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Abstract

Bioacoustic sensors, sometimes known as autonomous recording units (ARUs), can record

sounds of wildlife over long periods of time in scalable and minimally invasive ways. Deriving

per-species abundance estimates from these sensors requires detection, classification, and

quantification of animal vocalizations as individual acoustic events. Yet, variability in ambi-

ent noise, both over time and across sensors, hinders the reliability of current automated

systems for sound event detection (SED), such as convolutional neural networks (CNN) in

the time-frequency domain. In this article, we develop, benchmark, and combine several

machine listening techniques to improve the generalizability of SED models across hetero-

geneous acoustic environments. As a case study, we consider the problem of detecting

avian flight calls from a ten-hour recording of nocturnal bird migration, recorded by a network

of six ARUs in the presence of heterogeneous background noise. Starting from a CNN yield-

ing state-of-the-art accuracy on this task, we introduce two noise adaptation techniques,

respectively integrating short-term (60 ms) and long-term (30 min) context. First, we apply

per-channel energy normalization (PCEN) in the time-frequency domain, which applies

short-term automatic gain control to every subband in the mel-frequency spectrogram. Sec-

ondly, we replace the last dense layer in the network by a context-adaptive neural network

(CA-NN) layer, i.e. an affine layer whose weights are dynamically adapted at prediction time

by an auxiliary network taking long-term summary statistics of spectrotemporal features as

input. We show that PCEN reduces temporal overfitting across dawn vs. dusk audio clips

whereas context adaptation on PCEN-based summary statistics reduces spatial overfitting

across sensor locations. Moreover, combining them yields state-of-the-art results that are

unmatched by artificial data augmentation alone. We release a pre-trained version of our

best performing system under the name of BirdVoxDetect, a ready-to-use detector of avian

flight calls in field recordings.
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Introduction

Machine listening for large-scale bioacoustic monitoring

The past decades have witnessed a steady decrease in the hardware costs of sound acquisition

[1], processing [2], transmission [3], and storage [4]. As a result, the application domain of dig-

ital audio technologies has extended far beyond the scope of interhuman communication to

encompass the development of new cyberphysical systems [5]. In particular, passive acoustic

sensor networks, either terrestrial or underwater, contribute to meet certain challenges of

industrialized societies, including wildlife conservation [6], urban planning [7], and the risk

assessment of meteorological disasters [8].

Biodiversity monitoring is one of the most fruitful applications of passive acoustics.

Indeed, in comparison with optical sensors, acoustic sensors are minimally invasive [9],

have a longer detection range—from decameters for a flock of migratory birds to thousands

of kilometers for an oil exploration airgun [10]—and their reliability is independent of the

amount of daylight [11]. In this context, one emerging application is the species-specific

inventory of vocalizing animals [12], such as birds [13], primates [14], and marine mammals

[15], whose occurrence in time and space reflects the magnitude of population move-

ments [16], and can be correlated with other environmental variables, such as local weather

[17].

The principal motivation for this article is to monitor bird migration by means of a bioa-

coustic sensor network [18]. From one year to the next, each species is susceptible to alter its

migratory onset and route as a function of both intrinsic factors [19] and extrinsic (e.g.

human-caused) environmental pressures [20, 21]. Mapping in real time [22], and even fore-

casting [23, 24], the presence and quantity of birds near hazardous sites (e.g. airports [25],

windfarms [26], and dense urban areas [27]) would enable appropriate preventive measures

for avian wildlife conservation, such as temporary reduction of light pollution [28]. In addi-

tion, it could benefit civil aviation safety as well as agricultural planning [29].

At present, monitoring nocturnal bird migration is a challenge of integrating complemen-

tary methods to try to produce the most comprehensive understanding of migrants’ move-

ments. The two most readily available sources of information for tracking the movements of

avian populations at large (e.g. continental) scales are weather surveillance radar data [30] and

crowdsourced observations of birders [31]. Both of these information sources are valuable but

imperfect. In particular, the former does not distinguish different species, rather providing

data only on bird biomass aloft. Conversely, the latter is dominated by diurnal information,

which does not describe spatial and temporal distribution of species when they are actively

migrating at night, and is sparse, requiring state-of-the-art computational approaches to pro-

duce distribution models. In contrast, flight calls can provide species information, at the least

for vocal species; and may, in principle, be detected in real time [32]. Supplementing spatio-

temporal exploratory models [33], currently restricted to radar and observational modalities

[34], with the output of a bioacoustic sensor network, could improve our ability to detect spe-

cies flying over the same area simultaneously, and offer new insights in behavioral ecology and

conservation science.

In a large-scale setting of bioacoustic monitoring at the continental scale and over multi-

month migration seasons, the task of counting individual vocalizations in continuous record-

ings by human annotators to achieve these ends is impractical, unsustainable, and unscalable.

Rather, there is dire need for a fully automated solution to avian flight call detection [35],

that would rely on machine listening, i.e. the auditory analogue of computer vision [36]. We

propose that, in the future, each sensor could run autonomously [37], by sending hourly

digests of bird vocalization activity to the central server, which in turn would aggregate

Robust sound event detection in bioacoustic sensor networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0214168 October 24, 2019 2 / 31

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0214168


information from all sensors, ultimately resulting in a spatiotemporal forecast of nocturnal

migration [38].

The detection of far-field signals despite the presence of background noise constitutes a

fundamental challenge for bioacoustic sensor networks [39]. Whereas, in a typical fieldwork

setting, a human recordist would use a directional microphone and point it towards a source

of interest, thus minimizing background noise or other interference [40], autonomous record-

ing units (ARUs) are most often equipped with single omnidirectional microphones [41]. As a

result, instead of tracking the sources of interest, they capture a global soundscape (sonic land-

scape) of their environment [42], which also comprises spurious sources of noise [43]. Further-

more, in the context of avian flight calls, migratory birds move rapidly, vocalize intermittently,

and may simultaneously be present at multiple azimuths around a sensor [44]. Consequently,

none of the well-established methods for beamforming animal vocalizations—which assume

that each sensor combines multiple directional microphones [45]—would apply to the use

case of flight call monitoring. On the contrary, we formulate a scenario in which sound event

detection occurs in natural soundscapes without prior localization of sources. This formula-

tion represents a potential use case for the deployment of a large-scale bioacoustic sensor net-

work consisting of low-cost, single-microphone hardware [46].

Because migratory birds appear to vocalize at a low acoustic intensity and at a high dis-

tance to the sensor [47], simple energy-based detection functions [48] or spectrotemporal

template matching [49] may be inadequate for solving problems of retrieving avian flight

calls in continuous recordings. Instead, machine learning appears necessary for detecting

acoustic events in noisy, highly reverberant environments [50]. Yet, one fundamental

assumption behind conventional machine learning methods is that samples from the training

set and samples from the test set are drawn from the same high-dimensional probability

distribution.

In the specific case of bioacoustic sensor networks, a training set may consist of audio

clips from a limited number of recordings that are manually annotated a priori, whereas the

test set will encompass a broader variety of recording conditions, including days, sensor loca-

tions, and seasons that are unreviewed or unlabeled [51]. Although it is plausible to assume

that, from one recording condition to another, the statistical properties of the flight calls

themselves—hereafter denoted as foreground—are identically or almost identically distrib-

uted, the same cannot be said of background sources of noise. Rather, natural soundscapes,

even at the spatial scale of a few square kilometers and at the temporal scale of a few hours,

may exhibit large variations in background noise spectra [52]. Therefore, state-of-the-art

machine learning systems for sound event detection, once trained on the far-field recordings

originating from a limited number of sensors, might fail to generalize once deployed on a dif-

ferent sensor [53].

The crux of the challenge of robust sound event detection resides in the practical limitations

of human annotation. In a supervised setting, the diversity of recording conditions that are

available for training the sound event detection system at hand is necessarily lower than those

on which the same system will eventually be deployed. The current lack of robust methods for

sound event detection in heterogeneous environments have caused past bioacoustic studies to

focus on relatively few acoustic sensors in close proximity [54, 55]. Nevertheless, the goal of

deploying a large-scale network of acoustic sensors for avian migration monitoring requires

sound event detection to adapt to nonstationarities (i.e. variations in time) and nonuniformi-

ties (i.e. variations in space) of background noise. In this article, we propose a combination of

novel methods, not only to improve the accuracy of state-of-the-art detectors on average, but

also to make these detectors more reliable across recording conditions, such as those arising at

dawn vs. dusk or across different sensor locations.
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Evidence of technical bias in state-of-the-art bioacoustic detection systems

For example, Fig 1 illustrates the challenges of a state-of-the-art sound event detector of noc-

turnal flight calls, namely the convolutional neural network architecture of [56], hereafter

called “CNN baseline” in this paper. In the top plot, which is replicated from a previous study

[57], the authors measured the evolution of recall of the CNN baseline over a publicly available

machine listening benchmark for avian flight call detection, named BirdVox-full-night. This

benchmark consists of six continuous recordings of flight calls, corresponding to six different

autonomous recording units; it will be described in further detail in the Methods section. Over

the course of ten hours, the CNN baseline system exhibits large variabilities in recall, i.e. frac-

tion of detected events that are true positives, through time: both within the vocal ranges of

Fig 1. On BirdVox-full-night, the recall of the baseline CNN increases with time, as the density of flight calls

increases and the noise level decreases. Shaded areas denote interquartile variations across sensors.

https://doi.org/10.1371/journal.pone.0214168.g001
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thrushes (from 0 to 5kHz) and of warblers and sparrows (from 5 to 10kHz), recall oscillates

between 5% and 35% during dusk and night before soaring rapidly up to 75%.

One explanation for these variations lies in the unequal amount of available training data in

function of recording conditions: as shown in the middle plot of Fig 1, the average number of

flight calls per minute increases with time. Because its loss function assigns the same impor-

tance to every misclassified example, the baseline CNN model overfits dawn audio clips and

underfits dusk audio clips.

The nonstationarity of background noise, at the time scale of a full night, aggravates the

phenomenon of overfitting of this machine learning system. In the bottom plot of Fig 1, we

extract the evolution of sound pressure level (SPL) within a narrow subband of interest

(between 2 and 2.5 kHz), as well as within the subband corresponding to its second harmonic

(i.e. between 4 and 5 kHz). Both correspond to the frequency range of stridulating insects in

the background. In both subbands, we find that the median SPL, as estimated over 30-minute

temporal windows, decreases by about 10dB between 8 p.m. and midnight. This is because

insect stridulations are most active at dusk, before fading out gradually.

The large variations in accuracy through time exhibited above are particularly detrimental

when applying the baseline CNN detector for bird migration monitoring. Indeed, deploying

this baseline CNN detector over a bioacoustic sensor network will likely lead to a systematic

underestimation of vocal activity of migratory birds at dusk and an overestimation at dawn.

This is a form of technical bias that, if left unchecked, might lead to wrong conclusions about

the behavioral ecology and species composition of nocturnally migrating birds. Furthermore,

and perhaps worse, such bias could create a foundation for conservation science that, contrary

to original ambitions, is not based on the actual distribution and attributes of the target species

of concern.

Contributions

The aim of this article is to improve the reliability of state-of-the-art sound event detection

algorithms across acoustic environments, thus mitigating the technical bias incurred by non-

stationarity and nonuniformity in background noise. We present four contributions to address

this problem.

First, we develop a new family of neural network architectures for sound event detection in

heterogeneous environments. The commonality among these architectures is that they com-

prise an auxiliary subnetwork that extracts a low-dimensional representation of background

noise and incorporates it into the decision function of the main subnetwork. As such, they

resemble context-adaptive neural networks (CA-NNs), i.e. an existing line of research in auto-

matic speech recognition from multichannel audio input [58]. Yet, our CA-NN architectures

differ from the current literature, both in the choice of auxiliary features and in the choice of

mathematical formulation of the context-adaptive layer. We introduce long-term spectral

summary statistics as auxiliary features for representing acoustic environments, whereas previ-

ous publications [59] relied on short-term spatial diffuseness features [60]. Furthermore, we

generalize the mathematical formulation of context adaptation—initially described as a mix-

ture-of-experts multiplicative gate [61]—within the broader topic of dynamic filter networks

[62], and especially discuss the cases of context-adaptive dense layers with dynamic weights or

with dynamic biases.

Second, we apply a new time-frequency representation to bioacoustic signal detection.

Known as per-channel energy normalization (PCEN), this representation was recently

proposed with the aim of improving robustness to channel distortion in a task of keyword

spotting [63]. In this article, we demonstrate that, after we reconfigure its intrinsic parameters
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appropriately, PCEN also proves to be useful in outdoor acoustic environments. Indeed, we

find that it enhances transient events (e.g. bird vocalizations) while discarding stationary noise

(e.g. insect stridulations). To the best of our knowledge, this article is the first in successfully

applying PCEN to the analysis of non-speech data.

Third, we conduct a thorough evaluation of the respective effects of each component in the

development of a deep convolutional network for robust sound event detection: presence of

artificial data augmentation; choice of time-frequency representation (PCEN vs. logarithm of

the mel-frequency spectrogram); and formulation of context adaptation. The overall computa-

tional budget that is incurred by this thorough evaluation is of the order of 10 CPU-years. After

summarizing the results of our benchmark, we provide conclusive evidence to support the

claim that CA-CNN and PCEN, far from interchangeable, are in fact complementary. Our

experiments demonstrate that context adaptation alone fails to improve the generalizability of a

logmelspec-based deep learning model for avian flight call detection. A positive result contrasts

this negative result: after replacing logmelspec by PCEN, context adaptation improves the gen-

eralizability of the detector, and this improvement is unmatched by data augmentation alone.

Finally, we combine all our findings into a deep learning system for avian flight call detection

in continuous recordings. This system is named BirdVoxDetect, is written in the Python lan-

guage, and is released under the MIT free software license. This open source initiative is

directed towards the machine listening community, in order to allow the extension of our

research beyond its current application setting. In addition, we release our best performing

BirdVoxDetect model under the form of a command-line interface, which segments and

exports all detected sound events as separate audio clips, thus facilitating further inspection or

automatic processing. This interface is directed towards the avian bioacoustics community, in

order to allow the large-scale deployment of autonomous recording units for flight call moni-

toring. In an effort of conducting transparent, sustainable, and reproducible audio research

[64], BirdVoxDetect also comprises documentation, a test suite, a Python package indexation,

and an interoperable application programming interface (API). The source code of BirdVoxDe-

tect is freely available at the following URL address: https://github.com/BirdVox/birdvoxdetect.

The development stage of an automated solution for bioacoustic monitoring typically relies

on a small, prototypical subset of the sensor network. In this article, so as to estimate the ability

of the system to generalize beyond this prototypical subset, we propose a “leave-one-sensor-

out” cross-validation methodology. Furthermore, because all sensors in the BirdVox-full-night

dataset consist of identical acquisition hardware, the experimental benefit of integrating long-

term spectrotemporal summary statistics as auxiliary features to our context-adaptive neural

network can be interpreted as a form of robustness to spatial nonuniformity of environmental

noise, and not merely as robustness to incidental variations in the impedance curve of each

sensor.

No previous publication has investigated the relational effect of PCEN and CA, so this result

is novel and unanticipated. Although the number of papers which propose to employ PCEN

for acoustic event detection has grown in recent months, all of them have motivated PCEN by

appealing to a property of robustness to loudness variations, not robustness to artificial data

augmentation. The fact that deep convolutional networks for sound event detection benefit

more from data augmentation in the time-frequency domain if the logmelspec frontend is

replaced by PCEN is a novel and unanticipated finding of our article.

Related work

To the best of our knowledge, the only computational system for long-term bird migration

monitoring that currently relies on acoustic sensor data is Vesper [65]. In order to detect
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thrushes, warblers, and sparrows, Vesper implements algorithms originally described in [48]

that do not adapt dynamically to the changes in background noise described above. Instead,

these detectors employ a measure of spectral flux [66] within manually defined passbands,

associated with some ad hoc constraints on the minimal and maximal duration of a flight call.

This straightforward and computationally elegant approach has been a standard for many in

the amateur, academic, and professional migration monitoring communities. Yet, despite its

simplicity and computational efficiency, such algorithms suffer from considerable shortcom-

ings in detection accuracy, and may not be a reliable replacement for human inspection. In

particular, a previous evaluation campaign showed that these detectors can exhibit precision

and recall metrics both below 10% in a multi-sensor setting [57].

Another line of research that is related to this article is that of “bird detection in audio”

[67], i.e. a yearly challenge during which machine listening researchers train systems for gen-

eral-purpose detection of vocalizations over a public development dataset, and then compete

for maximal accuracy over a private evaluation dataset. In recent years, the organizers of this

challenge have managed to attract researchers from the machine learning and music informa-

tion retrieval (MIR) communities [68]. This had led to the publication of new applications of

existing machine learning methods to the domain of avian bioacoustics: these include multiple

instance learning [69], convolutional recurrent neural networks [70], and densely connected

convolutional networks [71]. Despite its undeniable merit of having gathered several data col-

lection initiatives into a single cross-collection evaluation campaign, the methodology of the

“bird detection in audio” challenge suffers from a lack of interpretability in the discussion of

results post hoc. Indeed, because bird vocalizations are not annotated at the time scale of indi-

vidual acoustic events but at the time scale of acoustic scenes, it is impossible to draw a rela-

tionship of proportionality between the average miss rates of competing systems and their

respective technical biases, in terms of robustness to nonstationarity and nonuniformity of

background noise. Furthermore, because these acoustic scenes are presented to the competi-

tors under the forms of ten-second audio segments, rather than continuous recordings of sev-

eral hours, the development and evaluation of some context-adaptive machine listening

methods, such as the ones relying on spectrotemporal summary statistics for modeling back-

ground noise, remain out of the scope of practical applicability.

Until very recently, the scope of applications of per-channel energy normalization (PCEN)

in deep learning was restricted to speech and music applications [72, 73]. This situation

changed over the past six months with the publication of [74] which conducts a statistical anal-

ysis of PCEN in various outdoor environments; and [75], which trains a PCEN layer within an

end-to-end urban sound event detection system. Furthermore, one publication has raised the

idea of using PCEN in a deep learning system for a task of bird species identification [76], but

did not report any result. Lastly, one publication reports unsuccessful results from using

PCEN in the same task of bird species identification [77]. This article is the first in reporting

significant improvements from replacing logmelspec by PCEN in a task of bioacoustic sound

event detection; the first in demonstrating the importance of using PCEN in context-adaptive

machine listening; and the first in showing experimentally that PCEN improves robustness to

nonstationarity and nonuniformity of background noise at the scale of an entire acoustic sen-

sor network over time scales of multiple hours.

Methods

Overview

All methods presented herein rely on machine learning. Therefore, their comparison entails

a training stage followed by a prediction stage. Fig 2 illustrates both stages schematically.

Robust sound event detection in bioacoustic sensor networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0214168 October 24, 2019 7 / 31

https://doi.org/10.1371/journal.pone.0214168


First, we formulate the training stage as binary classification of presence vs. absence of a

sound event. In this setting, the input to the system is a short audio clip, whose duration is

equal to 150ms. We represent this audio clip by a time-frequency representation E(t, f). In the

state-of-the-art model of [57], the matrix E(t, f) contains the magnitudes in the mel-frequency

spectrogram near time t and mel frequency f. The output to the system is a number y between

0 and 1, denoting the probability of presence of a sound event of interest. In the case of this

paper, this sound event is a nocturnal flight call.

Fig 2. Overview of the presented baseline. After training a deep learning model to identify the presence of a sound

event within short audio clips (150 ms), we run this model on a continuous recording by a sliding window procedure.

We compare the peaks in the resulting event detection function (EDF) with a fixed threshold τ in order to obtain a list

of predicted timestamps for the sound event of interest. In the case of the presented baseline, these sound events of

interest are avian flight calls; the input representation is a mel-frequency spectrogram; and the deep learning model is a

convolutional network.

https://doi.org/10.1371/journal.pone.0214168.g002
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Next, we formulate the prediction stage as sound event detection. In this setting, the input

to the system is an acoustic scene of arbitrarily long duration. The output of the system is an

event detection function y(t), sampled at a rate of 20 frames per second. For every t, we com-

pute y(t) by sliding a window of duration equal to 150 ms and hop size equal to 50 ms over the

time-frequency representation E(t, f) of the acoustic scene. We turn the event detection func-

tion y(t) into a list of predicted timestamps by a procedure of thresholding and peak extraction.

The total number of predicted timestamps is a computer-generated estimate of the vocal activ-

ity of migratory birds near the sensor location at hand. In the realm of avian ecology, this num-

ber could potentially be used as a proxy for the density of birds over the course of an entire

migration season. Furthermore, the short audio clips corresponding to detected flight calls

could be subsequently passed to an automatic species classifier [56] to obtain the distribution

of species in the vicinity of each sensor.

We shall describe the procedures of training and evaluating our proposed system in greater

detail in the Experimental Design section of this article.

Context-adaptive neural network

Related work. There is a growing body of literature on the topic of filter-generating net-

works [62], which are deep learning systems of relatively low complexity that generate the syn-

aptic weights in another deep learning system of greater complexity. The association between

the filter-generating network, hereafter denoted as auxiliary network, and the high-complexity

network, hereafter denoted as main branch, constitutes an acyclic computation graph named

dynamic filter network. Like any other deep learning system, a dynamic filter network is

trained by gradient backpropagation, with both the main branch and the auxiliary branch

being updated to minimize the same loss function. In the computation graph, the two branches

merge into a single output branch. Several mathematical formulations to this merging proce-

dure coexist in the machine learning literature [78–80]. This article compares three of the

most straightforward ones, namely adaptive threshold (AT), adaptive weights (AW), and mix-

ture of experts (MoE).

In the application setting of automatic speech recognition, one prominent instance of

dynamic filter network is known as context-adaptive neural network (CA-NN) [61]. In a

CA-NN for sound event detection, the purpose of the auxiliary branch is to learn a feature

representation that would characterize the intrinsic properties of the acoustic environment,

while remaining invariant to whether a sound event is present or not in the environment.

Therefore, the auxiliary branch does not act upon the audio clip itself; but rather, onto some

engineered transformation thereof, hereafter known as a vector of auxiliary features.
Percentile summary statistics as auxiliary features. Original implementations of

CA-NN aim at improving robustness of far-field speech recognition systems to reverberation

properties of indoor acoustic environments. To this effect, they rely on auxiliary features that

characterize spatial diffuseness [60], and are derived from a stereophonic audio input. In

contrast, in the application setting of bioacoustic sound event detection, we argue that the lead-

ing spurious factor of variability is not reverberation, but rather, background noise. One dis-

tinctive property of background noise, as opposed to foreground events, is that it is locally

stationary: although bird calls modulate rapidly in amplitude and frequency, a swarm of

insects produce a buzzing noise that remains unchanged at the time scale of several minutes.

Likewise, a vehicle approaching the sensor will typically grow progressively in acoustic inten-

sity, yet without changing much of its short-term spectrum. We denote by context adaptation

(CA) the integration of a sensor-specific, long-term trend into a rapidly changing event detec-

tion function, by means of a learned representation of acoustic noise.

Robust sound event detection in bioacoustic sensor networks
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It stems from the two observations above that, coarsening the temporal resolution of the

time-frequency representation E(t, f) provides a rough description of the acoustic environ-

ment, yet is unaffected by the presence or absence of a short sound event in the short-term

vicinity of the time instant t. Hence, we design auxiliary features as nine long-term order statis-

tics (median, quartiles, deciles, percentiles, and permille) summarizing the power spectral den-

sity in E(t, f) over windows of duration TCA. In the following, we denote by μ(t, q, f) the three-

way tensor of auxiliary features, where the indices q and f correspond to quantile and mel-fre-

quency respectively. After cross-validating the parameter TCA as a geometric progression rang-

ing between one second and two hours, a preliminary experiment revealed that all values

above five minutes led to a background estimator of sufficiently low variance to avoid overfit-

ting. We set TCA to 30 minutes in the following, and sample μ(t, q, f) at a rate of 8 frames per

hour.

Computational architecture of a context-adaptive neural network. Fig 3 is a block dia-

gram of our proposed context-adaptive neural network (CA-NN) for avian flight call detection

in continuous recordings. The main branch is a convolutional neural network with three con-

volutional layers followed by two dense layers. The main branch takes the time-frequency

representation E(t, f) of a short audio clip as input, and learns a 64-dimensional representation

z(t, n) as output, where n is an integer between 0 and 63. At prediction time, the value taken by

z(t, n) solely depends on the content of the audio clip, and is not context-adaptive. As regards

the auxiliary branch, it is a convolutional neural network with one convolutional layer fol-

lowed by one dense layer. The auxiliary branch takes a slice of the tensor of quantile summary

Fig 3. Architecture of our context-adaptive neural network (CA-CNN) with spectral summary statistics as auxiliary features. The double arrow

depicts an operation of merging between the main branch and the auxiliary branch.

https://doi.org/10.1371/journal.pone.0214168.g003
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statistics μ(t, q, f) as input, and learns some context-adaptive parameters of arbitrary dimen-

sion. Because the temporal sampling of μ (4 frames per hour) is coarser than the temporal sam-

pling of y (20 frames per second), the slice in μ(t, q, f) that is fed to the network consists of

a single temporal frame. More precisely, it is a matrix of 9 quantiles q and 32 mel-frequency

bins f.
Main branch of the context-adaptive neural network. The main branch has exactly the

same architecture as the one that reported state-of-the-art results in urban sound classification

[81] (Urban-8K dataset [82]) and species classification from clips of avian flight calls [56]

(CLO-43SD dataset [83]). Its first layer consists of 24 convolutional kernels of size 5x5, fol-

lowed by a rectified linear unit (ReLU) and a strided max-pooling operation whose receptive

field has a size of 4x2, that is, 4 logmelspec frames (i.e. 6ms) and 2 subbands (i.e. about a musi-

cal quartertone). Likewise, the second layer consists of 24 convolutional kernels of size 5x5, fol-

lowed by a ReLU and a strided max-pooling operation whose receptive field has a size of 4x2,

that is, 16 logmelspec frames (i.e. 24ms) and 4 mel-frequency subbands (i.e. about a musical

semitone). The third layer consists of 48 convolutional kernels of size 5x5, followed by a ReLU.

There is no pooling after the third layer. The fourth layer is a fully connected layer with 64 hid-

den units, and whose weights are regularized in L2 norm with a multiplicative factor set to

10−3, followed by a ReLU. The fifth layer is a fully connected layer with a single output unit,

followed by a sigmoid nonlinearity. We train the whole deep learning architecture to minimize

binary cross-entropy by means of the Adam optimizer [84]. We use the Keras [85] and pesca-

dor [86] Python libraries, respectively to build the model and stream training data efficiently

under a fixed memory budget.

Auxiliary branch of the context-adaptive neural network. In the absence of any context

adaptation, the last layer of the convolutional neural network for absence vs. presence classifi-

cation of a flight call in the short audio clip E(t, f) is an affine transformation of the vector z fol-

lowed by a sigmoid nonlinearity; that is,

yðtÞ ¼ σ bþ
X

n

wðnÞzðt; nÞ

 !

ð1Þ

where w(n) is a 64-dimensional vector of synaptic weights and the scalar b is a synaptic bias.

Both parameters w(n) and b are optimized by Adam at training time, yet remain unchanged at

prediction time.

The convolutional layer in the auxiliary branch consists of 8 kernels of size 1x32, followed

by a ReLU. Observe that, because the height of the kernels is equal to the number of mel-fre-

quency bins in the auxiliary features (i.e. 32) and does not involve any input padding, this con-

volutional layer performs weight sharing only across quantiles q, and not across neighboring

frequency bins f. Each of the learned kernels can be interpreted post hoc as a spectral template

of background noise, onto which auxiliary features are projected. The dense layer in the auxil-

iary branch is an affine transformation from the 9 × 8 = 72 output activations of the first layer

onto 64 nodes, followed by a ReLU. In all three cases, we denote by zaux(t, n) the 64-dimen-

sional output of this dense layer. Because it directly proceeds from the auxiliary features μ(t, q,

f) and not from the main features E(t, f), zaux(t, n) has a coarse sampling rate of 8 frames per

hour; that is, one context slice every 450 seconds. To the best of our knowledge, this paper is

the first in proposing to use long-term summary statistics as auxiliary features to a context-

adaptive neural network.

In this article, we compare experimentally three formulations of such a feature map: adap-

tive weights (AW), adaptive threshold (AT), and mixture of experts (MoE). These formula-

tions correspond to different equations connecting the output z(t, n) of the main branch with
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the output zaux(t, n) of the auxiliary branch into a predicted probability of presence y(t) at time

t, described below.

Adaptive weights. In its adaptive weights formulation (AW), context adaptation replaces

w(n) by zaux(t, n) verbatim in Eq 1, resulting in an event detection function of the form

yðtÞ ¼ σ bþ
X

n

zauxðt; nÞzðt; nÞ

 !

: ð2Þ

Observe that the CNN baseline is a particular case of this formulation, in which the vector

zaux(t, n) is constant through time. This is made possible by setting the synaptic weights of the

dense layer in the auxiliary branch to zero, and keeping only nonnegative biases for each of the

64 nodes. Therefore, a CA-CNN with adaptive weights has an optimal training accuracy that

is, in theory, at least as good as that of a conventional CNN with static weights. However,

because the loss surface of a deep neural network is nonconvex, an iterative stochastic opti-

mizer such as Adam reaches a local optimum rather than the global optimum in the space of

neural network parameters. Consequently, a CA-CNN with adaptive weights may in practice

underperform a conventional CNN.

Adaptive threshold. In its adaptive threshold formulation (AT), context adaptation learns

a 64-dimensional static vector waux(n), onto which is projected the auxiliary representation

zaux(t, n) by canonical inner product. This inner product replaces the static scalar bias in Eq 1,

resulting in an event detection function of the form

yðtÞ ¼ σ
X

n

wauxðnÞzauxðt; nÞ þ
X

n

wðnÞzðt; nÞ

 !

: ð3Þ

Again, the CNN baseline is a particular case of the AT formulation. Indeed, setting the vec-

tor zaux(t, n) to a constant and the weights waux(n) such that the product waux(n)zaux(t, n) is

equal to w(n) for every n is equivalent to discarding context adaptation altogether.

Furthermore, this formulation can also be interpreted as the application of a slowly varying

threshold onto a static event detection function. This is because, by monotonicity of the

inverse sigmoid function σ−1, and given some fixed threshold τ, the inequality y(t)> τ is

equivalent to

σ
X

n

wðnÞzðt; nÞ

 !

> σ σ� 1ðτÞ �
X

n

wauxðnÞzauxðt; nÞ

 !

: ð4Þ

The interpretation of the right-hand side as a time-varying threshold is all the more insight-

ful given that zaux(t) has much slower variations than z(t), i.e. 8 frames per hour vs. 20 frames

per second. Under this framework, we may draw a connection between context adaptation in

neural networks and a long-lasting line of research on engineering adaptive thresholds for

sound onset detection [87].

Mixture of experts. Under the adaptive weights formulation, each scalar weight in

waux(n) is an independent output of the auxiliary network. In contrast, the mixture of experts

formulation (MoE) reduces this requirement by learning a fixed weight vector w(n) and hav-

ing a much smaller number of adaptive weights (e.g. K = 4) that are applied to subsets of w(n).

Each of these subsets comprises N
K nodes and can be regarded as an “expert”. Therefore, the

small number K of outputs from the auxiliary branch no longer corresponds to the number of

node weights in the main branch, but to the number of mixture weights across expert subsets,

hence the name of “mixture of experts” (MoE) formulation [88].
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In practice, the output of the main branch z(t, n) is reshaped into a tensor ~zðt;m; kÞ, with

the integer indices m and k respectively being the quotient and remainder of the Euclidean

division of the integer n by the constant K. Likewise, we reshape w(t, n) into ~wðt;m; kÞ, zaux(t,
n) into ~zauxðt;m; kÞ, and waux(t, n) into ~wauxðt;m; kÞ, where n = K ×m + k for every 0� n< 64.

The integer k, known as expert index, ranges from 0 to (K − 1), and is a hyperparameter of

the chose context-adaptive architecture. In accordance with [61], we manually set K = 4 in all

of the following. On the other hand, the integer m, known as mixture index, ranges from 0 to

M ¼ N
K, i.e. from 0 to M = 16 for N = 64 nodes and K = 4 experts.

First, the auxiliary branch converts ~zauxðt;m; kÞ into a K-dimensional time series αaux t, k,

by means of an affine transformation over the mixture index m:

αauxðt; kÞ ¼ bauxðkÞ þ
X

m

~wauxðt;m; kÞ~zauxðt;m; kÞ: ð5Þ

Secondly, a softmax transformation maps αaux(t, k) onto a discrete probability distribution

over the experts k. Each softmax coefficient then serves as a multiplicative gate to the static

inner product between ~wðt;m; kÞ and ~zðt;m; kÞ over the mixture index m in the main branch.

This leads to the following definition for the event detection function y(t):

yðtÞ ¼ σ bþ
X

k

eaauxðt;kÞ
P

k0eaauxðt;k
0Þ

X

m

~wðt;m; kÞ~zðt;m; kÞ

 ! !

: ð6Þ

Like the AW and AT formulations, the MoE formulation is a generalization of the CNN

baseline. Indeed, setting the learned representation ~wauxðt;m; kÞ to zero and the static vector of

auxiliary biases baux(k) to an arbitrary constant will cause the probability distribution over

experts k to be a flat histogram.

Per-channel energy normalization

Definition. Per-channel energy normalization (PCEN) [63] has recently been proposed as

an alternative to the logarithmic transformation of the mel-spectrogram (logmelspec), with the

aim of combining dynamic range compression (DRC, also present in logmelspec) and adaptive

gain control (AGC) with temporal integration. AGC is a prior stage to DRC involving a low-

pass filter ϕT of support T, thus yielding

PCENðt; f Þ ¼
Eðt; f Þ

ðεþ ðE�
t
�TÞðt; f ÞÞ

a
þ δ

0

B
@

1

C
A

r

� δr ð7Þ

where α, ε, δ, and r are positive constants. While DRC reduces the variance of foreground

loudness, AGC is intended to suppress stationary background noise. The resulting representa-

tion has shown to improve performance in far-field ASR [89], keyword spotting [63], and

speech-to-text systems [90].

There is practical evidence that, over a large class of real-world recording conditions,

PCEN decorrelates and Gaussianizes the background while enhancing the contrast between

the foreground and the background [74]. From the standpoint of machine learning theory,

this Gaussianization property appears to play a key role in avoiding statistical overfitting.

Indeed, deep neural networks are optimally robust to adversarial additive perturbations if

the background in the training set is a realization of additive, white, and Gaussian noise

(AWGN) [91]. This theoretical argument is all the more crucial to the success of sound event
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detection systems given that, in the case of bioacoustic sensor networks, background noise is

nonuniform, and thus will typically vary in terms of power spectral density between training

set and test set. Therefore, in our study, PCEN serves the double purpose of, first, disentangl-

ing foreground and background as independent sources of variability and, second, facilitating

the transferability of learned audio representations between one recording condition and

another.

Parameter settings. As Eq 7 shows, the instantiation of PCEN depends upon six parame-

ters: T, α, ε, δ, and r. The effect of these parameters relate to respective properties of the

foreground and background noise, as well as the underlying choice of time-frequency repre-

sentation E(t, f). Yet, the motivation for developing PCEN initially arose in the context of far-

field automatic speech recognition in domestic environments [92]. In this context, the recom-

mendations of the original publication on PCEN [63] are as follows: ε = 10−6; α = 0.98; δ = 2;

r ¼ 1

2
; and TPCEN = 400ms.

In contrast, the detection of avian flight calls in rural outdoor areas with autonomous

recording units is a starkly different application setting, thus requiring adjustments in the

choice of parameters. One previous publication [74] has conducted an asymptotic analysis of

PCEN components, and concluded with some practical recommendation for making such

adjustments according to the task at hand. It appears that, in comparison with indoor applica-

tions (e.g. ASR in the smart home), bioacoustic event detection distinguishes itself by faster

modulations of foreground, higher skewness of background magnitudes, a louder background,

and more distant sources. Such idiosyncrasies respectively call for a lower T, a lower α, a

higher δ, and a lower r.
We decode each audio signal as a sequence of floating-point numbers in the range [−231;231

[with a sample rate of 22,050 Hz, and apply a short-term Fourier transform (STFT) with win-

dow size 256 (12 ms), hop size 32(1.5 ms), and fast Fourier transform length (NFFT parameter)

1024. Then, we map the 513 nonnegative frequency bins of the STFT squared modulus

representation onto a mel scale, with 128 mel-frequency subbands ranging from 2 kHz to

11,025 kHz. Lastly, we apply PCEN according to Eq 7 with ε = 10−6; α = 0.8; δ = 10; r ¼ 1

4
; and

TPCEN = 60 ms after following the recommendations of [74]. The choice of minimal frequency

at 2kHz corresponds to a lower bound on the vocal range of avian flight calls of thrushes. With

the librosa Python library [93], the computation of logmelspec is about 20 times faster than

real time on a dual-core Intel Xeon E-2690v2 3.0 GHz central processing unit (CPU). Replac-

ing these ad hoc constants by trainable, frequency-dependent parameters α(f), δ(f), and so

forth, is a promising line of research [73, 75], but is beyond the scope of this paper, as it does

not fundamentally change its overall narrative.

Fig 4 illustrates the effect of PCEN on the empirical distribution of mel-frequency spectro-

gram magnitudes, across all six sensor locations in the BirdVox-full-night dataset. First, loga-

rithmic compression (left column) results in non-Gaussian, occasionally bimodal distributions

whose mode may vary from one sensor to the next, by as much as one global standard devia-

tion. This fact demonstrates that logmelspec representations are fundamentally inadequate for

deploying a single machine listening system over multiple autonomous recording units. Sec-

ondly, running PCEN with parameters that are best suited to indoor environments, such as

those of [63] (middle), results in distributions of magnitudes that are consistent across outdoor

recording locations, but are skewed towards the right. This fact demonstrates the importance

of adjusting PCEN parameters, at least roughly, to the type of acoustic sensor network (indoor

vs. outdoor). Lastly, running PCEN with parameters that are best suited to outdoor environ-

ments, such as those recommended by [74] (right), results in distributions that are quasi-

Gaussian, consistently across sensors.
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Fig 4. Histogram of magnitudes of time–frequency bins for six one-minute recordings in the BirdVox-full-night dataset, corresponding to six

different bioacoustic sensors, for different choices of loudness mapping. Left: after logarithmic compression. Middle: after per-channel energy

normalization (PCEN) with the parameters of [63], best suited to automatic speech recognition in a noisy indoor environment. Right: after PCEN with

the parameters of [74], best suited to sound event detection in a noisy outdoor environment. We globally standardize the magnitudes in each column to

null mean and unit variance. The black dashed line represents the ideal case of a standard normal distribution. The text on the left of each row denotes

the latitude and longitude of the corresponding autonomous recording unit in the acoustic sensor network. See text for details about parameter settings.

https://doi.org/10.1371/journal.pone.0214168.g004
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Baseline: Convolutional neural network

The baseline model of our study is a CNN in the logmelspec domain for avian flight call detec-

tion, whose architecture is replicated from a previous study [57]. In spite of its simplicity, this

deep learning model has shown to significantly outperform other algorithms for avian flight

call detection in the BirdVox-full-night dataset, including spectral flux [87], the Vesper library

reimplementation of the “Old Bird” energy-based detection function [65], and the

PCA-SKM-SVM shallow learning pipeline [81].

In a preliminary stage, we explored over 100 common variations in the architecture of the

baseline, including changes in kernel size, layer width, number of layers, mel scale discretiza-

tion, multiresolution input [94], choice of nonlinearity, use of dropout, use of batch normaliza-

tion, and choice of learning rate schedule. Yet, none of these general-purpose variations,

unrelated in their design to the question of robustness to background noise, led to systematic

improvements upon the baseline. Therefore, although the baseline architecture is by no means

optimal, there are grounds to believe that the following improvements brought by CA and

PCEN would not easily be matched by applying other, more well-established variations.

Artificial data augmentation

Applying randomized digital audio effects to every sample in a dataset at training time often

reduces overfitting without any extra computational cost at prediction time [95]. Hence, many

deep machine listening systems are trained on augmented data: related applications to this

study include bird species classification [56], singing voice detection [96], and urban sound

classification [81]. Yet, one difficulty of artificial data augmentation is that the chosen distribu-

tion of parameters needs to reflect the underlying variability of the data. In the context of avian

flight calls, we use domain-specific knowledge in animal behavior so as to find an appropriate

range of parameters for each perturbation.

We distinguish two kinds of data augmentation: geometrical and adaptive. Geometrical

data augmentation (GDA) includes all digital audio effects whose parameters are independent

of the probability distribution of samples in the training set, such as pitch shifting and time

stretching. On the contrary, adaptive data augmentation (ADA) takes into account the whole

training data, and in some cases also the corresponding labels, to transform each sample. For

instance, mixing each audio clip in the sensor at hand with a negative (noisy) audio clip

belonging to a different sensor in the training set leads to greater generalizability [97]. How-

ever, this adaptive procedure causes the number of augmented samples to scale quadratically

with the number of sensors. Furthermore, it cannot be easily combined with CA because the

addition of extraneous noise to the front end would require to also re-compute the corre-

sponding auxiliary features for the mixture of signal and noise at a long temporal scale (TCA =

30 minutes), which is intractable for large TCA. Therefore, we apply geometrical data augmen-

tation to all models, but adaptive data augmentation only to the models that do not include

context adaptation.

We use the muda Python package (MUsical Data Augmentation [95]) to apply 20 random-

ized digital audio effects to each audio clip: four pitch shifts; four time stretchings; and four

additions of background noise originating from each of all three training sensors in the cross-

validation fold at hand. The choices of probability distributions and hyperparameters underly-

ing these augmentations are identical to those of [57], and are chosen in accordance with

expert knowledge about the typical vocal ranges of thrushes, warblers, and sparrows.

All transformations are independent from each other in the probabilistic sense, and never

applied in combination. In the case of the addition of background noise, we restrict the set of
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augmentations to those in which the background noise and the original audio clip belong to

recordings that are both in the training set, or both in the validation set.

Experimental design

As illustrated in Fig 2, our experimental design consists of two stages: training the system as a

binary classifier of presence vs. absence, and then running it on a task of avian flight call detec-

tion. The datasets we use for these two stages are BirdVox-70k and BirdVox-full-night. The

metrics we use are miss rate (i.e., the complementary of classification accuracy) and Area

Under the Precision–Recall Curve (AUPRC). While the former is related to the way our deep

learning models are trained, the latter is related to the way these models are deployed in the

field.

Stage 1: Binary classifier

Dataset: BirdVox-70k. We train all sound event detection models presented in this article

as binary classifiers of presence vs. absence of a flight call, at the time scale of audio clips of

duration 150ms. To this end, we rely on the BirdVox-70k dataset, which contains 35k positive

clips and 35k negative clips, originating from a network of 6 bioacoustic sensors. We refer to

[57] for more details on the curation of the BirdVox-70k dataset.

Evaluation: Leave-one-sensor-out cross-validation. Because our study focuses on the

comparative generalizability of automated systems for flight call detection, we split the Bird-

Vox-70k dataset according to a stratified, “leave-one-sensor-out” evaluation procedure. After

training all systems on the audio recordings originating from three sensors (training set), we

use two of the remaining sensors to identify the optimal combination of hyperparameters (val-

idation set), and leave the last sensor out for reporting final results (test set). From one fold to

the next, all boundaries between subsets shift by one sensor, in a periodic fashion.

The loss function for training the system is binary cross-entropyL ðy; ytrueÞ ¼ log jy � ytruej,
where ytrue is set to 1 if a flight call is present in the audio clip at hand, and 0 otherwise. To eval-

uate the system in its validation stage, we measure a classification accuracy metric; that is, the

proportion of clips in which the absolute difference |y − ytrue| is below 0.5 over a hold-out vali-

dation set.

Stage 2: Detection in continuous audio

Dataset: BirdVox-full-night. We evaluate all sound event detection models presented in

this article on a task of species-agnostic avian flight call detection. To this end, we rely on the

BirdVox-full-night dataset, which contains recordings originating from one ten-hour night of

fall migration, as recorded from 6 different sensors. Each of these sensors is located in rural

areas near Ithaca, NY, USA, and is equipped with one omnidirectional microphone of moder-

ate cost. The resulting bioacoustic sensor network covers a total land area of approximately

1000km2. The 6 recordings in BirdVox-full-night amount to 62 hours of monaural audio data.

The split between training set, validation set, and test set follows the same “leave-one-sensor-

out” evaluation procedure as presented in the previous section. Therefore, all models are tested

on recording conditions that are extraneous to the training and validation subsets. We refer to

[83] for more details on sensor hardware and to [57] for more details on BirdVox-full-night.

Evaluation: Precision and recall metrics. We formulate the task of avian flight call detec-

tion as follows: given a continuous audio recording from dusk to dawn, the system should pro-

duce a list of timestamps, each of them denoting the temporal center of a different flight call.

Then, we may evaluate the effectiveness of the system by comparing this list of timestamps

against an expert annotation. To this aim, we begin by extracting local peaks in the event
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detection function according to a fixed threshold τ. The baseline CNN model of [57] con-

strains consecutive detections to be spaced in time by a minimum lag of at least 150ms. This

constraint improved precision in the baseline CNN model without much detriment to recall,

and for consistency we kept this constraint throughout our evaluation. However, as we will see

in the Results section, this constraint becomes unnecessary in our state-of-the-art combined

model, named BirdVoxDetect. Therefore, BirdVoxDetect may produce predicted timestamps

as close to each other as 100 ms (i.e. two discrete hops of duration 50 ms) as it does not induce

any constraint on the minimum duration between adjacent peaks in the event detection

function.

Once the procedure of thresholding and peak-picking is complete, the detected peaks (flight

calls) are evaluated by matching them to the manually labeled calls—the “reference”, some-

times called “ground truth”—and computing the number of true positives (TP), false positives

(FP) and false negatives (FN). This process is repeated for varying peak detection threshold

values τ between 0 and 1 to obtain the standard information retrieval metric of Area Under

the Precision–Recall Curve (AUPRC) with 0 being the worst value and 1 being the best. A

detected peak and a reference peak are considered to be a matching pair if they are within 500

ms of each other. To ensure optimum matching of detected peaks to reference peaks while

ensuring each reference peak can only be matched to a single estimated peak, we treat the

problem as a maximum bipartite graph matching problem [98] and use the implementation

provided in the mir_eval Python library for efficiency and transparency [99].

Results

Stage 1: Training of a binary classifier

Exhaustive benchmark on validation set. Fig 5 summarizes the validation error rates on

BirdVox-70k of twelve different models. These models represent different combinations

between three design choices: choice of time-frequency representation, choice of formulation

in the context adaptation, and use of artificial data augmentation. In order to mitigate the

influence of random initialization on these validation error rates, we train and evaluate each of

the twelve different models ten different times on each of the six folds, and report the median

validation error rate only. The cumulative computational budget for training all models is of

the order of 180 GPU-days for training, and 180 CPU-days for prediction. In both cases, we

parallelize massively across models, folds, and trials, resulting in 720 different jobs in total,

each running independently for approximately six hours on a high-performance computing

cluster.

We find that, across all models, some folds consistently lead to a greater error rate than oth-

ers. In the case of the logmelspec-CNN baseline, the typical error rate is of the order of 5%, but

varies between 2% and 20% between folds. Individual variations of that baseline are not equally

beneficial. First, replacing the logmelspec acoustic frontend by PCEN improves validation

accuracy on five folds out of six, and GDA improves it on four folds out of six. Secondly, add-

ing context adaptation to the baseline, by means of a mixture of experts (MoE), is detrimental

to validation accuracy in four folds, while using an adaptive threshold (AT) instead of MoE

essentially leaves the baseline unchanged, as it improves and degrades per-fold performance in

comparable measures. Therefore, it appears that context adaptation alone fails to improve the

generalizability of a logmelspec-based deep learning model for avian flight call detection. In

what follows, we focus on analyzing the effects of context adaptation on models that are either

trained with PCEN, GDA, or both.

Fig 5 also shows that applying GDA to a PCEN-based model consistently improves valida-

tion accuracy over all six folds, whether an AT is present or not. We hypothesize that this
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consistent improvement is the relational effect of artificial pitch shifts in GDA and background

noise reduction caused by PCEN. Indeed, one shortcoming of pitch shifting in GDA is that it

affects foreground and background simultaneously. Yet, natural factors of variability in avian

flight call detection, such as those arising due to animal behavior, will typically affect the abso-

lute fundamental frequency of the foreground while leaving the background—i.e. the power

spectral density of insects or passing cars—unchanged. Consequently, artificial pitch shifts,

even as small as a musical semitone, may lead to a plausible foreground, yet mixed with an

implausible background in logmelspec domain. On the contrary, as described in the Methods

section, PCEN tends to bring the distribution of background time-frequency magnitudes

closer to additive white Gaussian noise (AWGN). Because AWGN has a flat spectrum, trans-

posing a polyphonic mixture containing a nonstationary foreground and an AWGN back-

ground has the same effect as transposing the foreground only while leaving the background

unchanged. Therefore, not only does replacing the logmelspec acoustic frontend by PCEN

improve the robustness of a classifier to background noise, it also helps disentangling pitch

transpositions of background and foreground, thus allowing for more extensive geometrical

data augmentation by pitch shifts and time stretchings.

Because the six folds in the leave-one-sensor-out cross-validation procedure are of unequal

size and acoustic diversity, it is not straightforward to rank all twelve models according to a

single global evaluation metric. However, we may induce a structure of partial ordering

between models by the following definition: a model A is regarded as superior to model B if

and only if switching from A to B degrades accuracy on half of the folds or more. According to

this definition, the last model (GDA-PCEN-AT) is the only one that is superior to all others.

Fig 5. Exhaustive benchmark of architectural variations with respect to the logmelspec-CNN baseline, on a task of binary classification of

presence vs. absence of a bird in audio clips. Dot colors represent folds in BirdVox-70k. GDA: geometrical data augmentation. logmelspec: log-mel-

spectrogram. PCEN: per-channel energy normalization. MoE: mixture of experts. AT: adaptive threshold.

https://doi.org/10.1371/journal.pone.0214168.g005
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Moreover, we find that PCEN is superior to the logmelspec baseline; that GDA-PCEN is

superior to PCEN; and that GDA-PCEN-AT is superior to PCEN. We also find that GDA-

logmelspec is superior to logmelspec, and that GDA-PCEN is superior to GDA-logmelspec.

However, we do not find either logmelspec-AT or logmelspec-MoE to be superior to

logmelspec. In addition, GDA-PCEN-MoE is superior to GDA-PCEN, yet inferior to GDA-

PCEN-AT.

Because GDA-PCEN-AT and GDA-PCEN-MoE perform almost equally across the board,

one supplementary question that arises from this benchmark is whether AT and MoE could

somehow be combined into a hybrid form of context adaptation. To challenge this hypothesis,

we trained a thirteenth model, named GDA-PCEN-AT-MoE, ten times on each fold of Bird-

Vox-70k, and measure median validation accuracies. We found that this model performs

below GDA-PCEN-AT on the majority of folds, and failed to train at all on many trials. There-

fore, we do not pursue this line of research further. Rather, we adopt the adaptive threshold

(AT) formulation as a simple, yet effective, method. We postulate that the overall degradation

in accuracy from GDA-PCEN-AT to GDA-PCEN-AT-MoE is caused by an excessive number

of degrees of freedom in the design of the context-adaptive neural network.

Two conclusions arise from all the observations above. First, the best performing model, in

terms of validation accuracy on BirdVox-70k, appears to be GDA-PCEN-AT. Therefore, in the

following, GDA-PCEN-AT is the model that we will choose to report results on the test set.

Second, because context adaptation does not improve the baseline, but only models that fea-

ture PCEN, we deduce that an ablation study from GDA-PCEN-AT should begin by removing

AT before removing PCEN. Therefore, in the following, we discuss and compare the evolution

of test set recall through time for GDA-PCEN-AT and GDA-PCEN, but do not report test set

results on GDA-logmelspec-AT because this model is excluded by cross-validation.

As a supplement to this benchmark, we evaluate a completely different deep learning sys-

tem, named “bulbul”, for the detection of bird sounds in audio signals [69]. This system won

the 2017 edition of the “Bird detection in audio” challenge [67], and its source code is freely

available at the following URL address: https://jobim.ofai.at/gitlab/gr/bird_audio_detection_

challenge_2017. With the help of the authors, we set up a pre-trained version of bulbul and use

it as a binary classifier of presence vs. absence in the BirdVox-70k dataset. Given that it expects

10-second audio clips rather than 150-millisecond audio clips, we had to repeat each clip peri-

odically 67 times in order to collect each prediction. After calibraing the detection threshold to

its optimal value, we report a detection accuracy of 50.8%, that is, marginally above the chance

level at 50%. In comparison, the deep learning baseline of [74] has a detection accuracy of

90.5%. This result confirms that the deep learning baseline of [74] was the state of the art in

avian flight call detection up until this publication. It also shows, as stated in the introduction,

that the task of avian flight call detection at the fine time scale of isolated acoustic events is fun-

damentally different from the task of “bird detection in audio”, as formulated by [68] at the

scale of ten seconds; and that state-of-the-art systems in the coarse-scale task are ill-suited to

address the fine-scale task.

Ablation study. Once the exhaustive benchmark has identified one reference model—

namely, GDA-PCEN-AT—we may measure the relative difference in error rate between the

reference and some other model in the benchmark for each fold, and compute quantiles across

folds. The reason why we opt for averaging relative differences rather than absolute differences

is that the former, unlike the latter, tends to follow a symmetric distribution across folds, and

thus can be represented on a box-and-whisker plot. Thus, we may compare and rank the

respective positions of the boxes for different ablations of the reference. Furtheremore, relative

improvements, unlike absolute improvements, are theoretically unbounded. Fig 6 summarizes

the results of our ablation study.
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First, replacing AT by MoE hardly affects our results. Therefore, it is more likely the pres-

ence of any form of context adaptation at all, rather than specific architectural choices in the

side-channel neural network, that enables a greater generalization across folds. In the original

article on context-adaptive neural networks [58], as well as those which followed by the same

first author [61, 100, 101], the proposed technique is MoE. Although we confirm that MoE is

successful, we find that implementing context adaptation with an adaptive threshold (AT)

leads to sound event detection results which are within a statistical tie with respect to MoE.

Yet, AT is simpler, faster, and more interpretable than MoE. Therefore, although our alterna-

tive techniques for context adaptation do not lead to significant improvements in accuracy,

our results call into question the widespread claim that the root cause behind the success of

context adaptation in deep learning lies in its ability to represent multiplicative interactions

between heterogeneous sources of data, and thus elicit neural specialization at prediction time.

Although the MoE and AW techniques do contain multiplicative interactions, the AT tech-

nique does not. It stems from these observations that, at least in the case of long-term bioa-

coustic monitoring with spectrotemporal summary statistics as auxiliary features, the presence

or absence of multiplicative interactions is not the sole determining factor of the success of

context adaptation.

Secondly, removing geometrical data augmentation, and training the PCEN-AT model on

original audio clips from BirdVox-70k only, does hinder accuracy consistently, though less so

than other improvements upon the baseline (i.e. PCEN and context adaptation). This supports

our hypothesis that shortcomings of the baseline are mainly attributable to its lack of robust-

ness to background noise, more so than its lack of robustness to the geometrical variability in

time-frequency patterns of avian flight calls.

Thirdly, we find that ADA-PCEN-AT and GDA-PCEN bring comparable differences in

miss rate with respect to the reference model GDA-PCEN-AT. In other words, the addition of

noise to the main branch of the network without reflecting it in the auxiliary features is, quite

unsurprisingly, about as detrimental as not having auxiliary features at all.

Fig 6. Ablation study of best model (CNN+PCEN+CA+GDA) on the BirdVox-full-night dataset. Boxes (resp. whiskers) denote interquartile (resp.

extremal) variations between sensors.

https://doi.org/10.1371/journal.pone.0214168.g006

Robust sound event detection in bioacoustic sensor networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0214168 October 24, 2019 21 / 31

https://doi.org/10.1371/journal.pone.0214168.g006
https://doi.org/10.1371/journal.pone.0214168


Fourthly, replacing PCEN by logmelspec in the reference model increases miss rates by

about 60% on average, and over 100% in two out of the six folds. Thus, there are grounds to

believe that PCEN is the predominant contributor to validation accuracy in the GDA-PCE-

N-AT reference model.

Stage 2: Detection in continuous audio

Precision-recall curves. Although the BirdVox-70k dataset is particularly well suited for

training machine listening systems for avian flight call detection, it does not reflect the practi-

cal use case of flight call monitoring in continuous recordings. Indeed, as described in [57],

BirdVox-70k is curated in a semi-automatic fashion: while the positive clips proceed from

human annotations, the negative clips correspond to the false alarms of an off-the-shelf shal-

low learning model. Specifically, BirdVox-70k contains a larger proportion of challenging con-

founding factors—such as siren horns and electronic beeps—and, conversely, a smaller

proportion of quasi-silent sound clips, than a full night of bird migration. Therefore, whereas

the previous subsection used validation accuracy on BirdVox-70k as a proxy for singling out

an optimal model, it is, from the perspective of applied bioacoustics, less insightful to report

test set accuracy on BirdVox-70k than it is to plot a precision-recall curve on BirdVox-full-

night.

Fig 7 illustrates the combined effects of PCEN, CA, and GDA on the area under the

precision-recall curve (AUPRC) when applying CNN to flight call event detection on the

BirdVox-full-night test set recordings. In agreement with the ablation study, the best model

(CNN+PCEN+CA+GDA) reaches a test AUPRC of 72.0%, thus outperforming models lacking

either PCEN, CA, or GDA. In addition to the precision-recall curves that are shown in Fig 7,

we computed predictions over BirdVox-full-night for each of the twelve models presented in

the exhaustive benchmark (Fig 5), over 6 folds and 10 randomized trials. This last procedure

represents about 10 CPU-years of computation in total. From it, we can confirm that BirdVox-

Detect does not overfit the validation set more than any of its counterparts.

Error analysis. We opened this article by pointing out that many state-of-the-art systems

for bioacoustic event detection lack robustness to spatiotemporal variations in background

noise, thus preventing their reliability at the scale of distributed sensor networks. In particular,

we had shown in Fig 1 that the CNN baseline of [57] exhibits a poor recall (below 50%) in the

early hours of BirdVox-full-night, while only achieving a satisfying recall towards the end of

each full night continuous recording. We hypothesized that such drastic variation in perfor-

mance was attributable to the scarcity of training examples at dusk in comparison to dawn, in

conjunction with more intense levels of background noise at dusk than at dawn. Now, Fig 8

offers evidence to support this initial hypothesis. While the top subfigure shows the evolution

of recall of the CNN baseline on the BirdVox-full-night dataset, the other two subfigures in Fig

8 show the evolution of recall from two models presented in this paper, both of which are

designed to be more robust to noise than the baseline.

First, Fig 8 (middle) shows that the PCEN model, comprising per-channel energy normali-

zation, is not only useful at dawn, but also earlier in the night: at certain sensor locations, the

recall rate is above 70% from 10 p.m. onwards, as opposed to 2 a.m. for the CNN baseline. This

qualitative finding confirms that replacing the logarithmic compression of the mel-frequency

spectrogram (logmelspec) by per-channel energy normalization (PCEN) may turn out to be

greatly beneficial to the practical usefulness of deep machine listening models for sound event

detection. Indeed, not only does PCEN significantly improve the tradeoff between precision

and recall over the global test set (as was demonstrated in Fig 7), but it also considerably

reduces the probability of missed detection within time slots in which sound events are very
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rare, such as dusk in the case of avian flight calls. It is striking to note that our end-to-end

learning system, once endowed with a PCEN acoustic frontend, manages to perform almost as

well on these time slots, despite the fact that, having fewer events, they contribute marginally

to the global precision-recall curve of Fig 7.

However, it should be noted that the increase in robustness to nonstationary noise that is

afforded by the introduction of PCEN is not accompanied by an increase in robustness to non-

uniform noise, as one could have hoped. Rather, as illustrated by the shaded areas surrounding

the line plots, and which denote interquartile variations across sensors, the GDA-PCEN model

suffers from large variations in recall between sensor locations at any given time of the full

night recording. For example, near 2 a.m., the median recall for warblers and sparrows (fre-

quency subband above 5 kHz) is about 60%, but as low as 30% for one of the sensors. From the

standpoint of the practitioner in the life sciences, the fact that such variations are both large

and difficult to anticipate indicates that the use of PCEN alone is insufficient to offer any guar-

antees of reliability in the realm of automated bioacoustic event detection.

Secondly, Fig 8 (bottom) shows the evolution of recall of the GDA-PCEN-AT model, also

known as BirdVoxDetect, over the course of the BirdVox-full-night dataset. It appears that this

Fig 7. Precision-recall detection curves in avian flight call detection (BirdVox-full-night dataset). The area under

each precision-recall curve (AUPRC) is shown in the legend of the plot. The red line (56.06%) is the CNN baseline

(previous state of the art of [57] without context adaptation). The blue line (76.40%) is our best performing model on

the validation set, and is released under the name of BirdVoxDetect. The thick dot on each curve denotes the optimal

tradeoff between precision and recall, corresponding to a maximal F1-score. CNN: convolutional neural network;

PCEN: per-channel energy normalization.

https://doi.org/10.1371/journal.pone.0214168.g007
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Fig 8. Evolution of recall in the automatic detection of avian flight calls over 30-minute segments in BirdVox-full-

night, for two taxa of migratory birds: Thrushes (blue curve, 0-5 kHz frequency range) and warblers and sparrows

(orange curve, 5-10 kHz frequency range). CNN: convolutional neural network. PCEN: per-channel energy

normalization. Shaded areas denote interquartile variations across sensors. We find that PCEN improves robustness to

noise nonstationarity, while context adaptation improves robustness to noise nonuniformity.

https://doi.org/10.1371/journal.pone.0214168.g008
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model, which combines a PCEN-based convolutional neural network and an auxiliary branch

learning an adaptive threshold (AT), exhibits narrower interquartile differences between sen-

sor locations than any of its counterparts. In other words, even though context adaptation

leaves the amount of robustness to nonstationarity in background noise essentially unchanged,

it noticeably improves the robustness to nonuniformity in background noise of the sound

event detection system at hand. This observation suggests that the deployment of distributed

machine listening software for flight call monitoring in a bioacoustic sensor network of auton-

omous recording units requires the resort to deep, data-driven methods for context adapta-

tion, in addition to a shallow procedure of adaptive gain control in the time-frequency

domain.

Conclusion

Spatial and temporal variability in background noise and the inability to generalize automatic

detectors in such conditions are major obstacles to the large-scale deployment of bioacoustic

sensor networks. In this article, we have developed, benchmarked, and combined several

machine listening techniques to improve the generalizability of SED models across heteroge-

neous acoustic environments.

Our main finding is that, although both per-channel energy normalization (PCEN) and

context adaptation (CA) improve the generalizability of deep learning models for sound event

detection, these two methods are not interchangeable, but instead complementary: whereas

PCEN is best suited for mitigating the temporal variations of background noise in a single sen-

sor, CA is best suited for mitigating spatial variations in background noise across sensor loca-

tions, whether the acoustic environment surrounding each sensor varies through time or not.

Indeed, PCEN relies on the assumption that background noise is stationary at a short time

scale (TPCEN = 60ms), of the order of the duration of the acoustic events of interest; whereas

CA computes auxiliary features at a longer temporal scale (TCA = 30 m). Consequently, PCEN

compensates intermittent changes in the loudness of background sources, such as a passing

vehicle or the stridulation of an insect; however, it assumes statistical independence between

background and foreground, and is thus inadequate to model how different habitats might

trigger different vocalization behaviors in the species of interest. For its part, the CA-CNN

draws on the variety of sensors in the training set to learn a joint model of both background

and foreground; however, this joint model needs to be regularized by integrating long-term

context into auxiliary features of relatively low dimensionality, which are, by design, invariant

to rapid changes in environmental noise.

After a comprehensive benchmark of architectural variations between convolutional neural

networks, we obtain statistically significant evidence to suggest that a combination of PCEN,

adaptive threshold, and artificial data augmentation (pitch shifts and time stretchings) pro-

vides a consistent and interpretable improvement over the logmelspec-CNN baseline. Reduc-

tions in miss rates with respect to the state of the art range between 10% and 50% depending

on the location of the sensor, and bring the area under the precision-recall curve (AUPRC) of

the BirdVox-full-night benchmark [57] from 61% to 76%. In addition, the recall of our selected

model for sound event detection, named BirdVoxDetect, remains relatively high even in

recording conditions where less training data is available, e.g. at dusk or in sensors with pecu-

liar characteristics in background noise.

Alongside this article, we release BirdVoxDetect as a pre-trained model on BirdVox-full-

night. We encourage bioacoustics researchers to download it and run it on their own record-

ings of nocturnal flight calls in the wild, especially if these recordings also contain high levels

of background noise and/or spurious sound events. BirdVoxDetect can detect the nocturnal
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flight calls of warblers, thrushes, and sparrows, with a high level of generality in terms of target

species as well as sensor locations. Indeed, as demonstrated by our benchmark, the procedures

of PCEN and unsupervised context adaptation allow BirdVoxDetect to be deployed in a broad

variety of recording conditions, exceeding those that are present in the BirdVox-full-night

dataset. The source code of BirdVoxDetect is freely available at the following URL address:

https://github.com/BirdVox/birdvoxdetect.

Deriving computer-generated estimates of migratory activity at ranges of spatiotemporal

scales from a decentralized network of low-cost bioacoustic sensors is a promising avenue for

new insights in avian ecology and the conservation of biodiversity. Future work will apply the

BirdVoxDetect machine listening system to large-scale bioacoustic migration monitoring.
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77. Schlüter J. Bird Identification from Timestamped, Geotagged Audio Recordings. Conference and Labs

of the Evaluation Forum (CLEF); 2018.

78. Dai J, Qi H, Xiong Y, Li Y, Zhang G. Deformable convolutional networks. In: Procedings of the IEEE

International Conference on Computer Vision (ICCV). IEEE; 2017. p. 764–773.

79. Ha D, Dai A, Le QV. HyperNetworks. In: Proceedings of the International Conference on Learnining

Representions (ICLR); 2017. p. 1–29.

80. Li D, Chen X, Zhang Z, Huang K. Learning deep context-aware features over body and latent parts for

person re-identification. In: Procedings of the IEEE Conference on Computer Vision and Pattern Rec-

ognition (CVPR). IEEE; 2017. p. 384–393.

81. Salamon J, Bello JP. Deep convolutional neural networks and data augmentation for environmental

sound classification. IEEE Signal Processing Letters. 2017; 24(3):279–283. https://doi.org/10.1109/

LSP.2017.2657381

82. Salamon J, Jacoby C, Bello JP. A Dataset and Taxonomy for Urban Sound Research. In: International

Conference on Multimedia. Association for Computing Machinery; 2014. p. 1041–1044.

83. Salamon J, Bello JP, Farnsworth A, Robbins M, Keen S, Klinck H, et al. Towards the automatic classifi-

cation of avian flight calls for bioacoustic monitoring. PLOS ONE. 2016; 11(11). https://doi.org/10.

1371/journal.pone.0166866

84. Kingma D, Ba J. Adam: A Method for Stochastic Optimization. In: Proceedings of the International

Conference on Learning Representations (ICLR); 2015. p. 1–15.

85. Chollet F. Keras v2.0.0; 2018. https://github.com/fchollet/keras.

86. McFee B, Jacoby C, Humphrey E. pescador; 2017. Available from: https://doi.org/10.5281/zenodo.

400700.

87. Bello JP, Daudet L, Abdallah S, Duxbury C, Davies M, Sandler MB. A tutorial on onset detection in

music signals. IEEE Transactions on Speech and Audio Processing. 2005; 13(5):1035–1047. https://

doi.org/10.1109/TSA.2005.851998

88. Yang Z, Dai Z, Salakhutdinov R, Cohen WW. Breaking the softmax bottleneck: A high-rank RNN lan-

guage model. In: Proceedings of the International Conference on Learning Representations (ICLR);

2018.

89. Battenberg E, Child R, Coates A, Fougner C, Gaur Y, Huang J, et al. Reducing bias in production

speech models. arXiv preprint 170504400. 2017;.

90. Shan C, Zhang J, Wang Y, Xie L. Attention-based End-to-End Models for Small-Footprint Keyword

Spotting. arXiv preprint arXiv:180310916. 2018;.

Robust sound event detection in bioacoustic sensor networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0214168 October 24, 2019 30 / 31

https://doi.org/10.1109/LSP.2018.2878620
https://doi.org/10.1109/LSP.2018.2878620
https://doi.org/10.1109/LSP.2017.2657381
https://doi.org/10.1109/LSP.2017.2657381
https://doi.org/10.1371/journal.pone.0166866
https://doi.org/10.1371/journal.pone.0166866
https://github.com/fchollet/keras
https://doi.org/10.5281/zenodo.400700
https://doi.org/10.5281/zenodo.400700
https://doi.org/10.1109/TSA.2005.851998
https://doi.org/10.1109/TSA.2005.851998
https://doi.org/10.1371/journal.pone.0214168


91. Franceschi JY, Fawzi A, Fawzi O. Robustness of classifiers to uniform ℓp and Gaussian noise. In: Pro-

ceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR;

2018. p. 1280–1288.

92. Krstulović S. Audio Event Recognition in the Smart Home. In: Virtanen T, Plumbley MD, Ellis D, edi-

tors. Computational Analysis of Sound Scenes and Events. Springer; 2018. p. 335–371.

93. McFee B, McVicar M, Balke S, Thomé C, Raffel C, Lee D, et al. librosa/librosa: 0.6.1; 2018. Available

from: https://doi.org/10.5281/zenodo.1252297.

94. Andén J, Lostanlen V, Mallat S. Joint time-frequency scattering for audio classification. In: Proceed-

ings of the IEEE International Conference on Machine Learning for Signal Processing (MLSP). IEEE;

2015. p. 1–6.

95. McFee B, Humphrey EJ, Bello JP. A software framework for musical data augmentation. In: Proced-

ings of the Conference of the International Society on Music Information Retrieval (ISMIR); 2015.

p. 248–254.
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