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High-throughput biochemical profiling has led to a requirement for advanced data inter-
pretation techniques capable of integrating the analysis of gene, protein, and metabolic 
profiles to shed light on genotype–phenotype relationships. Herein, we consider the 
current state of knowledge of endothelial cell (EC) metabolism and its connections to 
cardiovascular disease (CVD) and explore the use of genome-scale metabolic models 
(GEMs) for integrating metabolic and genomic data. GEMs combine gene expression 
and metabolic data acting as frameworks for their analysis and, ultimately, afford mecha-
nistic understanding of how genetic variation impacts metabolism. We demonstrate how 
GEMs can be used to investigate CVD-related genetic variation, drug resistance mech-
anisms, and novel metabolic pathways in ECs. The application of GEMs in personalized 
medicine is also highlighted. Particularly, we focus on the potential of GEMs to identify 
metabolic biomarkers of endothelial dysfunction and to discover methods of stratifying 
treatments for CVDs based on individual genetic markers. Recent advances in systems 
biology methodology, and how these methodologies can be applied to understand EC 
metabolism in both health and disease, are thus highlighted.

Keywords: endothelium, metabolism, personalized/precision medicine, metabolomics, metabolic modeling, 
genetics

inTRODUCTiOn

Cardiovascular disease (CVD) includes acute and chronic conditions, such as stroke and coronary 
heart disease (1). CVD results in a shortened life span and is the biggest cause of death worldwide 
(1–3). The endothelium is the single cell layer that lines blood vessels and lymphatic system and its 
dysfunction contributes to the development of CVD (4, 5). Endothelial cells (ECs) play an important 
role in controlling vascular tone and by secreting or expressing surface molecules, they ensure appro-
priate regulation of blood flow, counteracting intravascular activation of platelets, and coagulation 
(6, 7). Moreover, cardiac ECs have been shown to affect the ventricular myocardium. Thus, the 
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FiGURe 1 | endothelial metabolism and its links to cellular damage, 
function, and proliferation control. Metabolism, including glycolysis, 
pentose phosphate pathway, TCA cycle, fatty acid oxidation, and nitric oxide 
synthase are represented in red. Useful products of metabolism, NO, ATP, 
and Ca2+ signaling are shown in green. Damaging side products of 
metabolism are shown in yellow.
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force-frequency response of cardiac muscle in the presence of 
increased cardiac workload is blunted after damage to the cardiac 
endothelium (8).

A vascular surface that normally is thromboresistant, anti-
inflammatory, vasodilatory, and antiproliferative can turn into a 
surface that is thrombogenic, proinflammatory, vasoconstricive, 
and stimulatory of smooth muscle cell proliferation. Often this 
change is reactive and transient restoring vascular homeostasis. 
However, in diseases such as atherosclerosis, hypertension, and 
diabetes mellitus (DM) such changes, known as endothelial dys-
function, may be prolonged and critical for disease progression. 
The extent of pathological metabolic perturbation is determined 
by an interaction of lifestyle factors, such as diet and exercise with 
underlying genetic factors (9–12). Consequently, health-care 
interventions may be more effective if adapted to an individual.

Metabolic modeling offers insights into cellular metabolism 
(13). Below, we consider endothelial metabolic alterations, their 
contribution to endothelial dysfunction, and integrated analysis 
of this information with genome-scale metabolic models (GEMs) 
to advance personalized health care.

enDOTHeLiAL MeTABOLiSM

Endothelial cell metabolism has been investigated in multiple 
contexts including angiogenesis, hypoxia, shear stress, glycemia, 
and response to perturbations with mediators of vascular health 
including thrombin, sphingosine-1-phosphate, and more (14–19). 
The endothelium operates with variable nutrient availability and 
oxygen partial pressures in a manner that is EC subtype specific 
(20) and results in altered synergy in the oxidation of its core 
nutrients glucose, fatty acids, and amino acids (17, 21–23) that 
are reviewed specifically elsewhere (24, 25) but considered col-
lectively here and illustrated in Figure 1.

Glycolysis Affects endothelial Proliferation 
and Angiogenesis
Endothelial cells oxidize glucose largely by glycolysis, allowing 
maximal availability of oxygen for transendothelial transport to 
perivascular cells (26–29). Carbons from glucose are primar-
ily excreted as lactate with only 1 in 200 pyruvate equivalents 
contributing to oxidative phosphorylation (26). Laminar shear 
stress, the frictional force created by blood flow, promotes anti-
inflammatory, anti-thrombotic, and anti-oxidative properties in 
ECs and helps to maintain quiescence largely via the transcription 
factor Kruppel-like factor 2 (30) that acts to repress phosphof-
ructokinase-2/fructose-2,6-bisphosphatase-3 (PFKFB3) thereby 
promoting a quiescent phenotype (16).

In response to angiogenic factors induced by injury or in 
pathological conditions such as hypoxia, nutrient deprivation, or 
tissue damage, ECs quickly form new vasculature by sprouting. 
During vessel sprouting, glycolysis is increased further, medi-
ated by increased activity of PFKFB3, the loss of which impairs 
vessel formation (26). Increased glycolysis without oxidation of 
pyruvate relies on lactate dehydrogenase to supply NAD+, and 
the activity of PFKFB3 is reflected in both intracellular and 
secreted lactate of ECs (31). Furthermore, lactate is involved in 

PFKFB3-mediated endothelial proliferation, tube formation, and 
Akt activation providing a plausible explanation for PFKFB3-
mediated angiogenesis (31). Lactate dehydrogenase activity 
also increases with EC subtype proliferation rate. In pulmonary 
microvascular ECs, rapid angiogenesis is dependent on lactate 
dehydrogenase A expression (14).

Endothelial-dependent vascular function correlates with 
blood glucose levels (32–37). In hyperglycemia, glyceraldehyde-
3-phosphate dehydrogenase is inactivated, impeding gly-
colysis (38). A build-up of fructose-6-phosphate, a glycolytic 
intermediate, impacts hexosamine biosynthesis generating 
N-acetylglucosamine that glycosylates and modifies angiogenic 
proteins including Notch and vascular endothelial growth factor 
receptor 2 (39–45) and, inhibits eNOS (46). Excess glucose also 
enters the polyol pathway, producing excess advanced glycation 
end products (AGEs) (47, 48). AGEs alter the binding of eryth-
rocytes and platelets to the endothelium (49, 50), and clinical 
arterial responsiveness correlates negatively with the ratio of 
AGEs to soluble receptor of AGEs (51).

Fatty Acid and Amino Acids Metabolism
Fatty acid-binding protein 4 (FABP4) is an intracellular fatty 
acid chaperone protein that impacts the peroxisome proliferator-
activated receptor transcription pathway (52). Circulating levels 
of FABP4 are associated with endothelial dysfunction in DM 
patients (53) and increased risk of atherosclerosis and cerebro-
vascular malformations (54, 55).

Fatty acid oxidation (FAO) accounts for roughly 14% of ATP 
production in cultured EC (22). Carnitine palmitoyl transferase 
(CPT1A), a long-chain fatty acid shuttle protein regulated by 
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AMP-activated protein kinase, is a key point of FAO regulation 
(22, 56, 57). Palmitate has been shown to contribute carbons 
to nucleotide formation via the tricarboxylic acid (TCA) cycle. 
When CPT1A was knocked down in vitro, vessel sprouting was 
impaired due to low levels of deoxy ribonucleotides. CPT1A 
knockdown in mice produced impaired retinal vessel formation 
(58).

In addition to glucose and fatty acids, amino acids contribute 
to EC metabolism and function (59). Specifically glutamine 
fuels anaplerotic reactions via the TCA cycle (23, 29, 60). 
Internalization of glutamine occurs via solute carrier family 1 
member 5 (23, 29), and inhibition of glutaminase causes prema-
ture senescence and reduced proliferation in ECs (61). The most 
intensely investigated amino acid with respect to endothelial 
dysfunction is, however, arginine in the context of its conversion 
to the vasorelaxant nitric oxide (NO) by endothelial nitric oxide 
synthase (eNOS).

endothelial nitric Oxide is important to 
vascular Function and its Production is 
Affected by Genetic and Metabolic 
Factors
In addition to causing vasorelaxation, NO affects smooth 
muscle cell proliferation, aggregation and adhesion of platelets 
and leukocytes, important processes to atherosclerosis and 
other CVD (62, 63). When eNOS has insufficient arginine, a 
result of competition with arginase, and/or lacks the cofactor 
tetrahydrobiopterin, it produces reactive oxygen species (ROS) 
instead of the products NO and citrulline  –  in a pathological 
state known as uncoupling (64–71). Furthermore, the pressure of 
O2

−  causes rapid inactivation of endothelium-derived NO (72). 
Indeed, arginase and eNOS activities and genotypes in addition 
to tetrahydrobiopterin levels have all been linked to endothelial 
function (73–76).

Altered NOS activity due to inhibition by asymmetric 
dimethylarginine (ADMA) encourages NOS uncoupling leading 
to endothelial dysfunction. ADMA levels, and the ratio of ADMA 
to arginine, have been connected to several aspects of CVD risk 
(77–80).

Genetic variation in eNOS affects some measures of 
recovery of blood flow control in acute myocardial infarc-
tion (73). Inhibiting arginase activity, which reduces eNOS 
uncoupling, is helpful in restoring endothelial function in 
both coronary artery disease and after ischemia–reperfusion 
injury (64, 65). Genetic variation in NOS1 has also been 
linked with CVD in various studies (75, 76). Furthermore, 
the ROS scavenger methionine sulfoxide reductase A, impor-
tant to reducing the effect of uncoupled NOS and other ROS, 
is affected by genetic variation relevant to coronary artery 
disease risk (81, 82).

Interestingly, the extracellular presence of certain amino 
acids  –  ornithine, l-lysine, l-homoarginine, l-glutamine, 
l-leucine, or l-serine – decreases NO and increases endothelium-
dependent vascular resistance. This effect is reversible by adding 
arginine to the medium and was shown to be dependent on y+L 
and y+ family amino acid transporters (83).

DeCODinG enDOTHeLiAL MeTABOLiSM 
AnD FUnCTiOn THROUGH 
COMPUTATiOnAL MODeLinG

The previous section highlights the complexity of the contribu-
tion of metabolism to endothelial dysfunction. Importantly, some 
of the most common human metabolic gene alterations impact 
enzymes that are of importance to endothelial metabolic pheno-
types. These include pyruvate kinase and (84) glucose-6-phosphate 
dehydrogenase, which alters CVD risk (85), in addition to those 
already mentioned above. The variability of the effect of these 
mutations on cardiovascular phenotypes highlights the problem 
of untangling complex genetic diseases (12). This complexity is 
aggravated by lifestyle choices that impact the expression and 
activity of these genes (9, 86–89). How altered gene expression 
and the environment combine to advance CVD can, however, 
be explored on the metabolic level, through metabolic systems 
analysis using genome-scale models of endothelial metabolism. 
For CVD research, genome-scale modeling promises to contrib-
ute to the definition of endothelial metabolism under different 
physiological conditions, allow the differentiation of individual 
endothelial metabolic phenotypes that can be related to CVD 
states and ultimately contribute to individualized therapy. In the 
following sections, we explain the concept of GEMs, their current 
and potential applications toward increasing the understanding 
of endothelial metabolism, and how this could lead to novel 
discoveries to combat CVD on the individual level.

GeMs Provide Snapshots of Metabolism
Genome-scale metabolic models are computational models 
that can be used to describe and investigate the metabolic flux 
phenotype of a cell based on disparate biochemical information. 
GEMs are built from biochemical component knowledge-
bases, also termed biochemical network reconstructions (90). 
Reconstructions are organism specific and account for genetic, 
and biochemical components, and their interactions, based on 
annotated biological information sourced from literature. All 
metabolic reactions and metabolites contained within a recon-
struction can be represented as a numerical matrix, which is 
comprised of the stoichiometric factors of reactants and products 
of each metabolic reaction. In this format, the metabolome is sub-
ject to computational research allowing metabolic reaction flux 
at steady state through metabolic pathways to be computed (91).

Genome-scale metabolic reconstructions aim to account for 
as many as possible biochemical interactions that have been 
described in an organism (e.g., a human). While reconstruc-
tions afford a mechanistic description of genotype–phenotype 
relationships, they are not context specific. However, when 
constrained with cell or context-specific data, for example gene 
expression information of ECs, reconstructions afford GEMs that 
are descriptive of the biological event and cell of interest. Gene 
expression data of a HUVEC cells at normoxia vs. hypoxia would 
for instance generate two GEMs based on the same reconstruc-
tion thereby providing two snapshots descriptive of metabolic 
flux through reactions as defined by the two expression datasets. 
Essentially, reconstructions define the biochemical components 
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of an organism, while context-specific polyomic data are required 
to generate a GEM of a particular cell or cellular event. Genomic, 
proteomic, and/or metabolomic fingerprints can thus be analyzed 
and compared within the context of GEMs (92).

The methodology of building, curating, and analyzing recon-
structions and GEMs is commonly referred to as constraint-
based analysis. Various software has been developed to facilitate 
constraint-based analysis including the COBRA and RAVEN 
toolbox’s for Matlab, Merlin and CORDA (93–96). Detailed 
protocols describing the necessary stages of building and curation 
are established (90, 97–99). Ultimately, constraint-based analysis 
of GEMs allows holistic exploration of metabolic phenotypes 
in silico and affords realistic hypotheses of biochemical mecha-
nisms (92). In the past 5  years, multiple applications of GEMs 
descriptive of human metabolism have materialized that may 
contribute to the understanding of how genetic and environ-
mental factors collectively contribute to CVD disease phenotypes 
when applied to endothelial metabolic research.

GeMs Differentiate between Metabolic 
Phenotypes
In the context of CVD, GEMs that are descriptive of healthy 
and CVD endothelial metabolism can be produced. As recently 
reviewed in Väremo et al. (100), GEMs of various tissues have 
been built and applied to the investigation of CVD-related 
disorders, including DM and metabolic syndrome, although not 
yet endothelium (101–104). Transcriptional changes in cardio-
myocytes of DM patients have been analyzed using the myocyte-
specific GEM, iMyocyte2419, revealing deregulation of metabolic 
pathways ultimately linked to dihydro-lipoamide dehydrogenase, 
a unique characteristic of myocyte response in DM (101).

Genome-scale metabolic models serve as a biomarker discov-
ery tool, and a tool to discover potentially “druggable” metabolic 
(105). Computational techniques exist that predict the pathways 
likely to be responsible for differences between two metabolic 
states, identifying these differences allows reactions, linked to 
genes in a GEM, to be selected as drug targets, for example in 
hepatocellular carcinoma and Alzheimer’s, or metabolites to be 
identified as potential biomarkers for example for drug resistance 
in ovarian cancer (100, 106–108). Changes due in FAO in ECs 
leading to alterations in EC permeability – clinically important 
to sepsis – have been detected using a GEM. Altering FAO using 
drugs was shown to alter permeability, which may be clinically 
useful (109), future discoveries of this type may be linked to NO 
synthesis or clotting factor production useful for modulating 
CVD risk factors.

GeMs Can Define endothelial Metabolism
Genome-scale metabolic models that are descriptive of core 
endothelial metabolism have already been produced. Patella 
et al recently used endothelial proteomic data to constrain the 
human reconstruction, Recon 1 (110), to generate a GEM that 
describes EC cell core metabolism during tube formation in 
matrigel (109). FAO was identified as an area of metabolism that 
is altered during tube formation. CPT1A inhibition affects ATP 
production via the TCA cycle and oxidative phosphorylation. 

Downstream, this alters Ca2+ signaling and junctional proteins 
via phospho-signaling to alter endothelial permeability, which 
were partially reversed by pyruvate supplementation (109). 
Automated GEMs have also been generated for colon and cer-
ebral cortex ECs (111), though these models were not applied to 
CVD research.

Although automatically generated GEMs of EC metabolism 
have been used to reveal basal endothelial metabolic pathway 
usage, further curation and validation of EC GEMs would be 
beneficial. Investigations of vascular endothelial metabolism 
in different conditions and with different genetic backgrounds 
could be achieved, allowing genetic variation outside the context 
of core energy metabolism to be queried. For example, due to 
the inherent connectivity of metabolic reactions within GEMs, 
alterations in the release of sphingosine-1-P (a sphingolipid 
involved in vascular and immune signaling pathways) from ECs 
could be hypothesized and related to alterations in core energy 
metabolism induced by global metabolic expression profiles. 
The release of sphingosine-1-P from ECs and its contribution to 
individual vascular health could thus be proposed on biochemi-
cal alterations on the systems level as opposed to mutations in 
sphingosine kinase alone.

GeMs Can Be Personalized to Account for 
individual Genetic variation
Computational modeling can contribute to decisions regarding 
the suitability of a treatment for individual patients. GEMs could 
be produced for individuals based on genomics and subsequently 
used to stratify patients and personalize medical interventions 
for CVD. GEMs maybe based on generalized transcriptomic data 
from a pool of samples from a cell type (112) or a set of models 
may be created from individual samples and comparing the 
metabolic phenotypes predicted by each, allowing links between 
metabolism and broader phenotype, such as drug resistance in 
cancer cells, to be explored and may lead to insights about predic-
tive biomarkers and druggable targets (108, 113, 114). Various 
algorithms for selecting active reactions for context-specific 
models based on transcriptomic and proteomic data are avail-
able including INIT and iMAT. These approaches have differing 
strengths and weaknesses that have been described and compared 
elsewhere (98).

Individualized hepatocellular carcinoma models have been 
used to predict patient outcomes based on the predicted produc-
tion of acetate, identified as a key metabolic pathway for survival 
(114). Twenty-four individualized GEMs of erythrocytes were 
created based on genetic and metabolic data. These captured 
altered dynamics of erythrocyte metabolism and allowed the 
identification of individuals at risk to drug-induced anemia based 
upon their genomic sequence (115). These examples highlight a 
potential workflow, exemplified in Figure 2, to contribute to the 
personalization and stratification of medical treatments in the 
clinic. In the future, it is envisioned that an EC GEM could be 
used in a similar fashion by comparing GEMs CVD patients and 
healthy individuals to identify key metabolic changes to CVD 
for example those that increase production of atherosclerotic 
plaques.
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FiGURe 2 | workflow of GeM construction and contribution to 
developing new strategies for the clinic. Biochemical data from cell 
culture and clinical studies are combined to form a comprehensive metabolic 
reconstruction, which is constrained to form a context-specific GEM and 
produce biologically well-founded predictions that will suggest future clinical 
interventions.
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COnCLUSiOn

Developing personalized CVD therapeutic interventions relies 
on the ability to account for genotypic and phenotypic variation. 
Variability in disease phenotypes can be captured and understood 
in the context of GEM’s to facilitate this process.

Genome-scale metabolic models provide an integrated 
approach in studying EC metabolism. They allow analysis of the 
multiple factors affecting ECs in the body, facilitating the explo-
ration of the relationship of genotype to metabolic phenotype. 
This offers the possibility of producing personalized predictions 
of CVD risk and treatment, that account for both genetic and 
lifestyle factors. Currently, GEMs are the only biochemical model 
type that can account for both of these factors within a predictive 
modeling framework (92).

Genome-scale metabolic models are only one type of model 
used to account for EC function. Focused and mechanistic 

computational models of various aspects of vascular biology 
have also been made. These address some important biophysical 
parameters that are currently outside the scope of GEM modeling. 
This includes assessing the effects of shear stress on blood vessel 
reactivity and growth as well as the effects on blood cell/endothe-
lium interactions of flow (116–122). Models describing the effects 
of circulation on endothelial metabolites have also been built 
(123). Endothelial NO interactions (124–126), Ca2+ signaling 
(127) along with protein (128) and mechanical (119) signaling 
have also been addressed with computational modeling. Models 
have been individualized using patient data and have explored the 
effects of stenting on blood flow (129–132).

Integrating biophysical and signaling parameters with GEMs 
would generate a more complete understanding of the role of 
endothelial metabolism for CVD. In addition, these future GEMs 
would allow retrospective analysis of biophysical and genomic 
data that have been generated in the last few decades from popu-
lation studies (86, 133), whose analysis is currently confined to 
multivariate statistical and comparative analysis techniques for 
the identification of CVD risk factors. Such an effort could allow, 
for example, in silico querying of the effect of LDL deposition on 
global endothelial metabolism. Indeed, computational analysis 
of LDL metabolism has already proposed novel approaches to 
combat CVD (134–136).

Realistic computational predictions of the effects of genetic 
and environmental perturbations on endothelial metabolism 
are possible and beneficial. There has been some exploration of 
CVD with GEMs and analysis of EC metabolism with GEMs; 
however, the full potential of this technique is only just begin-
ning to be explored. Existing and future models will allow 
clinicians and researchers to investigate variable endothelial 
function in  silico in a data-driven manner, to optimize future 
clinical interventions.
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