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Simple Summary: Post-transplant lymphoproliferative disorders (PTLDs) are life-threatening com-
plications. The clinical and pathological spectrum of PTLD is broad; however, most cases of PTLD
are associated with Epstein–Barr virus (EBV) infection and the use of immunosuppression treatment
required to prevent graft rejection. While T-cell impairment is known to play a critical role in the
immunopathogenesis of EBV complications post-transplantation, the role of natural killer (NK) cells
remains more elusive. NK cells are key elements of the innate immune system that use a sophisticated
array of activating, costimulatory, and inhibitory receptors to kill virally infected and/or cancerous
cells. In this review we highlight the role of NK cells in the pathogenesis of PTLD, and also identify
future avenues for NK cell therapy research.

Abstract: Post-transplant lymphoproliferative disorders (PTLDs) are life-threatening complications
arising after solid organ or hematopoietic stem cell transplantations. Although the majority of these
lymphoproliferations are of B cell origin, and are frequently associated with primary Epstein–Barr
virus (EBV) infection or reactivation in the post-transplant period, rare cases of T cell and natural
killer (NK) cell-originated PTLDs have also been described. A general assumption is that PTLDs
result from the impairment of anti-viral and anti-tumoral immunosurveillance due to the long-term
use of immunosuppressants in transplant recipients. T cell impairment is known to play a critical
role in the immune-pathogenesis of post-transplant EBV-linked complications, while the role of NK
cells has been less investigated, and is probably different between EBV-positive and EBV-negative
PTLDs. As a part of the innate immune response, NK cells are critical for protecting hosts during the
early response to virus-induced tumors. The complexity of their function is modulated by a myriad
of activating and inhibitory receptors expressed on cell surfaces. This review outlines our current
understanding of NK cells in the pathogenesis of PTLD, and discusses their potential implications
for current PTLD therapies and novel NK cell-based therapies for the containment of these disorders.

Keywords: natural killer cells; post-transplant lymphoproliferative disorders; Epstein–Barr virus

1. Introduction

Natural killer (NK) cells were identified more than four decades ago as innate lym-
phocytes with the ability to lyse tumor cells without the need for prior sensitization [1,2].
NK cells are mounted with a panoply of activating and inhibitory receptors on their sur-
face, suggesting that different NK cell subsets can be identified based on the assortment
of NK receptors that are expressed. The integration and balance of the activating and
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inhibitory signals from the ligand/receptor interactions dictates the status of NK cell ac-
tivation. For instance, healthy cells express no or a minimal level of ligands for NK cell
activating receptors, such as NKG2D and the natural cytotoxicity receptors (NCR: NKp30,
NKp44 and NKp46), but express high levels of the major histocompatibility complex class
I (MHC-I) molecules, which ligate to inhibitory receptors, such as NKG2A, Ig-like tran-
script 2 (ILT-2) and the killer immunoglobulin-like (KIR) family, to protect them from NK
attack. Conversely, pathogenic target cells can downregulate MHC-I expression and/or
overexpress ligands for NK cell activating receptors to trigger NK cell functions [3]. Thus,
upon activation, NK cells release cytotoxic granules containing perforin and granzymes
to directly lyse tumor cells, in a similar fashion to activated cytotoxic T cells, or indirectly
by antibody-dependent cellular cytotoxicity (ADCC), triggered through binding of the
FcγRIIIA receptor (CD16) on NK cells by the Fc fragment of IgG antibodies. In addition,
NK cells produce large amounts of chemokines and cytokines such as interferon gamma
(IFN-γ) and tumor necrosis factor alpha (TNF-α), which also play major roles in tuning
and controlling adaptive immune responses [4].

Due to their intrinsic capacities, NK cells play important roles in protection against
viruses and tumor growth [5,6]. Studies in both animals and humans suggest that NK cells
are critical in the host defense against Epstein–Barr virus (EBV), persistently carried by more
than 85% of the adult human population. In vitro studies have clearly shown killing of EBV-
infected B cells by autologous NK cells [7,8], whereas individuals with selective primary
NK cell deficiency exhibit an increased susceptibility to EBV, associated with fatal primary
infection or the development of EBV-associated cancers [9–11]. In addition, depletion of
NK cells upon EBV infection of humanized mice favors EBV-associated tumorigenesis and
exacerbates infectious mononucleosis (IM) [12,13], a self-limiting disorder characterized by
extensive proliferation of polyclonal EBV-specific CD8+ T cells in response to primary EBV
infection. Importantly, preferential proliferation and accumulation of early-differentiated
CD56dimNKG2A+KIR− NK cells was observed in immunocompetent children with acute
IM [8], or after in vitro co-culture of NKG2A+ NK cells with autologous EBV-infected B
cells [14,15]. Mechanistically, it was reported that peptides derived from EBV latent proteins
can impair the recognition of the inhibitory NKG2A receptor, despite being presented by
HLA-E, resulting in activation of differentiated, cytotoxic NK cells for the immune control
of EBV [16,17].

Compared to IM, less is known about EBV-specific immune control by NK cells in
EBV-driven lymphomas, such as in post-transplant lymphoproliferative disorders (PTLDs).
PTLDs are heterogeneous tumors arising after solid organ transplantation (SOT) and
hematopoietic stem cell transplantation (HSCT), often related to EBV [18,19]. EBV-positive
PTLDs usually arise early after transplantation, in close relation with heavy immuno-
suppressive therapy, and are believed to result from altered NK and T cell responses
against EBV-infected lymphocytes, while the pathogenesis of EBV-negative PTLD is less
clear [18,20–22] (Table 1). Although most PTLDs are of B cell origin, the emergence of post-
transplant NK lymphoproliferative diseases has also been observed in PTLD development.
These malignancies are usually classified amongst T/NK cell PTLD in the World Health
Organization (WHO) classification [23]. Previously, an analysis of 130 cases of T/NK cell
PTLD reported that they occurred late, at a median of 66 months after transplantation, and
that they were frequently extranodal [24]. Since, eight other central nervous system or nasal
NK/T cell lymphoma patients have been reported, all but two being EBV-related [25,26].
T/NK PTLDs usually do not respond to a decrease in immunosuppression and the median
survival is six months. Notably, overall survival for patients with EBV+ T/NK PTLD was
described to be significantly better than for patients with EBV disease. This reveals that true
NK cell PTLDs are very rare entities with poor prognosis. Diagnosis relies on pathologic
examination, immunohistochemistry, peripheral blood immunophenotyping and, when
necessary, T-cell receptor (TCR) sequencing showing the germline configuration.
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Table 1. Characteristics of EBV-positive and EBV-negative PTLDs.

WHO Classification Post-Transplant Onset Age at Transplant EBV Association

Nondestructive PTLD Generally early Adult and pediatric Generally EBV-positive

Polymorphic PTLD Frequently early Adult and pediatric Generally EBV-positive

Monomorphic PTLD

B-cell lymphomas Both early and late More frequent in adult
than pediatric

EBV-positive and
EBV-negative

T-cell and NK-cell lymphomas Generally late Generally adult Frequently EBV-negative

Classic Hodgkin Lymphoma-like PTLD Generally late Generally adult Frequently EBV-positive

2. The Role of NK Cells in the Immunopathology of PTLDs

NK cells are critical actors in innate immunity during early responses against both
viral infections and tumor growth. In the context of PTLDs, NK cells probably play different
roles according to EBV status of the tumor. Indeed, EBV-positive and EBV-negative PTLDs
show different patterns in terms of time from transplantation to PTLD development, age at
PTLD diagnosis, and tumor morphologies (Table 1).

2.1. NK Cells and EBV-Positive PTLDs

EBV-positive PTLDs frequently develop early after transplantation, when immunosup-
pression is at its highest level and immune surveillance is weak. During this critical period,
EBV reactivation is frequently observed in transplant recipients, resulting from a loss in
the balance between infected cells and cytotoxic lymphocytes. Additionally, transplant
recipients who develop primary EBV infection are at high risk of PTLD development due
to uncontrolled EBV-driven proliferation of infected lymphocytes.

NK cells are known to play a major role in the control of EBV infection in the early
post-transplant period, as NK cell reconstitution in peripheral blood reaches normal val-
ues within the first month after SOT or HSCT, several months before T cell and B cell
restoration [27–31]. In a recent study in adult SOT recipients, NK cell lymphopenia was
observed in 70% of EBV-positive PTLD diagnoses [32]. In that same study, the proportion
of peripheral blood CD56bright CD16− and CD56dim CD16+ NK cells was similar between
PTLD patients and transplant controls, independently of SOT type. Previous work by
Baychelier et al. described increased proportions of CD56bright CD16− cells in 11 adult
lung or liver recipients who developed EBV-positive PTLD, when compared to healthy
SOT recipients [33]. Meanwhile, a study by Wiesmayr et al. in pediatric heart or lung trans-
plant recipients showed that EBV-positive PTLD patients displayed increased proportions
of early-differentiated CD56dim CD16− cells and CD56− CD16+ NK cells in peripheral
blood [34]. Interestingly, early-differentiated CD56dim NKG2A+ KIR− CD16− NK cells also
accumulate in immunocompetent children with acute IM and are known to preferentially
recognize autologous B cells with lytic EBV infection [8].

The scarcity of data about NK cell phenotype and subtype distribution reported
at PTLD diagnosis might be related to the variability between studies in terms of type
of organs transplanted. Transplant-related alterations are associated with differences in
pre-transplant conditioning regimes and maintenance immunosuppressive therapy. In
allo-HSCT patients and SOT recipients who received anti-thymocyte globulin (ATG), NK
cells are depleted during pre-transplant conditioning treatment, which is followed by post-
transplant NK cell reconstitution, starting with CD56bright cells [35–37]. An accumulation
of CD56bright NK cells in blood may also be seen in patients treated with azathioprine-
based regimens, which selectively deplete CD56dim NK cells (Lord and Shows, 2017), or
with cyclosporine, which preferentially blocks CD56dim cell proliferation and favors an
accumulation of CD56bright NK cells in blood [38]. On the other hand, it has been observed
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that CD56bright and CD56dim subsets regain normal proportions within the first year in
hepatic transplant recipients [39].

The age at transplantation and at PTLD diagnosis are other factors that probably
influence NK cell phenotype. The early-differentiated CD56dim NKG2A+ KIR− CD16− NK
cell subset is progressively replaced by differentiated CD56dim KIR+ during the first decade
of life [8,40], while the level of expression of NKG2D, NKp30 and NKp46 decreases with
age [40]. The modulation of activating receptors NKp46 and NKG2D is also observed in the
NK cells of adult and pediatric SOT recipients at EBV-positive PTLD diagnosis. NKG2D
is an important activating receptor against EBV-positive PTLD tumors, as they express
NKG2D ligands such as MIC-B [41]. However, EBV miRNAs from the BART (Bam HI-A
region rightward transcript-2) family are also expressed in EBV-transformed B cells during
PTLD and have been found to traffic with MIC-B mRNA, limiting the expression of MIC-B
protein at the surface of tumor cells [42]. The specific ligands of NKp46 in EBV-positive
PTLDs remain undescribed, but NKp46 downmodulation is also observed in different
virus-induced cancers and has been related to low cytotoxic capacity [34,37,43,44].

A recent concept in NK-cell biology is that of functional exhaustion. In contrast with T
cells, NK cell exhaustion probably results from the progressive loss of expression of several
activating receptors, followed by the accumulation of inhibiting receptors, including the
expression of inhibitory immune checkpoints, such as PD-1, Tim-3 and Lag-3, leading
to cell dysfunction [45] (Figure 1). Another alteration of the NK cell phenotype at EBV-
positive PTLD diagnosis, which often appears alongside one or several of the previously
mentioned alterations, is the expression of the PD-1 receptor [32,34]. PD-1 expression by
NK cells is rare in healthy individuals [46], but is often observed in association with gamma-
herpesvirus infection in kidney transplant recipients with chronic EBV reactivation [47],
in pediatric thoracic recipients with high EBV loads [34], and in human-herpesvirus-
8 (HHV-8)-related Kaposi sarcoma patients [44]. PD-1 expression by NK cells is also
frequently observed in the context of cancers in which the PD-1 ligands PD-L1/L2 are
highly expressed by tumor cells [48,49], which is frequently the case for EBV-positive
PTLDs [50,51]. In pediatric EBV-positive PTLD patients with high PD-1 expression by NK
cells, the low functional capacity of NK cells, in terms of both IFN-γ production and CD107a
cytotoxicity marker expression, can be recovered after in vitro PD-1/PD-L1 blockade [34].
A study of adult lung recipients observed diminished NK cell cytotoxicity against various
lymphoma cell lines at PTLD diagnosis [33], while IFN-γ production after IL-12 and
IL-18 stimulation was superior in NK cells of adult SOT recipients at PTLD diagnosis,
compared to transplant controls [32,33]. Treatment with anti-PD-1 antibodies resulted in
increased cytotoxicity and IFN-γ production of peripheral NK cells from multiple myeloma
patients carrying high proportions of PD-1+ NK cells, suggesting that PD-1 could be a
target for an immunotherapeutic strategy in EBV-positive PTLD patients [52]. However,
immune-checkpoint blockade in transplant recipients is a delicate task due to the risk of
transplant rejection, an issue that currently limits the utilization of anti-PD-1 and anti-PD-L1
antibodies in PTLD patients [53,54].
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Figure 1. Natural killer (NK) cells are the first lymphocyte compartment to be quantitatively and
functionally restored after solid organ or hematopoietic stem-cell transplantation and are the first
line of protection against Epstein–Barr virus (EBV)-infected cells and tumor development. At the
recognition of EBV-infected or tumor targets, NK cells release perforin and granzymes to mediate
the lysis of target cells. Meanwhile, NK cells produce IFN-γ to limit viral infection. Transplant
recipients with increasing EBV loads are at high risk of EBV-positive PTLD development and
are often treated with rituximab, a monoclonal antibody (mAb) that binds to the CD20 molecule
expressed at the surface of B cells. In such cases, NK cells also contribute to the defense of the host by
inducing antibody-dependent cell cytotoxicity (ADCC) though the recognition of therapeutic mAbs
by CD16. However, solid organ transplantation (SOT) recipients often present increased proportions
of NK cells expressing the PD-1 inhibiting immune checkpoint receptor in relation with high EBV
loads in blood. During EBV-positive post-transplant lymphoproliferative disorders (PTLDs), NK
cells progressively increase PD-1 expression together with the NKG2A inhibiting receptor, while
NKG2D and NKp46 activating receptors are downmodulated, a phenotype that might impact NK cell
functional capacity against the tumor. In addition to this phenotype, constant NK cell activation has
been observed and related to increased activation-induced cell death (AICD), resulting in peripheral
NK cell lymphopenia at PTLD diagnosis. In the case of EBV-negative PTLDs, NK cells show increased
expression of the Tim-3 inhibiting immune checkpoint receptor, and increased apoptosis has also
been associated with mild NK cell lymphopenia at EBV-negative PTLD diagnosis. Besides their
central role as cytotoxic innate lymphocytes, NK cells can also be exploited for therapeutic use. Their
most frequent role is their cytotoxic activity through ADCC in the context of mAb treatments such
as chimeric (rituximab) or humanized (obinutuzmab) anti-CD20 mAbs. Furthermore, autologous
infusions of activated NK cells have been used in HSCT recipients with PTLD. Currently, several
strategies for NK cell activity enhancement are under development and present characteristics that
could allow their utilization in transplanted populations. Bi-specific and tri-specific NK cell engagers,
for example, facilitate NK cell synapsing with tumor targets in a very specific manner, and offer the
advantage that they can be administered to boost NK cell responses of the host or be coupled with
either autologous or allogeneic infusions of NK cells. CAR-NK cells, on the other hand, promise an
“off-the-shelf” cellular therapy, so far showing low toxicity and high specificity in immunocompetent
recipients.
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Another important parameter to consider when studying NK cell phenotype in trans-
plant recipients is the EBV pre-transplant serology. While most adult transplant recipients
have encountered EBV before transplantation, pediatric transplant recipients are less likely
to and therefore more frequently develop primary EBV primary infection after transplan-
tation. A recent study by our team observed that the NK cells of adult PTLD patients
overexpress the HLA-DR activation marker, with the highest levels observed in patients
who acquired primary EBV infection post-transplant [32]. In that same study, NK cell
activation was associated with high EBV loads and seemed to cause NK cell apoptosis, as
those patients also presented with high proportions of IFN-γ-producing NK cells, PD-1
overexpression and profound NK cell lymphopenia [32] (Figure 1). Altogether, the dif-
ferent alterations of NK cells that have been described at EBV-positive PTLD diagnosis
seem to be directly related to the interaction between EBV and NK cells in the context of
immunosuppression and reduced presence of adaptive T lymphocytes.

Besides the direct role of NK cells in the control of both EBV infection and tumor
development, NK cells also share complementary roles with other cellular components of
immunity. Given the impaired state of the immune system under immunosuppressive ther-
apy, such complementary roles become essential to maintain the delicate balance between
immunity and virus/tumor development. The increased capacity of NK cells to produce
IFN-γ at EBV-positive PTLD diagnosis might partially compensate for the low levels of la-
tent EBV-specific CD4+ Th1 cells frequently observed after transplantation [47,55,56]. Thus,
concomitant reduction of Th1 and NK cells limits two subsets specialized in producing high
levels of the anti-viral cytokines IFN-γ and TNF-α. Furthermore, the cytotoxic capacity of
NK cells is probably essential for keeping EBV-infected cells under control, especially when
considering that EBV-specific CD8+ T cells also show several defects in EBV-positive PTLD
patients. Finally, the synergistic work between the B and NK cell compartments results in
interaction between antibody production and CD56dim CD16+ NK cell-directed ADCC.

Although most studies describing NK cells in EBV-positive PTLDs are based on
observations made in peripheral blood populations, the genetic characterization of the
EBV-positive PTLD tumor microenvironment (TME) has started to demonstrate the role
of NK cells. The comparison of gene expression profiles between EBV-positive and EBV-
negative tumors showed positive regulation of genes associated with innate immunity
and cytotoxicity in EBV-positive PTLDs [57]. However, the actual capacity of NK cells to
infiltrate the tumor microenvironment (TME) has not been proven and NK cell anti-tumor
cytotoxicity might be limited due to the tolerogenic environment created by EBV latent
proteins and miRNAs [17,58–60].

2.2. NK Cells and EBV-Negative PTLDs

The role of NK cells in EBV-negative PTLD has been less described than in its EBV-
positive counterpart. EBV-negative PTLDs have historically represented a small minority
of PTLDs, but their proportion has constantly increased in recent years [21], currently rep-
resenting 30–50% of PTLDs depending on different cohorts [20,21,61–63]. As EBV-negative
PTLDs develop late after transplantation, 5–10 years or more [64], the identification of
predictive biomarkers, and therefore prevention, is difficult. EBV-negative PTLDs generally
present as aggressive monomorphic lymphomas (Table 1).

A recent immunological characterization of 39 EBV-negative PTLDs allowed us to
observe different immune alterations between EBV-positive and EBV-negative PTLDs [32].
We observed a mild NK cell lymphopenia in EBV-negative PTLD patients, suggesting that
NK cell lymphopenia could be a common aspect between PTLDs, although the presence
of EBV clearly exacerbated NK cell depletion. More interestingly, NK cells from EBV-
negative PTLD patients displayed higher Tim-3 expression than NK cells from EBV-positive
samples [32] (Figure 1). The Tim-3 immune checkpoint is an inhibitory receptor normally
expressed by mature NK cells [65], but its expression is generally increased in various
types of cancer [66–70]. In patients with lung adenocarcinoma, treatment with anti-Tim-
3 antibodies resulted in increased cytotoxicity and IFN-γ production of peripheral NK
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cells [70], suggesting that Tim-3 could be a target for an immunotherapeutic strategy
in EBV-negative PTLD patients. However, the safety of the Tim-3 immune-checkpoint
blockade in transplant recipients remains unknown, especially when considering the risk
of graft rejection.

3. Putative Strategies Exploiting NK Cell Therapy to Treat PTLDs

Considering the major role of NK cells in the immunopathology of PTLD, we asked
if effector functions of NK cells could be used as a therapeutic option in PTLD, whatever
their origin. However, very few data are available for PTLD patients because of the rarity
of the disease and the frequent exclusion of these patients from clinical trials. Thus, we
focused on NK-based regimens in non-Hodgkin lymphoma (NHL) patients, assuming
that they could be extended to PTLD, subject to confirmation of safety. Indeed, safety is a
major concern in transplant recipients because of the risk of graft rejection in the case of
non-targeted immunotherapy.

3.1. NK Cell-Mediated ADCC

In the context of lymphoma, NK cell-mediated ADCC can be exploited through the
use of therapeutic monoclonal antibodies (mAbs) targeting an antigen, such as CD20.
Several reports have demonstrated that ADCC is an important mechanism contributing to
the efficacy of rituximab in follicular lymphoma [71–73]. It is known that the valine (V) to
phenylalanine (F) transition at amino-acid position 176 of FcGRIIIa induces a higher affinity
to human IgG1 to lead a more effective mediation of ADCC [74]. Indeed, polymorphisms of
FcGRIIIa (homozygous V/V allele) are independently associated with response to rituximab
and progression-free survival (PFS) in follicular lymphoma patients [71,72]. In the same
way, favorable genotypes of FcGRIIIa positively affect the outcomes of lymphoma patients
treated with idiotype vaccination [75]. Conversely, FcGRIIIa polymorphisms do not corre-
late with outcomes for lymphoma patients treated with chemotherapy without rituximab,
confirming that the positive effects of favorable genotypes are not due to the underlying
clinical behavior of the disease, but to immunologic mechanisms. [76]. A new generation
of glycoengineered anti-CD20 mAbs, such as obinutuzumab, leading to afucosylation and
enhanced affinity for the FcGRIIIa, induced greater ADCC than rituximab and are currently
used for NHL treatment [77] (Figure 1). Of note, FcGRIIIa expression is negatively regulated
by the metalloproteinase ADAM17, which cleaves this receptor from the surface of NK
cells after activation. Preventing this downregulation in tumor-infiltrating NK cells could
be a potential target of treatment. A phase I/II trial testing rituximab combined with an
ADAM17 inhibitor is currently being conducted in patients with large B cell lymphoma
(NCT02141451).

3.2. NK Cell Engagers

In another attempt to enhance the natural function of tumor-infiltrating NK cells,
antibody constructs known as bispecific killer engagers (BiKE) have been developed,
which bring these cells into contact with tumor cells in an antigen-specific manner via
CD16 [78–82]. In addition to bridging contact, the juxtaposition of NK cells and targets fa-
cilitates other activating receptor interactions and other missing-self signals. Nevertheless,
BiKE failed to target NK cell expansion, as CD16 ligation does not trigger proliferation
and survival [83]. To resolve this issue, tri-specific killer engager (TriKE) molecules were
designed to induce specific NK cell-mediated killing, while providing a cytokine signal to
drive NK cell expansion (Figure 1). Indeed, these molecules are composed of two single-
chain variable fragments (scFvs), one engaging the CD16 on NK cells and one engaging a
tumor-associated antigen, connected by small linkers and IL-15, a cytokine that stimulates
the expansion of NK cells, and their ADCC functions. TriKE demonstrated a superior capac-
ity for stimulating NK proliferation and persistence, and a higher killing capacity of these
NK cells compared to that seen when treated using BiKE [84–86]. Considering lymphoid
malignancies, AFM13 is the first BiKE that specifically recruits NK cells through CD16A
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binding while targeting CD30, and which was given to relapsed or refractory Hodgkin
lymphoma (R/R HL) patients. In a phase 1 study, AFM13 showed a good safety profile,
but only short-term NK cell activation, low response rates (23% for patients receiving
optimal doses) and short response duration (median five months) [87]. It was combined
with pembrolizumab to facilitate innate and adaptive immune system recruitment in R/R
HL [88]. Outcomes were very positive, with an 83% overall response rate (ORR) and a
median response duration of 10 months, however it is difficult to assess the individual
contributions of AFM13 and pembrolizumab to the efficacy observed. Several trials testing
AFM13 in lymphoma treatment are currently under way (NCT02321592, NCT03192202,
NCT04074746). For B cell proliferations such as chronic lymphoid leukemias (CLL) and
lymphomas, TriKE therapies have been tested in vitro and have demonstrated stimulation
of NK cell expansion and enhancement of effector functions associated with tumor growth
delay and survival improvement, compared to untreated or BiKE-treated mice [86,89,90].

3.3. NK Cell Enhancement with Cytokines

Another way to enhance NK cell function in vivo is through the use of IL-2 or IL-15,
which are known to be key regulators of NK cell activity. While an increase in NK cell
activity against malignant cells was seen with this method, limited success was observed
in patients treated with cytokines such as IL-2. In that respect, we have learned that IL-2
therapy results in activation of regulatory T cells (Tregs), which inhibits NK cell function
and limits their anti-tumor activity [91,92]. Treatment with IL-15 was associated with
lower toxicities than IL-2 treatment, and few objective responses [93–95]. To augment the
antitumor immunity induced by such approaches, N-803 IL-15 “superagonist” is now being
tested in combination with NK cell adoptive treatment, immune checkpoint inhibitors or
tumor-targeting mAbs in several clinical trials. In patients with R/R NHL, N-803 combined
with rituximab resulted in an ORR of 48% in a phase 1 study [96].

3.4. Adoptive NK Cell Transfer

The advantages of anti-tumor immunity mediated by NK cells can also be imple-
mented using adoptive cellular therapy. Autologous NK cell infusions were the first
major focus of adoptive NK cell therapy, but failed to produce significant therapeutic
effects in hematological or solid malignancies, possibly due to the lack of KIR-ligand
mismatch [97–99]. Moreover, the expansion efficiency and functional status of autologous
NK cells were still limited because patients were often heavily pretreated, whereas al-
logeneic NK cells from healthy donors could have a stronger graft-versus-tumor effect.
These considerations motivated the development of treatments based on allogeneic NK
cells, which can usually be collected from haploidentical or unrelated donors, or from
umbilical cord blood, clonal cell line NK-92 or stem cell-derived NK cells. The first studies
were undertaken in the setting of HSCT or acute myeloid leukemia (AML), because of
the major role of NK cells in post-transplantation immune reconstitution [100–102]. For
B cell lymphoma patients, haploidentical NK cell infusions plus IL-2 and rituximab after
lymphodepleting chemotherapy induced a 29% ORR (n = 4). Donor NK cells persisted
for at least one week after infusion and beyond day 28 in one responding patient [103].
Notably, levels of IL-15 in peripheral blood prior to NK cell infusion were almost twofold
higher in patients who showed a clinical response (Figure 1). Thus, in order to improve
expansion and efficacy of NK cell therapy, recombinant (r) human IL-15 was tested in
association with lymphodepleting chemotherapy and haploidentical NK cell infusion in
AML patients [102]. The trial reported a high rate of adverse events, such as cytokine
release syndrome (CRS) and neurotoxicity, after subcutaneous injection of IL-15, while
achieving a 40% ORR. These results suggest that future studies should be undertaken to
clarify the best way to use these agents.

Another approach to improve expansion, functionality and “memory” of NK cells is
to use cytokine-induced memory-like (CIML) NK cells. These cells are obtained after IL-2,
IL-15 and IL-18 cytokine preactivation, and low-dose IL-2 administration. They exhibit
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longer persistence and higher effector functions than control NK cells [104]. Currently,
CIML NK cell therapy has only been tested in AML patients, and induced a clinical
response in 50% of patients with poor prognosis, however no clinical trials have been
performed for lymphoma patients [105]. Finally, exciting results have been reported
more recently at an American Society of Hematology meeting, for a treatment called
GCA-201 combining nicotinamide (NAM) and IL-15, which expanded allogeneic NK cells
from healthy donors [106]. NAM plays a key role in metabolic reprogramming of cells
and preserves cellular functionality and phenotype during ex vivo expansion. Nineteen
R/R NHL patients were treated with GDA-201 and rituximab after lymphodepleting
chemotherapy and achieved an ORR of 74% and a complete response (CR) rate of 67%,
without any remarkable toxicities. Median duration of response was 8.7 months, eight
patients remained in CR without other treatment, and one of them maintained the response
for 24 months. Flow cytometry confirmed the persistence of GDA-201 in peripheral blood
for 7–10 days, as well as enhanced in vivo proliferation and trafficking to the bone marrow
and lymph nodes.

3.5. Chimeric Antigen-Receptor NK Cells (CAR-NK)

Finally, interest is growing surrounding CAR-NK cells, which could overcome the
limits of other adoptive therapies. CAR-NK cells have the potential to be rapid, off-
the-shelf and cheaper products, without the need for HLA-matching and without major
adverse effects (permitting repeated doses) (Figure 1). Anti-CD19 CAR-NK cells were
constructed from umbilical cord blood using a retroviral vector that expresses genes that
encode anti-CD19 CAR, IL-15 and inducible caspase 9 to trigger apoptosis in the case of
unacceptable toxicity. This product was tested in phase 1 and 2 trials for the treatment
of heavily pre-treated R/R CLL and NHL, and persisted for at least 12 months in the
peripheral blood. It was associated with a 73% ORR and a 64% CR rate (7 of 11 patients),
without any major toxicity [107]. All of the responses occurred during the first month
after infusion and one patient maintained the CR for 13 months without further treatment.
Nevertheless, the majority of responding patients were given other treatment after the
CAR-NK cell infusion, which makes it difficult to draw conclusions about the durability of
the response. These results are very encouraging and further studies are needed to address
the issue of response duration. Several clinical trials of CAR-NK cells targeting CD19 or
CD22 are ongoing for lymphoma patients (NCT04639739, NCT03056339, NCT04245722).
Notably, CIML-CAR-NK cells are also in development for use in NK-resistant lymphoma
patients [108].

4. Conclusions

Throughout this review, we have highlighted the many different roles that NK cells
perform in the context of PTLDs. NK cells as innate cytotoxic sentinels against tumors
and viral infections are the first line of protection that limits cellular transformation at
the early stages. Although rare, NK cells can also be the origin of PTLD and develop
as NK cell lymphomas. Yet, the primary role of NK cells is their participation in PTLD
immunopathology through the acquired alterations that limit their capacity to control
tumor growth, as well as their complementary role with other cellular components of the
immune system. Finally, the most recently discovered role of NK cells in PTLDs is their
use in PTLD therapy, both as ADCC effectors and as a therapeutic product by themselves
through the different applications of NK cell infusions in current development.
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polypeptide-related sequence B (MIC-B); natural cytotoxicity receptor (NCR); natural killer (NK);
NK group 2 member A(NKG2A); NK group 2 member D (NKG2D); overall response rate (ORR);
post-transplant lymphoproliferative disorders (PTLDs); programmed cell death protein 1 (PD1);
programmed death-ligand 1 (PD-L1); progression-free survival (PFS); regulatory T cells (Tregs);
single-chain variable fragments (scFvs); solid organ transplantation (SOT); T-cell receptor (TCR);
T cell immunoglobulin and mucin domain-containing-3 (Tim-3); tri-specific killer engager (TriKE);
tumor microenvironment (TME); tumor necrosis factor alpha (TNF-α); World Health Organiza-
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