible side reactions (Li et al., 2018; Chu et al.,
2019). In contrast, the capacities at 100, 200, 400, 600, 800,
1,000, and 2,000mA g−1 are 581, 442, 323, 247, 201, 168,
and 106mA h g−1 for bulk SnSe2 electrode, respectively. As
shown in Figure 3F, the F-SnSe2 electrode still delivers a high

reversible capacity of 611mA h g−1 after 580 cycles at a high
current density of 1,000mA g−1, demonstrating good long-term
cycling stability of F-SnSe2. It is worth mentioning that the

capacity fading in the initial 100 cycles can be ascribed to the
repetitive volume expansion/contraction that can fracture the SEI
layer and expose new active surfaces for SEI growth (Li et al.,
2015). Subsequently, high-rate lithiation-induced mechanical
degradation can effectively restructure the 3D SnSe2 nanoflower
and optimize the SEI, which was defined as reactivation, so the
reversible capacity continuously increases during cycling (Qin
et al., 2019).

CONCLUSION

In summary, 3D flower-like SnSe2 has been synthesized via a
colloidal method. This nanoflower is composed of non-stacking
vertical upward hexagonal SnSe2 nanosheets, which can improve
the ion transfer speed and accommodate the volume expansion
during cycling.When evaluated as an anodematerial for LIBs, the
F-SnSe2 electrode delivers significantly enhanced electrochemical
performance with high capacity and excellent rate performances.
A high capacity of 795 mAh g−1 at 100mA g−1 after 100 cycles
and a remarkable rate capability of up to 282mA h g−1 at 2A g−1

are obtained. Therefore, this unique structure shows a promising
prospect to solve the agglomeration problem.
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