
 International Journal of 

Molecular Sciences

Article

Changes in microRNA Expression in the Cochlear
Nucleus and Inferior Colliculus after Acute
Noise-Induced Hearing Loss

Sohyeon Park 1,2, Seung Hee Han 2, Byeong-Gon Kim 2,3, Myung-Whan Suh 2, Jun Ho Lee 2,3,
Seung Ha Oh 2,3 and Moo Kyun Park 2,3,4,*

1 Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences,
Seoul 08826, Korea; 5liviapark@snu.ac.kr

2 Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of
Medicine, Seoul 03080, Korea; hee92h@nate.com (S.H.H.); byeonggone@naver.com (B.-G.K.);
drmung@naver.com (M.-W.S.); junlee@snu.ac.kr (J.H.L.); shaoh@snu.ac.kr (S.H.O.)

3 Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
4 Seoul Wide River Institute of Immunology, Seoul National University, Gangwon 25159, Korea
* Correspondence: aseptic@snu.ac.kr

Received: 27 October 2020; Accepted: 19 November 2020; Published: 20 November 2020 ����������
�������

Abstract: Noise-induced hearing loss (NIHL) can lead to secondary changes that induce neural
plasticity in the central auditory pathway. These changes include decreases in the number of synapses,
the degeneration of auditory nerve fibers, and reorganization of the cochlear nucleus (CN) and inferior
colliculus (IC) in the brain. This study investigated the role of microRNAs (miRNAs) in the neural
plasticity of the central auditory pathway after acute NIHL. Male Sprague–Dawley rats were exposed
to white band noise at 115 dB for 2 h, and the auditory brainstem response (ABR) and morphology of
the organ of Corti were evaluated on days 1 and 3. Following noise exposure, the ABR threshold
shift was significantly smaller in the day 3 group, while wave II amplitudes were significantly larger
in the day 3 group compared to the day 1 group. The organ of Corti on the basal turn showed
evidence of damage and the number of surviving outer hair cells was significantly lower in the
basal and middle turn areas of the hearing loss groups relative to controls. Five and three candidate
miRNAs for each CN and IC were selected based on microarray analysis and quantitative reverse
transcription PCR (RT-qPCR). The data confirmed that even short-term acoustic stimulation can
lead to changes in neuroplasticity. Further studies are needed to validate the role of these candidate
miRNAs. Such miRNAs may be used in the early diagnosis and treatment of neural plasticity of the
central auditory pathway after acute NIHL.
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1. Introduction

According to the World Health Organization, 466 million people—more than 5% of the world’s
population—are affected by hearing loss [1]. Loss of hearing makes communication difficult and can
lead to psychosocial problems, such as depression and feelings of loneliness [2]. Therefore, losing the
ability to hear can affect people’s lives in many ways.

NIHL is a type of acquired hearing loss that is due to a sudden excessively loud sound or continuous
moderately loud sounds. Depending on the duration and intensity of the sounds, hearing loss can
be temporary or permanent [3]. Threshold sensitivity loss after exposure to a loud noise can be
recovered to baseline levels after a few hours to weeks and that is called temporary threshold shift

Int. J. Mol. Sci. 2020, 21, 8792; doi:10.3390/ijms21228792 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-8635-797X
http://dx.doi.org/10.3390/ijms21228792
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/22/8792?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 8792 2 of 19

(TTS). Permanent threshold shift (PTS) occurs when the noise is too loud to recover to its baseline level
or the noise takes place repeatedly or continuously, impeding recovery.

Even though hearing thresholds may return to normal, the changes in the synapse may affect
auditory processing and hearing upon noise [4]. Exposure to noise not only targets the hair cells (HCs)
in the cochlea, but also the neuronal cells in the auditory pathway. Noise exposure can also alter the
synaptic transmission and ion channel function, distort sensory maps, and cause abnormal neuronal
firing patterns. These cellular and physiological changes can cause another disorder, such as loudness
recruitment or tinnitus [5].

NIHL usually progresses slowly over a period of years, making it difficult to recognize.
Initial symptoms include difficulty in differentiating conversations against background noise.
Later, listening becomes difficult, even in ordinary circumstances. Since NIHL progresses gradually
and prevention is so crucial, it is important to diagnose NIHL at an early stage [6].

MicroRNAs (MiRNAs) are small non-coding single-stranded endogenous RNAs that regulate
posttranscriptional gene expression. Mature miRNAs are 18–22 nucleotides in length and can repress
and degrade target mRNAs by binding to their 3′ or 5′ untranslated regions. MiRNAs are involved
in a number of physiological processes and play key roles in neural development and plasticity.
MiRNAs are abundant in the brain, due to its complexity [7,8], and are also found in body fluids such
as the cerebrospinal fluid, whole blood, plasma, and serum [9]. Consequently, miRNAs can be detected
and analyzed non-surgically and may provide the basis for a new generation of therapeutic agents [10].
In fact, there are some miRNA-based therapeutics for cancer and other diseases and several miRNAs
are currently being studied in Phase I/II clinical trials, with promising outcomes [11].

Electrical signals from the HCs in the inner ear flow to primary sensory neurons, which are called
spiral ganglion neurons. These cochlear nerves combine with vestibular nerves to become branch VIII
of the cranial nerve [12], which transfers the converted acoustic information to the cochlear nucleus
(CN), developing the neural pathway [13]. The superior olivary complex (SOC) in the ventral auditory
brainstem receives auditory information from the CN and sends the signal to the inferior colliculus
(IC). The IC plays a crucial role in the auditory pathway and is the first location where parallel auditory
signals from both sides of the cochlea are integrated. Most of the auditory information is processed in
the IC and sent to the auditory cortex through the medial geniculate body [14].

Noise exposure is one of the most common causes of hearing loss. Exposure to loud noise leads
to secondary changes, such as decreases in the number of synapses, the degeneration of auditory
nerve fibers, and reorganization of the CN and IC, which may induce neural plasticity in the central
auditory pathway. However, little is known about the role of miRNAs in the central auditory pathway.
Therefore, this study investigated the role of miRNAs in the neural plasticity of the central auditory
pathway after NIHL.

2. Results

2.1. Hearing Changes after Noise Exposure

Tone-burst acoustic stimuli were measured at three different frequencies of 4, 8, and 16 kHz.
Our noise-control model (n = 4) showed that the auditory brainstem response (ABR) threshold started
to decrease at day 1 after the noise exposure. By day 3 after the exposure to noise at 4 and 8 kHz,
the ABR thresholds had returned to normal (Figure 1a). The mean ABR thresholds observed for
the day 1 control group (4 kHz, 20.6 ± 2.2 dB; 8 kHz, 21.3 ± 2.7 dB; 16 kHz, 25.4 ± 3.6 dB), day 1
group (4 kHz, 20.0 ± 0.0 dB; 8 kHz, 20.8 ± 1.9 dB; 16 kHz, 27.1 ± 3.6 dB), day 3 control group (4 kHz,
20.8 ± 2.4 dB; 8 kHz, 21.9 ± 3.2 dB; 16 kHz, 25.6 ± 4.3 dB), and day 3 group (4 kHz, 24.2 ± 4.8 dB;
8 kHz, 25.8 ± 4.6 dB; 16 kHz, 26.9 ± 3.6 dB) confirmed that hearing levels at all three frequencies were
normal before the experiment (Figure 1b–d). After 2 h of noise exposure, both the day 1 group (4 kHz,
81.9 ± 11.6 dB; 8 kHz, 87.1 ± 3.3 dB; 16 kHz, 88.3 ± 2.4 dB) and the day 3 group (4 kHz, 78.8 ± 11.8 dB;
8 kHz, 84.6 ± 2.9 dB; 16 kHz, 86.7 ± 3.8 dB) exhibited significant increases in ABR thresholds compared
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to the day 1 control group (4 kHz, 20.2 ± 1.0 dB; 8 kHz, 20.4 ± 1.4 dB; 16 kHz, 23.5 ± 3.8 dB) and the
day 3 control group (4 kHz, 20.4 ± 1.4 dB; 8 kHz, 21.0 ± 2.5 dB; 16 kHz, 24.4 ± 3.7 dB), respectively
(Figure 1b–d). At 4 kHz, the mean ABR threshold of the day 1 group (65.6 ± 19.5 dB) was slightly
lower than that of the day 1 control group (81.9 ± 11.6 dB). Moreover, the mean ABR threshold of
the day 3 group (42.7 ± 17.1 dB) was lower than that of the day 1 group. The differences between
these groups were significant (p < 0.001; Figure 1b,e). At 8 kHz, the mean ABR thresholds of both
the day 1 (73.3 ± 10.7 dB) and day 3 (51.9 ± 13.7 dB) groups were significantly lower than those of
the control groups (87.1 ± 3.3 dB; p < 0.001; Figure 1c,f). The mean ABR thresholds of the day 1
(79.4 ± 8.5 dB) and day 3 (63.5 ± 12.6 dB) groups were also significantly lower than those of the control
groups (88.3 ± 2.4 dB) at 16 kHz (p < 0.001; Figure 1d,g). The day 3 group exhibited significantly better
hearing than the day 1 group at all three frequencies (p < 0.001; Figure 1e–g).
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Figure 1. Hearing changes after noise exposure. (a) Long-term auditory brainstem response (ABR) data
of the noise-control model obtained over a period of 3 weeks. (b–d) Line graphs showing differences
between control and treatment groups at frequencies of 4, 8, and 16 kHz. *** p < 0.001. (e–g) Line graphs
comparing ABR thresholds at days 1 and 3 after noise exposure at frequencies of 4, 8, and 16 kHz.
*** p < 0.001.

2.2. ABR Amplitudes

The amplitudes of waves II and IV were calculated based on ABR waveforms. The wave II
amplitudes observed in the day 1 treatment group (4 kHz, 0.61 ± 0.28 µV; 8 kHz, 0.62 ± 0.25 µV; 16 kHz,
0.39 ± 0.23 µV) were significantly smaller than those observed in the day 3 treatment group, at all
frequencies (4 kHz, 1.56 ± 0.90 µV; 8 kHz, 1.45 ± 0.84 µV; 16 kHz, 1.08 ± 0.0 µV; p < 0.001; Figure 2a).
At 4 kHz, the mean wave IV amplitude observed in the day 1 treatment group (0.44 ± 0.39 µV) was
significantly smaller than that in the day 3 treatment group (0.93 ± 0.22 µV). However, at the other
frequencies, the amplitudes observed in the day 1 treatment group (8 kHz, 0.36 ± 0.22 µV; 16 kHz,
0.26 ± 0.18 µV) did not differ significantly from those observed on day 3 (8 kHz, 0.43 ± 0.40 µV; 16 kHz,
0.26 ± 0.26; Figure 2b).
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Figure 2. Amplitudes of waves II and IV and latencies of waves IV–II. (a) Comparison of the amplitude
of wave II at different frequencies. The wave II amplitude for rats assayed at day 3 after noise exposure
was significantly larger than that for rats assayed at day 1 after noise exposure, at all frequencies.
*** p < 0.001. (b) Comparison of the amplitude of wave IV among different frequencies. The wave
IV amplitude for rats assayed at day 3 after noise exposure was significantly larger than that for rats
assayed at day 1 after noise exposure at 4 kHz. *** p < 0.001. No significant differences were observed
at the other frequencies. (c) The latencies of waves IV–II at each frequency. No significant differences
were observed at any frequency.

2.3. ABR Latencies

Latencies between waves IV and II were calculated based on ABR waveforms. At 4 kHz, there was
no difference in latencies between the day 1 (2.54± 0.50 ms) and day 3 treatment groups (2.64 ± 0.77 ms).
Similar results were seen at 16 kHz, with no difference in latencies being evident between the day 1
(2.77 ± 0.15 ms) and day 3 treatment groups (2.80 ± 0.41 ms). Conversely, at 8 kHz, the latency observed
in the day 3 treatment group (2.38 ± 0.54 ms) was slightly reduced compared to that of the day 1
treatment group (2.68 ± 0.71 ms); however, this difference was not statistically significant (Figure 2c).

2.4. Histology of the Organ of Corti

A series of sagittal sections from decalcified cochleae were stained with hematoxylin and eosin
(H&E) to investigate the structure of the organ of Corti. These structures were intact in both the day 1
and day 3 control groups. The apical turn and middle turn sections of the organ of Corti from the day
1 and day 3 treatment groups were also normal, with intact HCs and other non-sensory cells, such as
Deiter and pillar cells. However, the basal turn sections of the organs of Corti exhibited abnormalities.
The degree of damage differed among cochleae, with some exhibiting only a loss of HCs, and others
also exhibiting a loss of supporting cells (Figure 3).
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Figure 3. Hematoxylin and eosin (H&E) staining of the basal, middle, and apical turn sections of the 
organ of Corti. Damage (indicated by black arrows) was only observed in the basal turn section in 
rats assayed at days 1 and 3 after noise exposure. All scale bars represent 50 µm. 

2.5. Phalloidin Staining of Outer HCs 

Following completion of the whole mount surface preparation procedure, phalloidin was used 
to stain the outer HCs. Two 200-µm-long segments were selected from each turn section of the organ 
of Corti, and the mean number of surviving outer HCs was determined. All three rows of outer HCs 
from all control samples were normal, with no evidence of missing HCs. However, significant HC 
loss was observed in the basal turn sections in both the day 1 (85% ± 7%; p = 0.001) and day 3 (93% ± 
6%; p = 0.019) treatment groups. Some HCs were also lost from the middle turn sections of samples 
from the day 1 (99% ± 1%; p = 0.008) and day 3 (99% ± 1%; p < 0.001) treatment groups. In contrast, 
outer HCs in the apical turn sections of samples from both the day 1 and day 3 treatment groups 
were largely intact (both, 100% ± 0%). For the basal turn sections, significantly fewer HCs were lost 
from the day 3 treatment group compared to the day 1 treatment group (p = 0.039). No statistically 
significant difference in HC loss was observed between the day 1 and day 3 groups for the middle or 
apical turn sections of the organ of Corti (Figure 4). 

Figure 3. Hematoxylin and eosin (H&E) staining of the basal, middle, and apical turn sections of the
organ of Corti. Damage (indicated by black arrows) was only observed in the basal turn section in rats
assayed at days 1 and 3 after noise exposure. All scale bars represent 50 µm.

2.5. Phalloidin Staining of Outer HCs

Following completion of the whole mount surface preparation procedure, phalloidin was used to
stain the outer HCs. Two 200-µm-long segments were selected from each turn section of the organ of
Corti, and the mean number of surviving outer HCs was determined. All three rows of outer HCs
from all control samples were normal, with no evidence of missing HCs. However, significant HC loss
was observed in the basal turn sections in both the day 1 (85% ± 7%; p = 0.001) and day 3 (93% ± 6%;
p = 0.019) treatment groups. Some HCs were also lost from the middle turn sections of samples from
the day 1 (99% ± 1%; p = 0.008) and day 3 (99% ± 1%; p < 0.001) treatment groups. In contrast, outer HCs
in the apical turn sections of samples from both the day 1 and day 3 treatment groups were largely
intact (both, 100% ± 0%). For the basal turn sections, significantly fewer HCs were lost from the day
3 treatment group compared to the day 1 treatment group (p = 0.039). No statistically significant
difference in HC loss was observed between the day 1 and day 3 groups for the middle or apical turn
sections of the organ of Corti (Figure 4).
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Figure 4. Phalloidin staining of outer hair cells (HCs) and HC survival. (a) Fluorescence staining of 
outer HCs from each turn section of the cochlea. Scale bars represent 50 µm. Asterisks indicate the 
positions of lost HCs. The blue line along the hair cell line indicates the length of 200 µm. (b) 
Survival rates of outer HCs in each turn section. The surviving HCs per 200 µm along the length of 
the cochlea in the basal, middle, and apical turn sections were counted. ** p < 0.05 and *** p < 0.001. 

2.6. Selection of Candidate miRNAs 

2.6.1. The CN 

Microarray analysis of the CN identified 1228 candidate miRNAs. Changes in miRNA 
expression were assessed via three pair-wise comparisons: Between the day 1 treatment and control 
groups; between the day 3 treatment and control groups; and between the day 1 and day 3 groups. 
For each comparison, miRNAs with normalized expression changes ≥ 1.5-fold (p < 0.1) were 
excluded. Then, the miRNAs from each set were combined and those found in more than one 
dataset were eliminated. miRNAs that exhibited differences in expression between the day 1 and 
day 3 groups were also excluded. A hierarchical clustering heat map was created using Multiple 
Experiment Viewer (http://mev.tm4.org) to visualize the remaining 33 miRNAs (Figure 5a). Then, 
miRNAs with ≥1.5-fold differences in expression between the day 1 and day 3 control groups were 
excluded. Of the 21 miRNAs that remained, only those expressed in humans were considered for 
further analysis, resulting in a final list of 10 candidate miRNAs, including miR-411-3p, miR-183-5p, 
miR-377-3p, miR-20b-5p, miR-137-5p, miR-211-3p, miR-483-5p, miR-92a-1-5p, miR-187-5p, and 
miR-200b-3p (Table 1). 

Figure 4. Phalloidin staining of outer hair cells (HCs) and HC survival. (a) Fluorescence staining of
outer HCs from each turn section of the cochlea. Scale bars represent 50 µm. Asterisks indicate the
positions of lost HCs. The blue line along the hair cell line indicates the length of 200 µm. (b) Survival
rates of outer HCs in each turn section. The surviving HCs per 200 µm along the length of the cochlea
in the basal, middle, and apical turn sections were counted. ** p < 0.05 and *** p < 0.001.

2.6. Selection of Candidate miRNAs

2.6.1. The CN

Microarray analysis of the CN identified 1228 candidate miRNAs. Changes in miRNA expression
were assessed via three pair-wise comparisons: Between the day 1 treatment and control groups;
between the day 3 treatment and control groups; and between the day 1 and day 3 groups.
For each comparison, miRNAs with normalized expression changes ≥1.5-fold (p < 0.1) were excluded.
Then, the miRNAs from each set were combined and those found in more than one dataset were
eliminated. miRNAs that exhibited differences in expression between the day 1 and day 3 groups were
also excluded. A hierarchical clustering heat map was created using Multiple Experiment Viewer
(http://mev.tm4.org) to visualize the remaining 33 miRNAs (Figure 5a). Then, miRNAs with ≥1.5-fold
differences in expression between the day 1 and day 3 control groups were excluded. Of the 21 miRNAs
that remained, only those expressed in humans were considered for further analysis, resulting in a final
list of 10 candidate miRNAs, including miR-411-3p, miR-183-5p, miR-377-3p, miR-20b-5p, miR-137-5p,
miR-211-3p, miR-483-5p, miR-92a-1-5p, miR-187-5p, and miR-200b-3p (Table 1).

http://mev.tm4.org
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Figure 5. Heat maps of the CN and IC. Heat maps of (a) 33 miRNAs from the CN and (b) 27 
miRNAs from the IC selected based on ≥1.5-fold changes in normalized expression (p < 0.1). 
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rno-miR-20b-5p X 23 CAAAGUGCUCAUAGUGCAGGUAG 1.522 1.029 0.870 1.288 
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1 Fold change of day 1 treatment vs. control, 2 fold change of the day 3 treatment group vs. control, 3 

fold change of the day 1 and day 3 treatment groups, and 4 fold change of the day 1 vs. day 3 control 
groups. A color index chart for of the fold change data is provided in Supplementary Figure S1. 
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Figure 5. Heat maps of the CN and IC. Heat maps of (a) 33 miRNAs from the CN and (b) 27 miRNAs
from the IC selected based on ≥1.5-fold changes in normalized expression (p < 0.1).

Table 1. Candidate microRNAs (miRNAs) of the cochlear nucleus (CN).

Gene Symbol Chromosome Sequence Length Sequence 1/1C 1 3/3C 2 3/1 3 3C/1C 4

rno-miR-411-3p 6 20 UAUGUAACACGGUCCACUAA 0.977 0.529 0.712 1.315
rno-miR-183-5p 4 22 UAUGGCACUGGUAGAAUUCACU 1.542 0.957 0.759 1.222
rno-miR-377-3p 6 23 UGAAUCACACAAAGGCAACUUUU 1.652 1.154 0.839 1.201
rno-miR-20b-5p X 23 CAAAGUGCUCAUAGUGCAGGUAG 1.522 1.029 0.870 1.288
rno-miR-137-5p 2 22 ACGGGUAUUCUUGGGUGGAUAA 0.576 0.871 0.968 0.640
rno-miR-211-3p 1 20 GGCAAGGACAGCAAAGGGGG 0.649 1.420 1.334 0.610
rno-miR-483-5p 1 22 AAGACGGGAGAAGAGAAGGGAG 1.072 2.025 1.393 0.737

rno-miR-92a-1-5p 15 23 AGGUUGGGAUUUGUCGCAAUGCU 0.588 1.194 1.468 0.724
rno-miR-187-5p 18 18 AGGCUACAACACAGGACC 0.529 1.404 1.827 0.688
rno-miR-200b-3p 5 23 UAAUACUGCCUGGUAAUGAUGAC 1.826 3.587 2.895 1.474

1 Fold change of day 1 treatment vs. control, 2 fold change of the day 3 treatment group vs. control, 3 fold change of
the day 1 and day 3 treatment groups, and 4 fold change of the day 1 vs. day 3 control groups. A color index chart
for of the fold change data is provided in Supplementary Figure S1.

2.6.2. The IC

Microarray analysis of the IC identified 1200 miRNAs. Changes in miRNA expression were
assessed in three pair-wise comparisons: Between the day 1 treatment and control groups; between the
day 3 treatment and control groups; and between the day 1 and day 3 groups. For each comparison,
miRNAs with ≥1.5-fold normalized expression changes (p < 0.1) were excluded. Then, the miRNAs
from each set were combined, and those found in more than one dataset were eliminated. miRNAs that
exhibited differences in expression between the day 1 and day 3 groups were also excluded.
A hierarchical clustering heat map was created using Multiple Experiment Viewer to assess the
remaining 27 miRNAs (Figure 5b). Then, miRNAs with expression differences changes >1.5-fold
or <0.5-fold between the day 3 and day 1 control groups were excluded. Of the 26 miRNAs that
remained, only those expressed in humans were considered for further analysis, resulting in a
final list of 13 candidate miRNAs, including miR-204-5p, miR-376b-5p, miR-26b-5p, miR-136-3p,
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miR-132-5p, miR-128-2-5p, miR-132-3p, miR-377-5p, miR-210-3p, miR-92a-1-5p, miR-425-3p, miR-362-5p,
and miR-150-3p (Table 2).

Table 2. Candidate miRNAs of the inferior colliculus (IC).

Gene Symbol Chromosome Sequence Length Sequence 1/1C 1 3/3C 2 3/1 3 3C/1C 4

rno-miR-204-5p 1 22 UUCCCUUUGUCAUCCUAUGCCU 2.020 0.511 0.299 1.181
rno-miR-376b-5p 6 22 GUGGAUAUUCCUUCUAUGGUUA 2.606 0.712 0.332 1.215
rno-miR-26b-5p 9 21 UUCAAGUAAUUCAGGAUAGGU 1.842 0.585 0.413 1.301
rno-miR-136-3p 6 22 CAUCAUCGUCUCAAAUGAGUCU 0.777 0.357 0.484 1.055
rno-miR-132-5p 10 22 ACCGUGGCUUUCGAUUGUUACU 1.085 0.491 0.534 1.180

rno-miR-128-2-5p 8 21 GGGGGCCGAUGCACUGUAAGA 0.650 0.412 0.658 1.039
rno-miR-132-3p 10 22 UAACAGUCUACAGCCAUGGUCG 0.670 0.472 0.782 1.109
rno-miR-377-5p 6 22 AGAGGUUGCCCUUGGUGAAUUC 0.499 0.676 1.066 0.786
rno-miR-210-3p 1 22 CUGUGCGUGUGACAGCGGCUGA 0.452 0.659 1.217 0.834

rno-miR-92a-1-5p 15 23 AGGUUGGGAUUUGUCGCAAUGCU 0.498 0.918 1.333 0.723
rno-miR-425-3p 8 21 AUCGGGAAUAUCGUGUCCGCC 0.479 0.749 1.352 0.865
rno-miR-362-5p X 24 AAUCCUUGGAACCUAGGUGUGAAU 0.464 0.699 1.353 0.898
rno-miR-150-3p 1 19 CUGGUACAGGCCUGGGGGA 0.474 1.023 1.669 0.774

1 Fold change of day 1 treatment group vs. control, 2 fold change of the day 3 treatment group vs. control, 3 fold
change of the day 1 vs. day 3 treatment groups, and 4 fold change of the day 1 vs. day 3 control groups. A color
index chart for the fold change data is provided in Supplementary Figure S1.

2.7. Validation of Candidate miRNAs Using qRT-PCR

2.7.1. The CN

Based on the results of the microarray analysis of the CN, 10 candidate miRNAs were selected for
further analysis, including miR-411-3p, miR-183-5p, miR-377-3p, miR-20b-5p, miR-137-5p, miR-211-3p,
miR-483-5p, miR-92a-1-5p, miR-187-5p, and miR-200b-3p (Figure 6a). Microarray data of the day 3 and day
1 treatment groups are compared in Figure 6b, along with the accompanying qRT-PCR results. Based on
these data, five miRNAs were selected due to their consistent expression patterns, including miR-411-3p,
miR-183-5p, miR-377-3p, miR-20b-5p, and miR-200b-3p. The expression of miR-200b-3p increased after
noise exposure, whereas that of the other miRNAs decreased.
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Figure 6. A Cytoscape map of the CN and validation of candidate miRNAs. Cytoscape was used to
visualize networks among candidate miRNAs. Only miRNAs that were connected to other miRNAs
were selected for validation by quantitative reverse transcription polymerase chain reaction (qRT-PCR).
(a) A total of 10 miRNAs were selected as CN candidate miRNAs. (b) Ratio of expression of each
candidate miRNA in the CN between the day 3 and day 1 treatment groups. Expression levels were
measured using microarray analysis (open bars) and qRT-PCR (filled bars). Crosses indicate validated
candidate miRNAs.

2.7.2. The IC

Based on the results of the microarray analysis of the IC, 13 candidate miRNAs were selected for
further analysis, including miR-204-5p, miR-376b-5p, miR-26b-5p, miR-136-3p, miR-132-5p, miR-128-2-5p,
miR-132-3p, miR-377-5p, miR-210-3p, miR-92a-1-5p, miR-425-3p, miR-362-5p, and miR-150-3p (Figure 7a).
Microarray data of the day 3 and day 1 treatment groups are compared in Figure 7b, along with the
accompanying qRT-PCR results. Three miRNAs were selected due to their consistent expression
patterns, including miR-92a-1-5p, miR-136-3p, and miR-26b-5p. The expression of miR-92a-1-5p increased
after noise exposure, whereas that of the other miRNAs decreased.
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Figure 7. A Cytoscape map of the IC and validation of candidate miRNAs. Cytoscape was used to
visualize networks among the candidate miRNAs. Only miRNAs that were connected to other miRNAs
were selected for validation by qRT-PCR. (a) A total of 13 miRNAs were selected as IC candidate
miRNAs. (b) Ratio of expression of each candidate miRNA in the IC between the day 3 and day
1 treatment groups. Expression levels were measured using microarray analysis (open bars) and
qRT-PCR (filled bars). Crosses indicate validated candidate miRNAs.

2.8. Target Pathway Analysis of Candidate miRNAs

2.8.1. The CN

Five candidate miRNAs expressed in the CN were validated using qRT-PCR, including miR-411-3p,
miR-183-5p, miR-377-3p, miR-20b-5p, and miR-200b-3p. DIANA-miRPath software (ver. 3.0; http://www.
microrna.gr/miRPathv3) was used to investigate the regulation of biological pathways by miRNAs
in the CN. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 12 significantly
overrepresented pathways. The most relevant pathways for these miRNAs involved mitogen-activated
protein kinase (MAPK) signaling, axon guidance, and transforming growth factor-beta (TGF-β)
signaling (Figure 8a).
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Figure 8. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of candidate miRNAs.
(a) KEGG pathway analysis for the CN. Of the 12 possible in silico pathways identified, eight (marked
in red) were highlighted based on their relevance to the five candidate miRNAs. (b) KEGG pathway
analysis for the IC. Of the 14 possible in silico pathways identified, only the mitogen-activated protein
kinase (MAPK) signaling pathway (marked in red) was identified as a relevant target for the three
candidate miRNAs. Abbreviations: mTOR, mammalian target of rapamycin; TGF, transforming growth
factor; PPAR, peroxisome proliferator-activated receptor.

2.8.2. The IC

Three candidate miRNAs expressed in the IC were validated using qRT-PCR, including miR-92a-1-5p,
miR-136-3p, and miR-26b-5p. DIANA-miRPath software (ver. 3.0; DIANA TOOLS, http://www.microrna.
gr/miRPathv3) was used to investigate the regulation of biological pathways by miRNAs in the IC.
A KEGG analysis identified 14 significantly overrepresented pathways. The most relevant pathway for
these three miRNAs was the MAPK signaling pathway (Figure 8b).

3. Discussion

Our results demonstrated that even short-term acoustic stimulation can cause changes in miRNA
expression in the CN and IC, and that these changes may also induce plasticity in the central auditory
pathway. Microarray analysis and qRT-PCR suggested that miRNAs play a key role in neural
plasticity after noise exposure in both the CN (i.e., miR-411-3p, miR-183-5p, miR-377-3p, miR-20b-5p,
and miR-200b-3p) and IC (i.e., miR-92a-1-5p, miR-136-3p, and miR-26b-5p). Further research is necessary
to understand the specific roles of these candidate miRNAs, with preliminary evidence suggesting
that they may be involved in regulating the MAPK signaling pathway, axon guidance, and the TGF-β
signaling pathway. Numerous studies have investigated NIHL without identifying a reliable tool for
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early diagnosis or a treatment that results in complete recovery. Currently, hearing aids and cochlear
implants are used to treat patients with severe hearing loss, but more effective methods for diagnosing
and treating NIHL are required. Since miRNAs are stable over long periods of time and can be detected
in the blood, as well as in brain tissue, these sequences may represent a viable diagnostic target for
blood tests, enabling earlier diagnosis of NIHL and potentially protecting people against tinnitus.
Moreover, gene therapy involving the transfer of miRNAs to target cells using viral vectors or siRNAs
could be used to treat NIHL in the future.

Consecutive ABR tests were performed in this study, with evidence of ABR threshold recovery
beginning as early as day 1 after noise exposure. The shift in the ABR threshold decreased significantly
on days 2 and 3 after noise exposure, and was insignificant after day 3. Based on these observations,
we hypothesized that significant changes may occur within this time frame. We therefore chose day 1
and 3 after noise exposure as our two major time points.

We focused on the CN and IC, because the latter is the origin of the central auditory pathway and
the IC forms its core. The central auditory pathway receives the bilateral auditory signal, with waves II
and IV corresponding to the CN and IC, respectively [15]. Therefore, we evaluated the latency between
waves IV and II, and the height of these waves relative to their resting points. The latency between
waves IV and II was slightly reduced at 8 kHz in the day 3 treatment group; however, the difference
was not statistically significant. Changes in the latency of wave I might be expected because the
auditory nerve is the primary region affected by HC loss [16]. An increased latency of wave I may
indicate dysfunction in action potential propagation along the auditory nerve [17]. However, it is
difficult to measure wave I using the ABR [18]. Moreover, short-term noise exposure may affect
auditory nerve fibers, but not the CN or IC.

We observed a statistically significant difference in the amplitude of wave II between the day 1
and day 3 treatment groups. The amplitude of wave II was greater in the day 3 treatment group at all
frequencies. In general, the ABR amplitude of wave I is reduced by overexpressed sound stimuli [19,20],
while the amplitudes of later ABR waves (i.e., II–V) should increase due to compensatory hyperactivity
of the central auditory pathway. A reduced sensory input from both ears triggers an increase in
excitatory activity and/or a decrease in inhibitory activity [21]. Regarding interpretation of the ABR
wave, latency represents the speed of transmission and amplitude represents the number of neurons
that fire together [22]. One possible explanation for our observations is that the number of neurons in
the CN decreased. However, either the damaged neurons recovered, or axonal sprouting from the
original neurons must have occurred, because the measured amplitudes were large. Moreover, with the
exception of the 4 kHz frequency measurements, there was no difference in the amplitude of wave
IV between the two noise exposure groups. This suggests that the levels of noise used in this study
were insufficient for affecting the IC, or that neuronal activity in the CN was able to compensate for
the damage.

All three rows of outer HCs in the control groups were normal, and there were no missing HCs.
Only a few HCs were missing in the middle and basal turn sections in the day 1 and day 3 treatment
groups. The minimum survival rates of outer HCs in the basal turn and apical turn sections were
78% and 99%, respectively. This suggests that outer HC loss was mild in general. The confirmation
of outer HC loss indicates that our noise-exposure protocol can cause a PTS, while also providing
evidence that as little as 2 h of noise exposure can permanently damage the cochlea [23]. When a TTS
occurs, the ABR threshold returns to its normal level, but long-term damage to the synapses may exist,
even in the absence of HC loss. The disruption of signaling between the inner HCs and type-1 afferent
auditory nerve fibers causes degeneration of the auditory nerve fibers and spiral ganglia. In particular,
if synapses connecting low-spontaneous-rate auditory nerve fibers deteriorate, communication may be
disrupted due to the signals being less distinct from background noise [24]. Therefore, it is important
to protect the auditory canals from noise, regardless of its intensity and duration.

Loss of HCs after noise exposure can lead to secondary damage, including auditory synaptopathy.
Noise exposure not only damages the cochlea, but also triggers extensive changes in the central auditory
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pathway. Sensory deprivation due to a decrease in the number of HCs can induce a reduction in the
cell density in the upper auditory structures. For example, after overstimulation, the cell population in
the ventral CN (VCN) has been shown to decrease due to apoptosis [25].

It is important to understand the molecular events that occur after acoustic trauma, in order to
minimize damage to the central auditory pathway. A bioinformatics analysis by Alagramam et al.
showed that exposure to both 116 and 110 dB noise could induce genes related to the MAPK signaling
pathway For example, the Fos gene, which has a putative role in neuronal apoptosis and cell death,
was induced in response to both treatments [26].

Acoustic overstimulation, unlike ablation, can lead to widespread axon degeneration and death.
A study of cats with acoustic trauma demonstrated that new axons are able to grow in the VCN.
Following noise exposure, cochlear nerve endings in the VCN degenerated over a period of several
months and disappeared completely after 3 years. However, other small axons subsequently began to
appear throughout the VCN, suggesting that degenerated neurons can reorganize the structure of the
CN by generating new axons [27].

The CN is the primary point of convergence between auditory and somatosensory inputs.
The balance of auditory sensory inputs can be disrupted by a decrease therein due to peripheral
hearing loss. This imbalance, caused by increased excitatory activity and/or decreased inhibitory
activity, enhances central neural receptivity and leads to hyperexcitability [28]. This change in the
plasticity of the CN occurs in the form of axonal sprouting, which is regulated by the TGF-β signaling
pathway [29]. However, such axonal sprouting can trigger tinnitus, which may itself be problematic for
some patients [30]. Therefore, many researchers are trying to develop treatments that prevent axonal
sprouting by inhibiting the TGF-β signaling pathway.

Among the potential genes targeted by the miRNAs described here, dual specificity protein
phosphatase 10 (DUSP 10; Gene ID, 11221) is co-regulated by miR-411-3p and miR-183-5p. The expression
levels of both miR-411-3p and miR-183-5p were shown to decrease after acoustic trauma, leading to
an increase in the DUSP 10 level. The by-products of DUSP 10 inactivate p38 and stress-activated
protein kinase/c-Jun NH(2)-terminal kinase (SAPK/JNK), thereby inhibiting the JNK pathway. As the
JNK pathway serves as a major driver of apoptosis, inhibition thereof is likely to protect cells against
apoptosis [31].

Profilin2 (PFN2) is also co-regulated by miR-411-3p and miR-183-5p. The expression levels of both
miR-411-3p and miR-183-5p were shown to decrease after acoustic trauma, leading to an increase in
PFN2. PFN2 is an actin binding protein that plays an important role in maintaining the structure of
synapses in neural tissues [32]. In the case of TTS, afferent synapses are damaged and an increase in
PFN2 expression may promote structural recovery of the damaged synapses [33].

4. Materials and Methods

4.1. Study Design

Noise-induced hearing loss (NIHL) was achieved by exposing subjects to 2 h of noise at a
115 dB sound pressure level (SPL). Tests of the auditory brainstem response (ABR) and histological
examinations of the cochleae confirmed loss of hearing. Microarray analysis of the CN and IC
tissues was used to identify candidate microRNAs (miRNAs). These miRNAs were validated using
quantitative reverse transcription polymerase chain reaction (qRT-PCR) and target pathway analysis.

4.2. Animal Subjects

All of the animal experiments described were approved (8 February 2018) by the Institutional
Animal Care and Use Committee of Seoul National University Hospital (Seoul, Korea; 18-0025-C1A0),
which is endorsed by the Association for the Assessment and Accreditation of Laboratory Animal
Care International. The animals used in these experiments were kept under 12-h/12-h day/light cycle
conditions, with free access to food and water. They were acclimated to laboratory conditions 1 week
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prior to the initiation of these experiments. A total of 48 male Sprague–Dawley rats, aged 6 weeks,
were randomly separated into four groups (all, n = 12). One group was assayed 1 day after noise
exposure (day 1), one group was assayed 3 days after noise exposure (day 3), and the other two groups
were used as the day 1 and day 3 controls.

4.3. Noise-Exposure Protocol

Animals were anesthetized using a mixture of 40 mg/kg Zoletil (Zoletil 50; Virbac, Bogotá, Colombia)
and 10 mg/kg xylazine (Rumpun; Bayer-Korea, Seoul, Korea) via an intramuscular injection before
noise exposure. Each animal was placed in a separate wire cage to avoid unequal noise exposure,
and each experiment was performed in a customized acrylic box in a sound-attenuating laboratory
booth (900 mm × 900 mm× 1720 mm) with an electromagnetic shield. The animals were exposed
to 2 h of broadband white noise at 115 dB SPL using a 2446-J compression driver (JBL Professional,
Los Angeles, CA, USA) with an MA-620 power amplifier (Inkel, Incheon, Korea), in order to create the
bilateral NIHL animal model (Supplementary Figure S2a,b). The sound intensity within the acrylic
box was measured every hour using a CR152B sound level meter (Cirrus Research plc, Hunmanby,
UK) to confirm that there were no alterations in the sound level during the noise-exposure treatments.
The control animals were injected with the same dose of anesthetic and kept in the sound attenuating
booth for the same period of time, without noise exposure [34]. Audiometry was performed at 4 h
after noise-exposure treatments, to allow stable measurements to be recorded.

4.4. Auditory Brainstem Response (ABR) Recordings

The hearing function of all animals was evaluated before noise exposure using the ABR.
Animals were anesthetized and placed in sound-attenuating booths. Subdermal needle electrodes
were positioned at the nape of the neck as the vertex, the ipsilateral mastoid as the negative, and the
contralateral mastoid as the ground (Supplementary Figure S2c) [35]. Sound stimuli tone-bursts
of 4, 8, and 16 kHz (duration, 1562 µm; CoS shaping, 21 Hz) were applied. High-frequency
software (ver. 3.30; Intelligent Hearing Systems, Miami, FL, USA) and high-frequency transducers
(HFT9911-20-0035; Intelligent Hearing Systems) were used to measure the ABR. Before obtaining
the electroencephalography signal, the impedance between the electrodes was assessed to establish
whether this was less than 2 kΩ. Responses to the signal were amplified approximately 100,000-fold
and band-pass filtered (100–1500 Hz). The intensity of the stimuli ranged from 90 to 20 dB SPL in 5 dB
increments. A total of 512 sweeps were averaged at each intensity level. Additional ABR measurements
were recorded at 4 h, and on days 1 and 3 after noise exposure. The ABR threshold was defined as the
smallest stimulus intensity level that produced a visible waveform for wave II or IV.

4.5. Cochlear Whole-Mount Surface Preparation

Both control (n = 8) and noise-exposed (n = 8) animals were sacrificed under anesthesia. For each
sample, the cochlea was detached from the temporal bone and fixed in 4% paraformaldehyde
solution for 24 h at 4 ◦C. Fixed ears were washed three times in 1× phosphate-buffered saline
(PBS) [36]. The thin layer of laminar bone covering the cochlea was trimmed under a SZ2-ILST
stereomicroscope (Olympus Corporation, Tokyo, Japan) using a drill (Strong 90; Saeshin Precision,
Daegu, Korea) with a 2 mm-diameter diamond burr attachment (Supplementary Figure S3a). A hole
was created by breaking the bone between the oval and round windows using very fine forceps
(Supplementary Figure S3b,c). The laminar bone was removed using a conventional 1-mm syringe
needle (Supplementary Figure S3d–f). The cochlear nerve was cut and the spiral structure of the
organ of Corti was isolated. Next, the stria vascularis and Reissner’s membrane were removed
(Supplementary Figure S3g,h). The first turn from the top of the organ of Corti was removed using
scissors. This was called the ‘apical turn’ section. A second turn was removed and called the
‘middle turn’ section and a final half-turn section was removed and called the ‘basal turn’ section
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(Supplementary Figure S3i). The sections were placed in 1× PBS solution to prevent them from
drying out.

4.6. Outer HC Staining

Phalloidin was used to stain F-actin, and the photostable orange fluorescent Alexa Fluor 546 dye
was used to visualize the cuticular plate and stereocilia within the HCs. After surface preparation,
the isolated spiral structure of the organ of Corti was incubated in a mixed solution of 0.3% Triton
X-100 and Alexa Fluor 546 phalloidin (1:100 dilution; Invitrogen, Carlsbad, CA, USA) for 45 min
at room temperature in a lightproof box [37]. The sample was washed three times in 1× PBS and
separated into three segments using Vannas capsulotomy scissors (E-3386; Karl Storz SE & Co. KG,
Tuttlingen, Germany), consisting of the apical, middle, and basal turn sections. The first complete
turn from the apex was the apical turn, the next complete turn was the middle turn, and the final
half-turn was the basal turn. Each turn section was mounted on a slide using ProLong™ Gold Antifade
mountant (P36930; Invitrogen) to prevent the fluorescent dyes from fading. Images were generated
using a STED CW confocal laser scanning system (Leica, Wetzlar, Germany) and HCs within the
images were counted.

4.7. Cochlear Histology

Cochleae from both control (n = 8) and noise-exposed (n = 8) rats were fixed and washed.
Samples were decalcified using 10% (w/v) ethylenediaminetetraacetic acid (Santa Cruz Biotechnology,
Dallas, TX, USA) in 1× PBS for 4 weeks. A histological examination was performed weekly to determine
when the samples were ready for the embedding procedure. The tissues were dehydrated using a
series of ethanol washes, and the ethanol was then removed using xylene. After the ethanol was
removed, tissues were infiltrated with paraffin wax [38] in a PELORIS II tissue processing system
(Leica). The processed cochleae were embedded in a stainless mold and trimmed into 4-µm-thick
sagittal sections using a RM2255 microtome (Leica). The sections were deparaffinized for 1 h at
60 ◦C in a dry oven and cleaned using a series of ethanol washes. Next, the nuclei were stained for
7 min with hematoxylin (DAKO, Jena, Germany) and the cytoplasm was stained for 30 s with eosin
Y (Sigma-Aldrich, St. Louis, MO, USA). The stained slides were dehydrated and preserved in 70%
ethanol [39]. After mounting, the organ of Corti was examined using a light microscope (ECLIPSE
Ci-L; Nikon, Tokyo, Japan).

4.8. RNA Extraction

Whole brain tissue was harvested, and the bilateral CN and IC were dissected out using a brain
matrix. The locations of the CN (−9.30 to −11.30 mm from the bregma) and the IC (–8.30 to –9.30 mm
from the bregma) were determined according to the rat brain atlas [40] (Supplementary Figure S4a–c).
Tissues were frozen in liquid nitrogen immediately after removal and stored at −80 ◦C. The harvested
tissue was lysed in 1 mL QIAzol solution using a TissueLyzerII (Qiagen, Hilden, Germany) and
incubated at room temperature for 5 min. The samples were placed on a vortex mixer after adding
200 µL chloroform to each and then incubated at room temperature for 3 min. Next, the samples were
centrifuged at 12,000× g for 15 min at 4 ◦C and the upper aqueous phase containing the RNA was
removed to a fresh tube. A total of 500 µL isopropyl alcohol was added to each tube. The tubes were
then inverted and incubated at room temperature for 10 min. Thereafter, the tubes were centrifuged at
7500× g for 5 min at 4 ◦C and the RNA pellets were washed twice with 1 mL 75% ethanol. The pellets
were dried for approximately 5 min and redissolved in RNase-free water.

4.9. Analysis of miRNA Arrays

The analysis of miRNAs was performed by Ebiogen Inc. (Seoul, Korea) using the Affymetrix
GeneChip miRNA 4.0 array (Affymetrix, Santa Clara, CA, USA). A total of 24 animals were randomly
separated into two treatment groups and two corresponding control groups. Treated rats were exposed
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to noise and assayed after 1 or 3 days. After hearing loss was confirmed, the CN and IC from two
animals from the same group were combined and treated as a single sample, and three samples from
each group were used for the analysis. Extracted total RNA was assessed for quality and quantity using
a Bioanalyzer 2100 system (Agilent, Santa Clara, CA, USA). A total of 250 ng of RNA was analyzed.
After ligating biotin-labeled 3DNA dendrimers, each RNA strand was labeled using poly-A polymerase.
The biotinylated RNA strands were hybridized for 18 h at 48 ◦C on an Affymetrix GeneChip miRNA
4.0 array. The hybridized GeneChip was washed and stained using an Affymetrix 450 Fluidics station.
Fluorescence signals from the 3DNA dendrimers were detected using an Affymetrix GeneChip 3000
7G scanner.

4.10. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

Using an miScript® II RT kit (Qiagen, Hilden, Germany), 2 µg of RNA was mixed with
reverse-transcription master mix and incubated for 60 min at 37 ◦C. To inactivate the miScript
reverse transcriptase, the mixture was incubated for 5 min at 95 ◦C and then placed on ice. A total of
20 µL of cDNA was diluted to 1:16 and used as template cDNA. The miScript SYBR® Green PCR kit
(Qiagen) was used with miScript Primer Assay reagents (Qiagen) for qRT-PCR. U6 small nuclear RNA
was used as an endogenous control gene [41]. The miScript Primer Assay reagents and the reaction
mix were dispensed into wells containing template cDNA. The PCR plate was sealed with film and
centrifuged at 1000× g for 1 min at room temperature. Initial activation was performed for 15 min at
95 ◦C. The reactions consisted of 40 cycles of denaturation, annealing, and extension, and fluorescence
data were collected during the extension phase. The reactions were performed using an ABI 7500
real-time PCR system (Applied Biosystems, Foster City, CA, USA). Relative quantification values
were obtained for each of the target genes using the observed cycle threshold (Ct) results and the
2−∆∆Ct method.

4.11. Pathway Analysis of Candidate miRNAs

For the CN and IC, a total of 10 and 13 candidate miRNAs were selected from the microarray
analysis based on 1.5-fold changes in normalized intensity values (p < 0.1) respectively. Of these, five and
three miRNAs, respectively, were selected following qRT-PCR validation. Using DIANA-miRPath
software (ver. 3.0), a KEGG pathway analysis was performed using DIANA-microT-CDS (ver. 5.0;
DIANA TOOLS, http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/index)
with a threshold of 0.8 and a false discovery rate correction [42,43]. A total of 12 and 14 KEGG pathways
were identified for the CN and IC, respectively, using a gene union module and a p-value threshold of
0.05 and 0.3.

4.12. Statistical Analyses

All data are expressed as the means ± standard error of the mean, and all data were analyzed
using SPSS software (ver. 25; IBM, Armonk, NY, USA). An F-test was performed to determine whether
the levels of variation within the groups were equal. After the F-test, data were analyzed using
Student’s t-tests to identify significant differences between groups. A p-value of <0.05 was considered
statistically significant.

5. Conclusions

Using a noise exposure animal model, we were able to show that even acute short-term noise
exposure can lead to hearing loss. Changes in the ABR amplitude of wave II suggest an alteration
in either synaptic transmission or the number of neuronal cells. To investigate the role of miRNAs
in the central auditory pathway, CN and IC were compared in both the treatment and control
groups, with microarray analysis and qRT-PCR results suggesting that miR-200b-3p, miR-183-5p,
miR-411-3p, miR-20b-5p, miR-377-3p, miR-92a-1-5p, miR-136-3p, and miR-26b-5p may play key roles
in the neuroplasticity of the central auditory pathway. Using the KEGG database, we found that

http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/index


Int. J. Mol. Sci. 2020, 21, 8792 17 of 19

five of these candidate miRNAs may be involved in the MAPK signaling pathway, axon guidance,
and the neurotrophin signaling pathway in the CN, while an additional three candidate miRNAs may
influence the MAPK signaling pathway in the IC. Further validation of these candidate miRNAs will
be achieved using miRNA oligomers such as mimics and inhibitors, in order to better refine the specific
signaling pathways underlying these processes. These target miRNAs, which play crucial roles in the
central auditory pathway, can be used for diagnosis in the early stage of NIHL, and for treatment of
the damage caused by the cellular and physiological changes after NIHL.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/22/
8792/s1.
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ABR Auditory Brainstem Response
CN Cochlear Nucleus
HC Hair Cell
IC Inferior Colliculus
KEGG Kyoto Encyclopedia of Genes and Genomics
MAPK Mitogen-Activated Protein Kinase
MiRNA MicroRNA
NIHL Noise-induced Hearing Loss
PFN2 Profilin2
PTS Permanent Threshold Shift
SAPK/JNK Stress-Activated Protein Kinase/c-Jun NH(2)-terminal Kinase
SNHL Sensorineural Hearing Loss
SOC Superior Olivary Complex
SPL Sound Pressure Level
TTS Temporary Threshold Shift
TGF- β transforming growth factor-beta
VCN Ventral Cochlear Nucleus
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