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Is there a role for HSF1 in viral infections?
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Cells undergo numerous processes to adapt to new challenging conditions

and stressors. Heat stress is regulated by a family of heat shock factors

(HSFs) that initiate a heat shock response by upregulating the expression

of heat shock proteins (HSPs) intended to counteract cellular damage eli-

cited by increased environmental temperature. Heat shock factor 1 (HSF1)

is known as the master regulator of the heat shock response and upon its

activation induces the transcription of genes that encode for molecular

chaperones, such as HSP40, HSP70, and HSP90. Importantly, an accumu-

lating body of studies relates HSF1 with viral infections; the induction of

fever during viral infection may activate HSF1 and trigger a consequent

heat shock response. Here, we review the role of HSF1 in different viral

infections and its impact on the health outcome for the host. Studying the

relationship between HSF1 and viruses could open new potential therapeu-

tic strategies given the availability of drugs that regulate the activation of

this transcription factor.

Heat shock factors (HSFs) are a family of transcrip-

tion factors that are mostly activated in response to

cell stress induced by heat, with heat shock factor 1

(HSF1) being the most studied component of this fam-

ily [1–3]. HSF1 and other HSFs can bind to specific

regions in the genome named heat shock response ele-

ments (HSE), which have known consensus sequences

[4,5]. HSF1 is conserved from fungi to vertebrates and

regulates the transcription of multiple genes, most of

them oriented at easing cell damage elicited by heat

stress [3,6]. HSFs can induce the transcription of a set

of genes that encode proteins involved in the heat

shock response (HSR), such as chaperones and heat

shock proteins (HSPs), which play numerous roles

in controlling cell deregulation produced by elevated

environmental temperatures. More recently, the
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unfolded protein response (UPR) has also been

reported to be related to heat shock stress compo-

nents, such as HSF1 and HSP47 [7,8].

Seven members of the HSF family have been identi-

fied in eukaryotes: HSF1-HSF5, HSFY, and HSFX

[9,10]. At present, relatively little is known regarding

the roles of HSF5, HSFY, and HSFX [11]. On the

contrary, HSF1-HSF4 have been isolated in verte-

brates and more extensively studied, as well as the sin-

gle HSF gene known to date to be encoded in yeast

[5,12]. Additionally, HSF1, HSF2, and HSF4 are

expressed as different isoforms [5,12,13]. HSF2a and

HSF2b are expressed in vertebrates, and HSF2 has

been reported to act as a transcriptional regulator for

the HSF1-dependent activation of HSP genes [14,15].

Additionally, it has been shown that HSF2 is not acti-

vated by heat shock, but nevertheless colocalizes and

interacts with HSF1 [16,17]. Interestingly, neither

HSF4 nor its two HSF4 isoforms, namely HSF4a and

HSF4b, are activated by heat shock [12,18]. In fact, it

has been reported that these HSF4 isoforms have

opposing effects on the basal levels of chaperone gene

expression, with HSF4a attenuating the expression of

these genes and consequently the induction of HSPs,

likely due to a direct competition with HSF1 at bind-

ing to HSEs, while HSF4b induces the transcription of

heat shock response genes [12,19].

Four isoforms of HSF1 have been reported to

date: HSF1a, HSF1b, HSF1ca, and HSF1cb [10,20].

HSF1 is formed by an N-terminal winged helix-turn-

helix DNA-binding domain and hydrophobic heptad

repeat regions A and B (HR-A/B), which are thought

to act as a leucine zipper coiled-coil trimerization

domain [21–25]. There is also a regulatory domain,

HR-C and a C-terminal transcription activation

domain [21,23–25]. Under non-stress conditions,

HSF1 is in a monomeric form and is associated as a

complex with molecular chaperones, such as the HSP

of 70 kDa (HSP70), or the HSP of 90 kDa (HSP90),

and it is also regulated by the tailless complex poly-

peptide 1 ring complex (TRiC), also known as the

chaperonin containing tailless complex polypeptide 1

(CCT) [26–30].
Heat shock factor 1 strongly participates in response

to heat shock by inducing the expression of HSR

genes, such as molecular chaperones or HSPs [1,6,31].

These proteins play major roles in the HSR by pro-

moting cell survival [1,6]. However, the role of HSF1

is much wider, involving functions beyond the HSR

[6]. Over the last decades, this transcription factor has

been reported to participate in multiple cellular pro-

cesses, such as apoptosis, the unfolded protein

response (UPR) in the endoplasmic reticulum,

oxidative stress, autophagy, multidrug resistance, and

physiological development, among others [3,6,8].

Additionally, a role between HSF1 and viral infec-

tions has been described, although in a somewhat lim-

ited manner despite the fact that HSPs are known to

participate in many processes related to viral infection,

such as viral entry, viral replication, and viral gene

expression, among others [32]. Furthermore, it is

unknown if HSF1 may have a potential as a new ther-

apeutic target for different viral infections. Given that

new drugs that block or activate HSF1 are currently

being tested in clinical trials, we sought studies that

relate HSF1 with viral infection and found that

because this transcription factor participates in the

replication cycle of many viruses, its modulation could

eventually exert a favorable influence over the host’s

ability to control or resolve viral infections [33–35].
Here, we review aspects related to HSF1 activation

and discuss what is known regarding the role of HSF1

during viral infections.

HSF1 activation

Heat stress, which may be considered as temperatures

between 39 and 43 °C, the presence of heavy metals,

oxidants, or proteotoxic agents induce the homotri-

merization of HSF1, its dissociation from chaperones,

and its phosphorylation which leads to its active form

[28,36–38]. Because fever frequently occurs upon viral

infections, HSF1 activation may be common during

viral infections, although this has not been studied

extensively [36,39].

In its homotrimer form, HSF1 translocates to the

nucleus, which leads to its accumulation in this com-

partment [40,41]. Here, it can bind to specific DNA

sequences in the genome named heat shock elements

(HSE), which are usually located in the upstream

untranslated region of target genes [1,6,42]. HSE are

composed of a small pentameric consensus sequence

containing the xGAAx motif [42]. However, a stable

association between HSF1 and DNA requires three

overlapped pentameric sequences with the following

composition TTCxxGAAxxTTC [4]. Once HSF1 binds

to the DNA, it will upregulate the transcription of the

genes encoding this element, many of which are HSPs

[1,3,32].

Interestingly, the activation of this transcription fac-

tor is mediated by both protein–protein interactions

and post-translational modifications which are dis-

cussed below in the following paragraphs [21,38]. Fur-

thermore, different studies suggest that the activation

cycle of this transcription factor is highly regulated

[21,24,25,38]. Indeed, it is thought that HSF1 is
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activated by different mechanisms based on the type

of stress, with its activation depending on whether the

stimulus is thermal or non-thermal [3].

Multiple factors are believed to be involved in the

activation of HSF1. For instance, it has been reported

that temperature increases cause intrinsic structural

changes in HSF1 that support its oligomerization and

activation [43]. Temperature-induced conformational

dynamics of HSF1 revealed that at 20 °C only few

regions of this protein, such as the DNA-binding

domain (DBD), the oligomerization domain (LZ1-3)

and HR-C are structured [3,43]. Furthermore, it has

been reported that at higher temperatures there is a

temperature-dependent unfolding process of HR-C,

which is known to repress HSF1 trimerization via a

coiled-coil interaction with HR-A, or HR-B in non-

stressed cells [24,43]. The unfolding of HR-C leads to

the stabilization of HR-A/B, which is known as the

trimerization domain [24,43]. This finding indicates

that HSF1 has an intrinsic capacity to sense tempera-

ture changes. Interestingly, the temperature at which

HSF1 is activated has been shown to be tissue-

dependent [44]. Additionally, differential temperature

sensitivities have been observed for this transcription

factor in different organisms, even with identical pri-

mary protein sequences [44]. This finding suggests that

it is likely that cell-specific protein–protein interactions

with HSF1 can also modulate the structure of this pro-

tein and alter the thresholds required for its stabiliza-

tion involved in its activation.

Importantly, there is a negative autoregulatory feed-

back loop, which guarantees that HSF1 HSRs occur

at a level consistent with the extent of the protein

damage in the cell [30,45]. For instance, some HSPs

induced by HSF1, such as HSP70, HSP72, and

HSP90, can inhibit HSF1 by impairing the formation

of new active HSF1 trimers, by directly binding to the

trimerization domain of this factor [6,30]. Addition-

ally, in nematodes and mammals it has been reported

that the activity of HSF1 can be elicited by stress-

induced kinases. Indeed, glycogen synthase kinase 3

(GSK3), extracellular signal-regulated kinase 1

(ERK1), and p38 mitogen-activated protein kinase

(p38 MAP) are all able to inhibit HSF1 activity, while

Akt serine/threonine kinase (AKT), phosphatidylinosi-

tol 3-kinase (PI3K), and cAMP-dependent protein

kinase A promote the activity of HSF1 [46–48]. Impor-

tantly, numerous viruses are known to modulate some

of these factors, such as the human cytomegalovirus

(HCMV) and herpes simplex viruses 1 and 2 (HSV-1

and HSV-2), which are known to temporally and dif-

ferentially regulate the PI3K/Akt pathway during

infection [49,50]. Moreover, it has been shown that

HCMV can induce the mTOR pathway during cellular

stress and that this pathway is important during lytic

infections [49]. It has also been reported that infection

with the human immunodeficiency virus (HIV) can be

repressed by downregulating ERK 1/2 and p38 MAPK

[51]. Additionally, it has been reported that the mTOR

pathway is increased in HIV infections, which in turn

promotes viral integration and replication [52].

Another study showed that HIV infection inhibits Akt

phosphorylation and the PI3K/Akt signaling pathway

in plasmacytoid dendritic cells [53]. The hepatitis B

virus (HBV) protein x (HBx) activates the ERK and

p38MAPK signaling pathways, which in turn promote

metastasis of liver cancer [54].

It is also important to mention that post-

transcriptional modifications can also modulate HSF1

activation. For instance, acetylation of lysine residues

Lys208 and Lys298 in HSF1 leads to protein stabili-

zation [55,56]. In contrast, acetylation of Lys80 and

Lys118 leads to the inhibition of HSF1, similar to the

effect induced by sumoylation of Lys298 [56–59].
Thus, it is possible to envisage that viral infections

could modulate the action of enzymes that modify

HSF1 in a post-translational manner, in such a way

to favor or inhibit its activation. An overall represen-

tation of HSF1 activation is depicted in Fig. 1.

HSF1 and viral infections

Although HSPs play important roles in the replication

cycle of many viruses, as extensively reviewed by Wan

et al. [32], the role of HSF1 in viral infections has been

scarcely described. This is particularly surprising, given

that a sudden increase in body temperature, such as

might occur with fever is a frequent host response dur-

ing viral infections, and thus, HSF1 may be activated

under these circumstances and have an impact on the

progression of the infections [60,61]. Consequently, its

modulation may impact the host–pathogen interaction

[38,39,62].

At present, most studies evaluating a role for HSF1

in viral infections are focused on the activation of this

transcription factor during infection caused by the

human immunodeficiency virus (HIV). To date, HSF1

has been reported to participate in the transcription of

HIV genes and the reactivation of this virus from

latency [62]. HSF1 has been found to bind to the 50-
LTR of HIV, which leads to viral reactivation and the

recruitment of multi-subunit complexes, such as p300

which is recruited by HSF1 for self-acetylation and p-

TEFb that is involved in the regulation of transcrip-

tion [62]. Importantly, knocking out the gene encoding

for HSF1 in 293T cells (293T-HSF1-KO; �4/�10 bp)
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led to impaired transcription of viral genes [62]. Con-

versely, the overexpression of HSF1 increased the tran-

scription of HIV genes [62]. Thus, HSF1 positively

regulates the transcription of latent HIV. Additionally,

HSF1 has been described to be constitutively active in

T cells latently infected with HIV and to likely contrib-

ute to viral reactivation. Therefore, HSF1-mediated

HIV reactivation may occur in response to stress fac-

tors over these cells, such as starvation or increased

temperature due to fever [62].

Furthermore, in vitro studies have shown that the

mechanism of action of some latency-reversing agents

(LRAs) involves a HSF1-mediated stress pathway [63].

Consequently, the inhibition of HSF1 decreased

latency reversal, and thus negatively modulating this

factor holds the potential to delay the acquired immu-

nodeficiency syndrome (AIDS) [63]. Additionally,

HSF1 stimulates HIV elongation via the recruitment

of p-TEFb to the viral long terminal repeat (LTR),

and the inhibition of HSF1 dampens the formation of

elongated HIV-1 transcripts [63]. Moreover, Nef (an

HIV protein)-dependent induction of HSP40 has been

reported to lead to increased HIV gene expression [64],

and HSF1 binds directly to a HSF1-binding sequence

in the HIV LTR promoter, which leads to an increase

in viral gene expression and replication [64]. These

Fig. 1. HSF1 activation. HSF1 is usually present in the cell in an inactivated form. Inactivation of HSF1 occurs mainly by three mechanisms:

(1a) HSP90 binding to HSF1, (1b) HSF1 stabilization through the formation of a leucine zipper structure within the protein (red lines), or (1c)

through post-transcriptional modifications, such as acetylation, sumoylation, and phosphorylation. (2) HSF1 is activated when an increase in

misfolded proteins occurs in the cell, such as after heat shock (increased environmental temperature). HSF1 activation involves the release

of monomeric HSF1 from chaperones, such as HSP20 and HSP90 (3a). Once activated, HSF1 monomers interact together to form a trimer

that is stabilized by leucine zippers (red lines) (3b) and is phosphorylated by the calcium/calmodulin-dependent protein kinase II gamma

(CaMKIIc). (4) HSPs act as molecular chaperones for the correct folding of numerous proteins in the cell. (5) HSF1 binds to DNA sequences

in the genome, namely heat shock elements (HSE) in the promoters of genes encoding for heat shock responses, such as heat shock pro-

teins (HSPs) promoting their transcription. HSF1 also promotes the transcription of genes involved in the regulation of apoptosis, DNA

repair, modulation of drug resistance, unfolded protein response (UPR) at the endoplasmic reticulum, autophagy, and oxidative stress,

among others. (6) Acetylation (blue circles) of HSF1 at Lys80 destabilizes its interaction with the DNA. HSP40 together with HSP70 bind to

specific sites in HSF1 monomers leading to a destabilization of the trimer. (7) Excess HSF1 is degraded through the SCFb-TrCP pathway,

and only a basal amount of inactive HSF1 remains in the cell.
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findings suggest that HSF1-mediated signaling plays a

role in HIV-1 transcriptional elongation.

However, stress-independent activation of HSF1 can

reduce the quantity and infectivity of HIV virions in a

lymphoblastic cell line [65]. Surprisingly, this inhibition

continued throughout three consecutive passages, with-

out recovering viral titers [65]. Thus, the role of HSF1

in HIV infection is yet to be fully elucidated, as alto-

gether there seem to exist some paradoxical effects for

HSF1 during infection with this virus.

On the contrary, HSF1 may act as an innate repressor

of inflammation induced by HIV [66]. Indeed, HSF1

overexpression inhibits HIV-induced inflammatory

responses in THP-1 cells (a human monocytic cell line),

and contrarily, HSF1 deficiency is associated with an

increased inflammatory response [66]. This effect was

due to a competition between HSF1 and nuclear factor-

jB (NF-jB) in the nucleus, with HSF1 having an inhibi-

tory effect over NF-jB binding to the HIV long termi-

nal repeats (LTRs), which leads to impaired

transcription of viral genes and a reduced inflammatory

response [66]. Thus, the inhibitory effect that HSF1 has

over inflammatory responses could be further explored

so that it could be used as a potential treatment for viral

infections that induce inflammatory processes, such as

SARS-CoV-2, the human papilloma virus, hepatitis C

virus, and hepatitis B virus, among others.

A relation between HSF1 and the hepatitis B virus

(HBV) has also been reported [67]. The p53-binding

protein 2 (apoptosis-stimulating protein of p53-2,

ASPP2) can inhibit HBV-induced hepatocyte autop-

hagy in a p53-independent manner [67]. Furthermore,

the inhibition of autophagy in hepatocytes has been

reported to inhibit HBV replication. Interestingly,

ASPP2 binds to HSF1 in HBV-infected cells, which in

turn impedes its nuclear translocation. Importantly,

the interaction between ASPP2 and HSF1 inhibits

HSF1 nuclear translocation and inhibits the transacti-

vation of the autophagy-related protein 7 (Atg7), with

an overall reduction in hepatocyte autophagy [67].

These findings indicate that, by regulating Atg7 tran-

scription, HSF1 enables ASPP2 to reduce autophagy

in hepatocytes and, therefore, inhibit HBV replication.

During vaccinia virus (VACV) infection, the host

mRNA transcriptome is reshaped with several genes

being downregulated [68]. According to this study, 611

host genes were upregulated upon VACV infection and

this subset of genes was strongly enriched in genes that

are regulated by HSF1 [68]. Additionally, HSF1 was also

upregulated after VACV infection and was reported to

be phosphorylated, translocate to the nucleus, and to

increase the transcription of HSF1-target genes [68]. Fur-

thermore, the activation of this transcription factor

supported viral replication and the inhibition of HSF1,

as well as some targets of HSF1 such as HSP27, HSP70,

and HSP90 blocked viral infection and replication [68],

suggesting that HSF1, as well as HSF1-induced proteins

and their pharmacological regulation, could be potential

treatments against VACV.

On the contrary, a cell line which overexpresses con-

stitutively activated HSF1 (cHSF1) was found to

induce an oncolytic effect in in vitro and in vivo stud-

ies, by promoting the replication of oncolytic adenovi-

rus Adel55 [69]. Additionally, the overexpression of

cHSF1 through its insertion into Adel55 (Adel55-

cHSF1) was found to induce a tumor-specific immune

response when used as a strategy for cancer gene ther-

apy in immunocompetent hosts [69]. Consequently,

Adel55-cHSF1 induced a tumor-specific immune

response in mice with tumors [69].

Furthermore, a role for HSF1 in dengue virus

(DENV) replication, both in vitro and in vivo, has also

been assessed. HSF1 is activated during DENV infec-

tion in a Ca+2- and protein kinase A-dependent man-

ner [70]. Interestingly, the inhibition of HSF1 reduced

DENV replication in THP-1 cells and in primary

human monocytes [70]. On the contrary, activated

HSF1 induced DENV replication via the upregulation

of Atg7, which is related to autophagy and is crucial

for the replication of this virus [70]. The activation of

HSF1 by heat stress also facilitated DENV replication,

and in virus-infected brains, the presence of activated

HSF1 increased Atg7 and the induction of autophagy

[70]. Consistently, the inhibition of HSF1 in this con-

text resulted in reduced autophagy, as well as a reduc-

tion in viral protein expression, neuropathy, and

mortality [70]. Therefore, the activation of HSF1 may

be beneficial during DENV infections, and therefore,

its inhibition may be a potential therapeutic strategy.

Additionally, increased temperature conditions have

been reported to induce the transcription of the

Epstein–Barr nuclear antigen 1 (EBNA1) in EBV-

transformed B95-8 and LCL cell lines (a marmoset B

cell line transformed by EBV and a EBV-transformed

human B cell line, respectively), which arose from the

Q promoter (Qp)-initiated transcripts [71]. This viral

protein is consistently expressed in all malignancies

associated with EBV, and it is reported to be crucial

for the initiation of viral DNA replication, with Qp

being the key promoter that regulates its expression

[71]. Importantly, a high affinity and functional HSE

was found in the Qp, and furthermore, HaCaT cells (a

spontaneously transformed human keratinocyte cell

line) co-transfected with a plasmid encoding HSF1 and

Qp-luciferase displayed increased Qp activity [71].

Consistently, HSF1 gene silencing with interference
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RNA resulted in attenuated heat-induced EBNA1

expression, indicating that EBNA1 expression is regu-

lated by HSF1 [71]. Thus, it is likely that HSF1 may

regulate the expression of EBNA1 through its binding

to an HSE in the Qp promoter.

The human cytomegalovirus (HCMV) is able to

expand the lifespan of monocytes through the stimula-

tion of a non-canonical Akt pathway after viral entry,

which in turn leads to the increased expression of antia-

poptotic proteins [72]. Interestingly, a relation between

HCMV-activated Akt and HSF1 has been described

[72]. Activation of Akt during HCMV infection acti-

vates HSF1, which in turn upregulates the mTOR path-

way that promotes the synthesis of cap- and internal

ribosome entry site (IRES)-containing mRNAs that

encode antiapoptotic proteins [72]. Interestingly, the

switch from cap-dependent to IRES-mediated transla-

tion usually occurs under conditions of cellular stress

[72]. Thus, HCMV may benefit from HSF1 activation in

order to induce the synthesis of certain proteins.

The coxsackievirus B3 (CVB3) is known to exploit

host cellular machineries during its replication cycle

and to interact with host chaperones, such as HSP70

[73]. A cap-independent translation of this protein has

been described during viral infection, possibly due to

an IRES within the mRNA of the HSP70 transcript

[73]. Interestingly, upon CVB3 infection, the Ca2+/

calmodulin-dependent protein kinase c (CaMKIIc) has
been reported to be activated, which leads to the acti-

vation of HSF1 due to the phosphorylation of a serine

residue in position 230 of this protein, and the conse-

quent enhancement of HSP70 transcription [73]. Addi-

tionally, it has been reported that HSP70-1 (a member

of the HSP 70 protein family) stabilizes the CVB3

genome through its binding to an AU-rich element

(ARE) present in the 30 untranslated region of the

CVB3 RNA, which favors viral replication and

enhances immune infiltration into the heart during the

development of infection-mediated myocarditis [73].

Therefore, activation of HSF1 and the consequent

upregulation of HSP70 is beneficial for CVB3 [73].

How CVB3 infection leads to CaMKIIc- and conse-

quently HSF1 activation is yet unknown, but it is

thought to be through a phosphorylation of a threo-

nine residue (Thr286) in CaMKIIc [73]. The participa-

tion of HSF1 in the replication cycle of the viruses

discussed above is summarized in Fig. 2.

Interrelationship between HSF1 and
HSPs

The HSP family is composed of five subfamilies, which

are classified according to their molecular weight, namely

HSP60, HSP70, HSP90, HSP100, and a subfamily of

small HSPs [74,75]. The main drivers of the transcription

of HSPs are HSFs [28]. Once HSF1 is oligomerized into

its active homotrimer, it binds to the HSE of target genes,

which leads to a rapid increase in the transcription of

genes encoding proteins such as HSP90 and other chaper-

ones such as HSP27, HSP40, and HSP70 [32,76,77].

Heat shock proteins play an important role in regu-

lating the activity of HSF1. Under non-stress condi-

tions, HSF1 occurs in its monomeric form associated

with molecular chaperones, mostly with HSP90

[27,78]. Thus, in normal conditions HSFs are seques-

tered by molecular chaperones and these proteins form

a multi-molecular chaperone complex composed by

HSPs, such as HSP40, HSP70, and HSP90, and other

proteins such as 14-3-3 which contribute to the repres-

sion of this transcription factor [28–30]. When heat

stress is present, HSP90 is released from HSF1, due to

an increase in misfolded proteins that are sensed by

the molecular chaperone, which allows HSF1 to form

a homotrimer and its activation [29,79].

A reduced expression of HSP90, but not of other

HSR proteins, such as HSP70, heat-shock organizing

protein (Hop), and HSP40, induces the activation of

HSF1, without inducing the transcription of HSP

genes, and thus the inhibition of HSP90 is not the only

factor needed to induce the transcription of HSPs

[80,81]. Interestingly, HSP90 has been shown to inhibit

HSF1 activation and the binding of the latter to target

DNA, whereas HSP70 inhibits the transactivation

capacity of HSF1 [82]. Additionally, other studies

have also reported that HSP40 and HSP70 inhibit the

transactivation capacity of HSF1, likely due to the

recruitment of the HSP70-interacting transcriptional

co-repressor CoREST [82,83]. However, the exact role

that these chaperones play in HSF1 modulation is

still controversial due to contradictory findings. For

instance, the use of geldanamycin, an HSP90 inhibitor,

results in HSF1 activation [80]. On the contrary,

in vitro studies in which heat stress was applied, it was

found that HSP90 induces HSF1 trimerization [27,43].

Additionally, in vivo experiments show that the overex-

pression of HSP70 alone is not sufficient to suppress

HSF1 DNA-binding, but may play a role in the inacti-

vation of this transcription factor after prolonged ther-

mal stress [29,30]. Interestingly, in human cells treated

with sodium salicylate, HSF1 oligomerized and bound

to the promoter of target genes such as HSP70, but its

transcription was not induced [84]. Thus, oligomeriza-

tion of HSF1 alone is not sufficient for promoting the

transcriptional activity of this transcription factor.

Due to the diverse roles played by HSPs in viral

infections (extensively reviewed by Wan et al. [32]), a
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close look into the factors promoting the expression of

these proteins could provide further insights on the

role of HSF1 in the replication cycle of viruses and the

identification of this transcription factor as a potential

target for antiviral treatments.

Pharmacological modulation of HSF1

Heat shock factor 1 is being increasingly related to dif-

ferent pathologies, such as cancer and neurodegenera-

tive diseases, and thus, interest is mounting on

identifying drugs that modulate this transcription fac-

tor [85]. For instance, high levels of HSF1 correlate

with poor prognosis in cancer patients [86,87]. Addi-

tionally, HSF1 has been reported to drive oncogenesis

by mediating the activation of genes that enable the

initiation and maintenance of cancer cells through

shifts in processes such as cell cycle control, metabo-

lism, protein translation, and proliferation [88]. This

has led to the assessment of different HSF1 inhibitors,

such as the drug named NXP800, which is being tested

in a phase I clinical trial. This drug has been shown to

Fig. 2. Schematic representations of the participation of HSF1 in viral infections. Red arrows indicate inhibitory pathways, while green

arrows indicate activation pathways. From left to right: (1a) HSF1 associates with Nef, an early viral protein produced during HIV-1 infection

and (1b) activates HSP40, which promotes (1c) viral gene expression. (1d) HSF1 promotes the reactivation of HIV from latency, by binding

to the 5’LTR in the viral genome and (1e) promotes the recruitment of protein complexes, such as p300. (1f) Additionally, HSF1 recruits

p300 for self-acetylation. (1g) HSF1 acts as a repressor in HIV-induced inflammation, which occurs through a competition between HSF1

and nuclear factor jB (NF-jB), which inhibits the NF-jB pathway. (2a) HSF1 binds to ASPP2, which blocks the translocation of HSF1 to the

nucleus and impairs Atg7 transcription, (2b) thus preventing autophagy and the replication of the hepatitis B virus (HBV) in hepatocytes. (3)

HSF1 promotes autophagy through the transcription of Atg7 and inhibits dengue virus (DENV) replication. (4) HSF1 and heat shock proteins

(HSPs), such as HSP90, HSP70, and other HSPs promote the replication of vaccinia virus (VACV). (5) Coxsackievirus B3 (CVB3) activates

HSF1 and promotes the transcription of the gene of HSP70 through which downstream interactions promote viral replication. (6) There is a

heat shock response element (HSE) in the viral genome of Epstein–Barr virus (EBV), specifically in the Qp gene. HSF1 binds to Qp promot-

ing the initiation of viral replication in EBV-infected cells. (7) The human cytomegalovirus (HCMV) promotes HSF1 activation to inhibit apopto-

sis, thus extending the lifespan of infected monocytes. (8) Finally, a constitutively active mutant of HSF1 (cHSF1) induces viral replication,

and its overexpression induces a tumor-specific immune response when using the oncolytic adenovirus Adel55.
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increase apoptosis of cancer cells in ovarian clear cell

carcinoma (ClinicalTrials.gov Identifier: NCT05226507)

[89]. Another HSF1 inhibitor is DTHIB, which has

been extensively investigated and has been directly

related to a reduction in the viability of prostate cancer

cells, by decreasing the expression of antiapoptotic

genes [90]. These drugs have not been tested in the con-

text of viral infection, yet they may have effects that

limit viral progression through the inhibition of HSF1.

Another drug that inhibits HSF1 with potential

antiviral effects is KRIBB11. This drug binds directly

to HSF1 and inhibits its interaction with target

sequences in the DNA. KRIBB11 has been reported to

significantly decrease the transcription of HSF1-

controlled genes, such as HSP70, EGFR, MET, and

AXL and to promote the death of lung, glioblastoma,

and myeloma cancer cells [91–93]. CCT261236 is a

drug that decreases the activity of HSF1 and conse-

quently the expression of HSPs [93]. Again, the poten-

tial antiviral activities of these drugs have been poorly

assessed or not assessed at all. Two other inhibitors of

HSF1 activity, and consequently HSP expression, are

triptolide and KNK437, which promote the death of

immortalized cells [94,95]. For the latter, a pro-

apoptotic effect was seen through the downmodulation

of the antiapoptotic proteins BCL2 and MCL1 in

L363 cells [95].

On the contrary, drugs that promote HSF1 activity

are also being evaluated as potential treatments,

namely in the context of neurodegenerative diseases,

such as Alzheimer’s, Parkinson’s disease, and amyo-

trophic lateral sclerosis [3]. One such drug is HSF1A,

which positively modulates HSF1 as corroborated by

an observed increase in HSP70 and HSP25 expression

after treatment with this compound in a dose-

dependent manner [96]. Noteworthy, HSF1A specifi-

cally interacts with the TRiC/CCT complex and

induces the activation of HSF1, which suggests a pos-

sible regulatory role for the TRiC/CCT complex over

HSF1 [96].

Alternatively, due to the association between HSP90

or HSP70 and HSF1, some drugs aimed at positively

modulating the activity of HSF1 target these chaper-

ones, in order to release HSF1 so that it can exert its

activity. One of these drugs, named geranylgeranylace-

tone (GGA) which targets HSP70 [97–99], while gelda-

namycin (17-AAG) [100] and riluzole [101,102] target

HSP90. Whether these HSF1-activating drugs may

have antiviral effects remains unknown and thus

should be determined experimentally to define if such

an approach may have potential antiviral potential.

On the contrary, Celastrol activates HSF1 and

leads to an increase in energy expenditure, increased

insulin resistance, increased mitochondrial function

in fat tissue and muscle cells, as well as hepatic stea-

tosis in a high-fat diet in 10T1/2 cells and primary

fat SVF cells [103]. Regulation of energy expenditure

is accomplished by the activation of PGC1a, a tran-

scriptional coactivator that is a central inducer of

mitochondrial biogenesis in cells and which modu-

lates metabolic programing in adipose tissues and

muscle [103]. The mechanisms of action of the dif-

ferent drugs targeting HSF1 and the pathologies in

which they have been described are summarized in

Table 1.

Concluding remarks

Heat shock factor 1 is not only directly activated in

response to increased temperature, but many other

triggers also activate HSF1, or can modulate its

threshold of activation. Importantly, several studies

show that this transcription factor plays significant

roles in the replication cycle of some viruses and that

its involvement is independent of heat shock. The lat-

ter suggests that either viral determinants or host fac-

tors modulated by viral infection are impacting

directly on HSF1 or on factors that regulate its func-

tion. Given that virus-infected cells may undergo

some level of UPR due to sustained viral protein

translation during infection, it is also possible that a

link may exist between this response and HSF1

[7,8,104]. Given that a negative feedback loop

between HSPs and HSF1 allows the regulation of

HSF1 function, it will be of interest to assess this

potential relationship in depth in the context of viral

infections that interact with HSPs or induce their

expression and to determine what is the contribution

of HSF1 activation during the replication cycle of

different viruses.

Additionally, it will also be important to evaluate

the effect of varying levels of HSF1 expression in dif-

ferent cell types on the modulation of this transcrip-

tion factor over viral infections, as HSF1 is not

equally expressed among cell types and its expression

will differ depending on environmental and cellular

conditions [44]. Also, it will be beneficial for future

research to explore whether a relation between viral

infections and other HSF members exists, given the

similarities and differences between the transcription

factors in this family.

Because multiple drugs that positively or nega-

tively modulate HSF1 activity are currently being

tested in clinical trials for cancer and neurodegenera-

tive diseases, it will be interesting to evaluate

whether these drugs have positive or negative effects
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for the host in the context of viral infections, poten-

tially serving as novel strategies to counteract viral

replication in the infected individual. To our knowl-

edge, to date there are no reports describing the use

of such drugs to target HSF1 in the context of viral

infections.

Although there is very little information regarding

the effect that the modulation of HSF1 activity may

have over viral infections, there are multiple connec-

tions between gene products associated with this tran-

scription factor and viral infections. Thus, we foresee

that targeting HSF1 will be an interesting new

approach for the treatment of viral infections, given

the constant need for identifying and developing new

drugs to combat this type of pathogens. Yet, it is

important to note that altogether it will be necessary

to corroborate that modulating HSF1 in the host will

not harm the individual, particularly in scenarios in

which there are significant increases in body tempera-

ture, such as during fever, as in this case altering the

function of HSF1 could be deleterious for the host’s

tissues.

Acknowledgements

This work was funded by Agencia Nacional de

Investigaci�on y Desarrollo (ANID)—Millennium Sci-

ence Initiative Program—ICN09_016/ICN 2021_045:

Millennium Institute on Immunology and Immunother-

apy (ICN09_016/ICN 2021_045; former P09/016-F) and

FONDECYT grants #1190864 and #1190830 from the

Agencia Nacional de Investigaci�on y Desarrollo

(ANID). This work was also supported by the Regional

Government of Antofagasta through the Innovation

Fund for Competitiveness FIC-R 2017 (BIP Code:

30488811-0). MF is ANID fellows #21191390.

Conflict of interest

The authors declare no conflict of interest.

Table 1. Pharmacological modulation of HSF1.

Drug Mechanism of action

Cell type in which its effects have

been described Related pathology References

Drugs that inhibit or negatively modulate HSF1 activity

NXP800 Inhibitor of the HSF1 pathway Ovarian clear cell carcinoma Cancer [89]

DTHIB Binds to the HSF1 DNA-binding

domain (DBD)

Human prostate cancer cell line

(CRPC cell line C4-2)

Cancer [90]

KRIBB11 Binds to HSF1 Papillary Adenocarcinoma (NCI-H820),

Non-small cell lung cancer (PC9-ErlR),

Glioblastoma (A172), Myeloma (KMS-

11), and Plasmacytoma (H929) cell

lines

Cancer [91,92]

Triptolide Inhibits the transactivation function

of HSF1

Immunoglobulin A Lambda Myeloma

(MM.1S) and multiple myeloma (INA-

6) cell lines

Cancer [94]

CCT251236 Inhibits HSF1-mediated HSP27

induction

Myeloma and plasmacytoma cell lines

(KMS-11 and H929, respectively)

Cancer [93]

KNK437 Blocks HSF1-mediated

transcription

Plasma cell leukemia (L363) cell line Cancer (multiple

myeloma)

[95]

Drugs that activate or positively modulate HSF1 activity

HSF1A Negatively modulates the activity

of the TRiC/CCT complex

Fibroblast (MEF) cell line Neurodegenerative

diseases

[96]

17-AAG Inhibits HSP90 by binding to its

amino-terminal

Lung carcinoma (A549) cells Cancer [100]

Riluzole Unknown Glioblastoma neuroprogenitor cells

(NG108-15)

Parkinson’s disease [101,102]

Geranylgeranylacetone Induces the phosphorylation and

nuclear translocation of heat

shock factor 1 (HSF1)

Fibroblasts (CCD-25SK) and OA cells,

lung and cardiac tissue

Rheumatoid arthritis,

lung injury/fibrosis,

myocardial injury

[97–99]

Celastrol Involved in PKC activation

(translocation of PKCd), which

primes the phosphorylation of

HSF1

Fibroblast sarcoma cells (10T1/2) and

primary fat SVF cells

Obesity, insulin

resistance

[103]
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