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Excessive immune responses directed against foreign pathogens, self-antigens, or com-
mensal microflora can cause cancer establishment and progression if the execution of
tight immuno-regulatory mechanisms fails. On the other hand, induction of potent tumor
antigen-specific immune responses together with stimulation of the innate immune sys-
tem is a pre-requisite for effective anti-tumor immunity, and if suppressed by the strong
immuno-regulatory mechanisms can lead to cancer progression. Therefore, it is crucial
that the inevitable co-existence of these fundamental, yet conflicting roles of immune-
regulatory cells is carefully streamlined as imbalances can be detrimental to the host.
Infection with chronic persistent viruses is characterized by severe immune dysfunction
resulting in T cell exhaustion and sometimes deletion of antigen-specific T cells. More
often, this is due to increased immuno-regulatory processes, which are triggered to down-
regulate immune responses and limit immunopathology. However, such heightened levels
of immune disruption cause a concomitant loss of tumor immune-surveillance and create a
permissive microenvironment for cancer establishment and progression, as demonstrated
by increased incidences of cancer in immunosuppressed hosts. Paradoxically, while some
cancers arise as a consequence of increased immuno-regulatory mechanisms that inhibit
protective immune responses and impinge on tumor surveillance, other cancers arise due
to impaired immuno-regulatory mechanisms and failure to limit pathogenic inflammatory
responses. This intricate complexity, where immuno-regulatory cells can be beneficial in
certain immune settings but detrimental in other settings underscores the need for care-
fully formulated interventions to equilibrate the balance between immuno-stimulatory and
immuno-regulatory processes.
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INTRODUCTION
The observation that a sustained and potent immune response
to a foreign pathogen, self-antigen, or normal microflora can be
the root cause of uncontrolled cancer outgrowth and progression
underscores the need for tight immuno-regulatory interventions
that could be harnessed for the development of cancer vaccines
and cell-based immunotherapies. On the other hand, inflamma-
tory responses characterized by infiltration of tumor-associated
antigen (TAA)-specific T cells and other components of the innate
immune system are a pre-requisite for effective anti-tumor immu-
nity. Therefore, it is crucial that the inevitable co-existence of
these opposing forces is carefully streamlined as imbalances can
be detrimental to the host.

Oncogenic viruses such as Epstein–Barr virus (EBV), human
papilloma virus (HPV), and Kaposi sarcoma herpes virus (KSHV)
express viral oncogenes, which can directly induce tumorigenic
cell transformations and initiate the carcinogenesis process. In
the case of non-oncogenic viruses such as hepatitis B (HBV) and
hepatitis C (HCV), chronic infection and inflammation can lead

to carcinogenic mutations in host cells (1), which are manifested
by the increased incidences of liver cancer in chronic HBV and
HCV patients. In both of these scenarios, the arising transformed
tumor cells are genetically altered in a manner that distinguishes
them from ordinary healthy self-cells thus conferring the ability to
trigger effector immune responses, which in some cases are capable
of controlling tumor growth (2, 3). In other instances, however,
such modifications may lead to altered antigenicity and escape
from immune-surveillance whereby the newly transformed cells
are no longer recognized by their original cognate antigen-specific
immune cells, thus leading to uncontrolled cancer progression. On
a different platform, continuous antigenic stimulation that occurs
during chronic virus infections causes severe immune dysfunction
characterized by T cell exhaustion, anergy and in some cases dele-
tion of antigen-specific B and T cells (4–6), and a concomitant
induction of immuno-regulatory processes, which all result in the
loss of tumor immune-surveillance and lead to cancer establish-
ment. This is indeed supported by epidemiological data showing
increased incidences of malignancies such as Kaposi sarcoma (KS)
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Ondondo Intricate complexities of immune-regulation and cancer

and cervical cancer, as well as EBV-associated malignancies such
as non-Hodgkin lymphoma (NHL) and Burkitt lymphoma in
immunosuppressed HIV/AIDS (7) and transplant patients.

Cancer can also arise due to dysfunctional immuno-regulatory
mechanisms that result in uncontrolled excessive inflammatory
immune responses. For example, pathogenic immune responses
directed at commensal intestinal microflora during inflamma-
tory bowel disease (IBD) are known to increase the risk of
colon cancer (8, 9). Indeed prolonged periods of ulcerative col-
itis (UC) and Crohn’s disease (CD) are associated with impaired
immuno-regulatory mechanisms, which are in turn linked to
colitis-associated colon carcinogenesis (10–12). Under normal cir-
cumstances both intrinsic and extrinsic regulatory pathways come
into force to limit excessive immune activation and inflammation
thus preventing tissue pathology and subsequent risk of cancer.
However, as in many cases, failures of these control measures,
including reduced frequencies or altered phenotype and func-
tion of regulatory T cells (Treg) means that this inflammation
progresses in leaps and bounds. These paradoxical scenarios high-
light a disruption in the natural homeostatic immuno-regulatory
mechanisms that can be switched on to prevent excessive immune
activation or turned off to allow execution of effector immune
responses and tumor immune-surveillance. However, the exact
timing of when a “good” immune response aimed at pathogen or

tumor clearance can become a very “bad” response that creates
an environment conducive for cancer growth and dissemination
remains elusive. Understanding the intricate complexities and the
timings of these events will be crucial in designing interventions
for immune-mediated and viral cancers.

EXTRINSIC AND INTRINSIC IMMUNO-REGULATORY
PATHWAYS
A complex network of finely tuned immune-regulation path-
ways exists to actively inhibit excessive immune responses dur-
ing chronic viral infections and inflammation. This is essential
for preventing the hyper-proliferation of antigen-specific T cells
that could cause immunopathology due to increased release of
inflammatory cytokines and targeted killing of infected or antigen-
expressing tumor cells by CD8+T cells. Immuno-regulatory path-
ways can broadly be divided into extrinsic or intrinsic pathways
as depicted in Figure 1. Intrinsic mechanisms derive from within
the effector cell and usually involve down-regulation of activat-
ing receptors and up-regulation of inhibitory receptors as well
as activation of antagonist mechanisms, as discussed in the next
section. Extrinsic pathways on the other hand usually involve other
cells, which exert regulatory functions by cell-to-cell contact or via
release of suppressive cytokines and biochemical compounds that
inhibit cellular functions.

FIGURE 1 | Intrinsic and extrinsic immune-regulatory pathways. Several
pathways of immune-regulation exist, and these comprise intrinsic and
extrinsic mechanisms. Intrinsic pathways (inner circle) derive from within the
effector cell and usually involve up-regulation of inhibitory receptors,
down-regulation of cytokine and T cell activation receptors, down-regulation of
MHC molecules, as well as the degradation of downstream signaling
elements. Although the intrinsic pathways derive mainly from within the
effector or antigen presenting cells, interactions with external elements do

play a significant role, for instance the down-regulation of MHC class I, which
is directly mediated by the HIV-1 Nef protein (13, 14). Extrinsic pathways
(outer circle) involve several other cell types that exert immune suppression
via cell-to-cell contact or through the release of suppressive cytokines and
other biochemical compounds with suppressive activity. These include the
various types of regulatory T cells in addition to the Foxp3+Treg, CD8+
regulatory T cells, MDSCs as well as M2 macrophages and suppressive NK
cells.
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Ondondo Intricate complexities of immune-regulation and cancer

Of the extrinsic immuno-regulatory pathways, CD4+CD25high

Foxp3+ Treg are the most extensively studied and their suppres-
sive mechanisms have been elucidated in greater detail. Existence
of other types of immune cells with regulatory functions has been
documented, for example CD4+Foxp3− Treg with suppressor
functions such as the IL-10 producing Tr1 cells (15) and TGF-
β producing Th3 cells (16) have been found in inflammatory
environments. Tr1 cells secrete high levels of IL-10 and moder-
ate amounts of TGF-β, and mainly suppress vial IL-10 release, as
IL-10 neutralization abrogates their suppressive function (17, 18).
On the converse, Th3 cells secrete high levels of TGF-β and low lev-
els of IL-10 and can suppress both Th1 and Th2 responses (16, 17).
Other cells with regulatory properties include myeloid-derived
suppressor cells (MDSC), which can be induced by cytokines
such as IL-6 and growth factors including G-CSF and GM-CSF
(19), CD8+Foxp3+ Treg producing both IL-10 and TGF-β, or
IL-10-producing CD8+ T cells (20–22), as well as NK cells that
possess suppressor functions (23, 24). Activated MDSC can sup-
press via several mechanisms including IL-10 production as well as
via compounds such as arginase 1, reactive oxygen species (ROS),
and nitric oxide (NO) among others (19). Moreover, MDSC can
indirectly contribute to immuno-regulatory functions by inducing
Treg differentiation and expansion.

IMMUNE DYSREGULATION DURING PERSISTENT VIRUS
INFECTIONS AND CHRONIC INFLAMMATION
T cells are the key players in many infectious diseases and in
eradication of malignant cells. This is well-demonstrated in acute
infections where T cells become activated and acquire effector
functions, with subsequent clearance of infection and formation
of stable memory populations. Moreover, tumors heavily infil-
trated with fully functional effector T cells progress less rapidly
and in some cases regression can be achieved. However, in the
case of persistent antigen stimulation in a chronic setting, mem-
ory T cell formation and effector functions are altered, resulting
in exhausted, functionally impaired defective T cells incapable
of conferring protection. The characteristic properties of these
defective cells include diminished cytokine production, decreased
cytotoxicity, and reduced proliferative and self-renewal poten-
tial. In some cases, mutational escape and/or physical deletion
of antigen-specific T cells occurs resulting in inadequate immune
control, hence chronic persistence of the viruses. Furthermore,
some chronic pathogens directly infect the immune cells, e.g.,
HIV-1 (CD4+T cells) and EBV (B cells) leading to loss of immune
functions. This state of immunological dysfunction is consistently
found in chronic virus infections including HIV, HBV, and HCV
(25–27) and is also prevalent in cancer patients. Immune dysreg-
ulation can be manifested in several forms, some of which are
summarized in Figure 2 and described below.

T CELL EXHAUSTION
T cell exhaustion refers to a state of progressive loss of immune
function, which in some cases, can result in physical deletion
of responding cells due to imbalances in the expression of pro-
apoptotic and anti-apoptotic factors and the inability to respond
to IL-7 and IL-15 (26–28). The dominant mechanism of T cell
exhaustion is the up-regulation of several inhibitory receptors,

although down-regulation of cytokine receptors such as IL-7Rα

and IL-15Rα by exhausted memory T cells is frequently observed.
Lower levels of IL-7Rα and IL-15Rα can lead to defective cytokine
signaling and consequently impaired homeostatic self-renewal
and suboptimal numbers of functional memory T cells (27, 28).
Up-regulation of inhibitory receptors such as programed-death
1 (PD-1), T cell immunoglobulin mucin 3 (TIM-3), lymphocyte
activation gene 3 (LAG-3), and cytotoxic T-lymphocyte-associated
protein-4 (CTLA-4) is a characteristic feature of exhausted T cells.
PD-1, an inhibitory receptor of the CD28 superfamily is highly
expressed on exhausted CD8+ T cells during progressive chronic
viral infections and uncontrolled cancer, making it a major fac-
tor in T cell exhaustion. Under normal circumstances, PD-1 is
induced following T cell activation to inhibit the TCR signal-
ing cascade and prevent excessive T cell activation, but is then
down-regulated following pathogen clearance. In peripheral tol-
erance, PD-1 is important in inhibiting potentially pathogenic
self-reactive T cells as well as promoting Treg development (29,
30) and mice lacking PD-1 succumb to autoimmune diseases (31,
32). However, in chronic infection, the PD-1 pathway mediates
pathogen-specific CD8+ T cell dysfunction as demonstrated in
HIV (33–35), HCV (36, 37), and HBV (38, 39) infections. For
example, the frequency of PD-1+CD8+ T cells is highly elevated
in HIV-1 patients where it correlates significantly with viral load
and declining CD4+ T cell numbers (33, 40). PD-1 is also up-
regulated on HIV-specific CD4+ T cells (40, 41) and inhibits
CD4+T cell responses including proliferation. Interestingly, PD-1
levels are significantly reduced in HIV-1 progressors who initi-
ate highly active antiretroviral therapy (HAART) or in long-term
non-progressors (LTNPs), suggesting that antigen persistence dri-
ves T cells to exhaustion (33, 34). In chronic HCV infection,
increased PD-1 expression on HCV-specific CD8+ T cells is asso-
ciated with impaired proliferation and cytokine production (37).
A part from inhibition of T cell function, PD-1 expression can also
lead to spontaneous or FAS-mediated apoptosis of virus-specific
T cells (42).

Besides PD-1, other inhibitory receptors such as TIM-3, 2B4
(natural killer cell receptor), and LAG-3 are also up-regulated on
virus-specific T cells, and the expression of multiple inhibitory
receptors correlates with a severely dysfunctional state (43–45).
For example, co-expression of PD-1 and TIM-3 is associated with
severely exhausted HIV-specific CD8+ T cells (45) and majority
of these also co-express PD-1 and 2B4 (46). CTLA-4 is another
inhibitory receptor expressed by activated CD4+ and CD8+ T
cells. It has a higher affinity for the B7 ligands (CD80 and CD86)
allowing it to out-compete CD28, hence it is a powerful negative
regulator of CD28-dependent T cell responses. It is significantly
up-regulated on CD4+ T cells during HIV-1 and HCV infections
where it correlates positively with disease progression and neg-
atively with antigen-specific IL-2 production (41, 47). CTLA-4
is abundantly expressed on Treg as it is required for optimum
suppressive function.

IMPAIRED APC FUNCTION
The fact that fully functional pathogen-specific T cells are rarely
found in chronic infections suggests impaired antigen presenta-
tion, which could be attributed to either inadequate priming by
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Ondondo Intricate complexities of immune-regulation and cancer

FIGURE 2 | Mechanisms of immune dysregulation during persistent
antigen stimulation. Immune dysregulation manifests in several distinct
forms, which can occur in isolation or in combination. Persistent antigenic
stimulation, especially in settings with high antigen loads can lead to T cell
exhaustion (characterized by the up-regulation of several inhibitory receptors
and down-regulation of specific T cell activation receptors), anergy
(generalized unresponsiveness), impaired memory formation, impaired
proliferation, and self-renewal capacity. Besides these, chronic viruses trigger

various biochemical pathways that lead to increased frequencies of MDSCs
and Treg, which actively suppress effector immune responses via a variety of
mechanisms. Immune dysregulation occurring at the T cell priming stage is
linked to dysfunctional APCs (for example inadequately activated or
tolerogenic DCs), which are likely to skew the immune response toward
tolerance. Conceivably, such regulatory mechanisms serve to prevent tissue
damage and aberrant immune activation, but they inevitably contribute to the
chronic persistence state as a result of inhibiting effector immune responses.

non-professional APCs or possibly altered function of professional
APCs during the chronic stages of disease. Indeed, functional
impairment of DCs has been associated with T cell exhaustion
and progression of disease during HIV, HBV, HCV, and LCMV
infection (48–51). Decreased expression of co-stimulatory mole-
cules and lower production of immuno-stimulatory cytokines by
APCs can result in functionally tolerant or anergic T cells. Further-
more, chronic infections are associated with loss of DCs, possibly
due to direct infection by viruses such as HIV and LCMV. More-
over, DCs can induce T cell exhaustion or tolerance by signaling
through inhibitory receptors such as PD-1 and CTLA-4, and also
acting via indoleamine 2,3-dioxygenase (IDO)-dependent mech-
anisms to induce Treg, which further suppress immune responses
(52). However, other factors such as virus-induced modulation of
the expression of MHC or co-stimulatory molecules have been
described and may also significantly affect the generation of fully
functional T cells (13, 14).

INCREASED FREQUENCY OF TREG AND MDSC
Increased frequencies of Treg and MDSC are a common feature
of persistent chronic viral infections, which is well-documented in
infections with HBV (53–55), HCV (56–58), and HIV (52, 59–61).
These chronic persistent viruses trigger the production of IL-10
and TGF-β, which in turn increase the frequency and suppressive
function of Treg, such as observed in HCV-infected hepatocytes
(62). Alternatively, these cytokines may promote the induction
of adaptive Treg further reinforcing the immune barrier at sites
of infection. HIV and HCV infections also induce plasmacytoid
dendritic cells (pDCs) known to induce IL-10-producing Treg via
IDO-dependent mechanisms (52, 58). Additionally, the chronic
micro-environments created by virus persistence contribute to

enhanced Treg proliferation and suppressive function by secreting
cytokines and other factors on which Treg thrive. The high fre-
quencies of Treg and MDSC serve an important role of preventing
excessive antigen stimulation, persistent inflammatory responses,
and viral mediated immunopathology in the chronic stages of viral
disease (56, 63). However, the elevated frequencies and enhanced
suppressive capacity of Treg and MDSC also contribute to sup-
pression of effector T cells in an antigen-specific or bystander
mechanism (64) thus promoting prolonged viral persistence (65,
66) characterized by secondary T cell impairment and exhaustion
(67). Thus, counterintuitively, increased expansion and survival
of regulatory cells serve to establish, propagate, and maintain the
chronic infection state.

INCREASED SUPPRESSIVE CYTOKINES
Apart from Treg and MDSC, increased IL-10 production is another
powerful immuno-regulatory mechanism that negatively impacts
on the quantity and quality of antigen-specific immune responses.
IL-10 is an immuno-regulatory cytokine produced by many cell
types and has multiple functions including inhibition of pro-
inflammatory cytokine production, dampening T cell responses,
blocking APC functions, and also causing B cell dysregulation.
Increased IL-10 production is seen in several chronic viruses
including HIV, EBV, HCV, HBV, and LCMV (68–75), and IL-10R
blockade can induce rapid virus control indicating that excessive
levels of IL-10 have a negative influence on the quality of immune
responses and disease course (68, 69). TGF-β is yet another
immunosuppressive cytokine whose role in limiting immune
responses is documented in a number of disease settings (76).
Both IL-10 and TGF-β are known to establish highly suppressive
micro-environments that are suitable for cancer progression.
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DISRUPTION OF IMMUNE-REGULATORY T CELLS IN
INFLAMMATORY ENVIRONMENTS
Resolution of inflammation requires swift execution of functional
regulatory mechanisms such as the expansion of Treg, a lineage
of lymphocytes committed to suppressive functions that main-
tain self-tolerance and immune homeostasis. Dysregulation of
Treg function or induction is linked to a number of chronic
inflammatory disorders such as IBD and also fatal autoimmune
diseases. Thus, interventions which can restore functional reg-
ulation without inducing effector immune responses would be
beneficial in such settings. Dysfunctional regulation can manifest
as reduced Treg numbers (either due to defective Treg induction
or loss of Treg), defective suppressive function (due to loss of
Foxp3 expression or reduced production of suppressive cytokines),
and impaired migration (due to altered expression of adhesion
molecules and chemokine receptors). This section gives a brief
description of these mechanisms and the various inflammatory
conditions that drive phenotypic and functional modification
of Treg.

TREG INSTABILITY: PHENOTYPIC ALTERATION AND FUNCTIONAL
IMPAIRMENT
Despite the widely held view of thymic imprinting of Treg cell
functions, recent studies indicate developmental plasticity and
instability, whereby Treg lose Foxp3 expression and convert to
Foxp3− helper T cells (exFoxp3) (77, 78) in certain inflammatory
or lymphopenic environments (Figure 3). Although exFoxp3 Treg
may largely arise from a few promiscuous uncommitted Treg (79),
their comparatively higher potential to expand, coupled with the
fact that a majority of them are skewed toward self-reactivity sug-
gests potential pathogenicity as a result of altered regulatory func-
tions such as secretion of pro-inflammatory cytokines directed
against self-antigens (77). Adoptive transfer studies showed that
a large fraction of Treg transferred to lymphopenic recipients
lost Foxp3 expression alongside other Treg cell surface mark-
ers, and that this was accompanied by acquisition of effector
functions including IFN-γ, IL-2, and IL-17-production and a
concomitant loss of suppressive function (80–82). Other reports
indicated that Foxp3+ Treg effectively lost Foxp3 expression
and converted to T helper-type 2 phenotype cells expressing
IL-13 and IL-5 (78, 83) or differentiated into follicular helper
T cells (Foxp3–TFH-like cells) under the influence of IL-6 and
IL-21 (84). Acquisition of T helper features without the simul-
taneous loss of Foxp3 expression has also been observed. This
results in hybrid Treg, which display an activated-memory T
cell phenotype and pro-inflammatory properties, such as the
IL-17-producing Foxp3+ROR-γt+ IL-17+ (85–90) and IFN-γ-
producing Foxp3+T-bet+ IFN-γ+ (91, 92) Treg. Although this
hybrid Treg phenotype can exert dual inflammatory and reg-
ulatory functions, it has been shown that the phenotypic and
transcriptional modifications can reduce their overall suppres-
sive function (81, 93). In other instances however, Treg have been
shown to lose their suppressive function without necessarily con-
verting to exFoxp3 or dual function (hybrid) inflammatory Treg
(94–100). Such functionally impaired Treg show decreased expres-
sion of Foxp3, CTLA-4, and GITR, together with production of
very low levels of IL-10 and TGF-β.

FIGURE 3 | Impaired or altered function of regulatory cells during
inflammation. The cytokine and chemokine milieu of inflammatory
micro-environments can induce phenotypic and functional modification in
Treg, leading to generation of pathogenic exFoxp3 T cells, which express
lower levels of Foxp3, CTLA-4, and GITR and produce a combination of Th1,
Th2, or Th17 cytokines. Conversion of Foxp3+Treg into pathogenic
IFN-γ-producing Th1 cells or IL-17-producing Th17 exFoxp3 Treg cells is
documented in various immunological settings (77, 80, 101). Conversion to
a Th2 phenotype expressing IL-13 (Foxp3+IL-13+) and IL-5 (78, 83) as well as
differentiation into follicular helper T cells (84) have also been reported. In
most cases, the suppressive function of these altered phenotypes is
significantly reduced due to decreased Foxp3 expression (81, 82). Certain
inflammatory conditions can support the generation of hybrid phenotype
Treg, which exhibit dual suppressive and pro-inflammatory functions such
as the IL-17-producing Foxp3+IL-17+ (85–90), IFN-γ-producing Foxp3+
IFN-γ+ (91, 92), Foxp3+IL-17+ IFN-γ+, or Foxp3+IL-17+TNF-α+ (102, 103)
Treg. Generally, environments enriched with Th1 cytokines such as IFN-γ,
IL-2, and IL-12 favor generation of exFoxp3 Treg producing IFN-γ, those
enriched with Th2 cytokines such as IL-4 and IL-13 favor generation of Th2
Treg, while IL-6 favors conversion into the IL-17+Foxp3+ and IL-17+Foxp3−
phenotypes.

Several lines of evidence indicate that functional and pheno-
typic plasticity of Foxp3+ Treg is largely governed by extrinsic
signals provided by the inflammatory milieu of their surround-
ing environments. Increased levels of pro-inflammatory cytokines
such as IL-12 or IFN-γ correlate with the frequency of functionally
impaired Th1-like Treg (104). In this setting, the Treg suppressive
functions were effectively restored by IL-12 withdrawal or IFN-γ
blockade suggesting that a pro-inflammatory cytokine milieu not
only promotes the Th1-like phenotype, but also inhibits Treg sup-
pressor functions. Overall, inflammatory environments enriched
with cytokines such as IL-1β, IL-4, IL-6, IL-21, and IL-23 drive con-
version of Foxp3+Treg into T helper phenotypes (80, 105, 106). As
an example, stimulation of peripheral Treg in the presence of IL-6
was shown to result in loss of Foxp3 expression and production
of IL-17 (105, 106). Inflammatory environments with IL-1β, IL-2,
IL-6, IL-21, IL-23, and TGF-β have been shown to drive conver-
sion of Foxp3+ Treg into IL-17 producing Treg (87, 107), whereas
TGF-β, IL-10, and IL-2 help to maintain continued Foxp3 expres-
sion, Treg stability, and suppressive function (80, 81, 92, 108–110).
Therefore, stable Foxp3 expression and maintenance of optimal
Treg suppressive function require the continuous presence of spe-
cific signals within the inflammatory environment, without which
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conversion of Treg into functionally impaired exFoxp3 T cells or
hybrid phenotype Treg occurs (102, 103).

Although the various Treg phenomena described above are
well-documented in autoimmune settings, it remains possible
that the chronic inflammatory environments created by persis-
tent viral infections can also support phenotypic and functional
modifications that would render Treg dysfunctional. In favor
of this speculation, a recent study has demonstrated that Treg
infected with HIV display increased CpG methylation of the Foxp3
locus and a deregulated functional profile, which was character-
ized by down-regulation of Foxp3 expression, reduced suppres-
sive capacity, and altered cytokine secretion pattern (111). These
Treg showed decreased production of TGF-β and increased IL-4
secretion, a characteristic which is thought to orchestrate severe
systemic immune hyper-activation that is observed during pro-
gressive HIV disease. In chronic infection with HCV, PD-L1 was
found to negatively regulate both the function and proliferation
of Treg by controlling STAT-5 phosphorylation (112). Although
PD-1 was expressed on both Treg and effector T cells, Treg showed
significantly higher up-regulation of PD-1, which was correlated
with disease progression. These studies highlight the potential of
viruses to subvert the induction and function of Treg, but clearly
further research is needed to unravel the mechanisms underlying
defective regulation during chronic virus infections.

IMPAIRED OR ALTERED MIGRATION OF TREG
Another crucial aspect contributing to Treg dysfunction is their
ability to migrate to peripheral sites of chronic inflammation such
as the skin, urogenital mucosa, gut-associated lymphoid tissues
(GALT), transplanted organs, or tumors for appropriate localiza-
tion, in close proximity with effector immune cells as suppression
is mostly contact-dependent. To do this effectively, activated Treg
up-regulate distinct site-specific inflammatory chemokine recep-
tors and adhesion ligands, which facilitate their migration into
the inflamed tissues, usually in response to a variety of inflam-
matory chemokines that serve as migrational cues (113–117).
Therefore, altered chemokine receptor and adhesion molecule
expression can affect the migrational properties of Treg and impact
on their ability to access sites of chronic inflammation. Such atten-
uated Treg migration can in turn lead to sustained inflammation
and increased risk of inflammation-driven cancer in the Treg
inaccessible areas, owing to reduced frequency and suppressive
activities.

The crucial role of chemokine-receptor-dependent migration
in functional regulation is demonstrated in several experiments
including a mouse model of colitis and IBD, where CCR4-
deficient Treg had impaired migration to the mesenteric lymph
nodes and therefore failed to prevent colitis (118). In other set-
tings, a number of chemokine receptors including CCR2, CCR4,
CCR5, CCR6, CCR7, and CXCR3 have been implicated in the
selective and preferential recruitment of Treg to sites of chronic
inflammation and/or tumors (115, 119, 120), thus indicating
that alteration in chemokine receptor patterns or blockade of
chemokine receptor signaling would have a significant impact on
their migration and immuno-regulatory activities. Tumors and
their associated stroma are known to express elevated levels of
specific inflammatory chemokines, which serve to chemoattract

various leukocytes including Treg (121, 122). Although the over-
all recruitment is also significantly influenced by the type of
chemokine receptors expressed by the leukocytes, Treg, especially
the “inflammation-seeking” phenotype usually up-regulate mul-
tiple chemokine receptors (116), which allow them access to a
variety of tumors, where they preferentially accumulate (119).
Some studies demonstrate that disruption of key chemokine
receptor signaling axes such as CCR4 or CCR5, or the depletion
of chemokine receptor-specific Treg can significantly inhibit their
migration and prevent accumulation in tumors (123, 124), thus
influencing the overall prognosis. Conceivably, while impaired
migration and reduced Treg access to tumors would be an awesome
advantage in the majority of cancer settings where they impinge
on anti-tumor immune responses, it may however be a major set-
back in certain other settings, which require Treg to limit excessive
immune responses, such as in IBD and chronic virus infections.

LOSS OF TREG (IMPAIRED TREG INDUCTION OR TREG DELETION)
In certain disease settings, physical deletion of Treg can result in
reduced frequencies. For instance, it is postulated that by virtue
of their activated nature, Treg express higher levels of CCR5 and
CXCR4, the co-receptors for HIV-1 thus making them preferential
targets for HIV-1 infection (125, 126). Since Foxp3+ Treg repre-
sent a high proportion of CD4+ T cells (up to 50%) found in
mucosal lymphoid organs of HIV-infected individuals (60), it is
plausible that HIV infection can subsequently lead to significant
depletion of these cells and impaired immuno-regulatory func-
tions (127–129). Furthermore, Treg also express both Fas and Fas
ligand and can be targeted and killed by effector T cells without
necessarily being infected. Several studies indicate that myeloid
dendritic cells (mDCs) can contribute to Treg induction by pro-
moting conversion of conventional CD4+ T cells into Treg (130,
131). However, it has been shown that in vitro HIV infection of
mDCs not only impairs their capacity to induce Treg but can also
trigger preferential targeting and killing of Treg via a caspase-
dependent pathway (132), thus contributing to numerical loss of
Treg. Changes in the levels of chemokines expressed within cer-
tain tissues, together with diminished levels of TGF-β and IL-2
can also result in the loss of Treg in that particular organ. For
example, altered expression of ligands for CXCR3, CCR4, and
CCR7 was associated with a loss of Treg in lymph nodes dur-
ing simian immunodeficiency virus (SIV) infection (133). Other
mechanisms for reduced Treg frequencies may include increased
apoptosis, reduced proliferation and survival, as well as impaired
peripheral Treg induction. As discussed earlier, Treg may also be
lost by conversion to exFoxp3 T cells under certain inflammatory
cytokine milieu.

IMBALANCES IN IMMUNO-REGULATORY AND
IMMUNO-STIMULATORY PROCESSES CAN CAUSE CANCER
Increased risk of cancer is often associated with poorly regulated
immune responses (Figure 4) constituting unresolved inflamma-
tion as a result of perturbations in the balance of tumoricidal and
tumorigenic activities (134, 135). Treg play a crucial role in main-
taining optimum balance between these two arms of the immune
response and persistent viruses are known to trigger production
of IL-10 and TGF-β (136) to ensure induction and maintenance
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Ondondo Intricate complexities of immune-regulation and cancer

FIGURE 4 | Dysregulated immune responses create a microenvironment
suitable for cancer initiation and progression. Perturbations of the balance
between effector and regulatory immune responses are often the cause of
chronic inflammation and increased risk of cancer (146). Under normal
circumstances (A), the immune system mounts a potent and broadly directed
immune response following acute virus infection. This immune response,
comprising both the innate and adaptive components leads to effective virus
clearance and stable memory cell formation, which is effective at rapidly
countering subsequent infections. Under this scenario, regulatory
mechanisms kick in to prevent tissue damage after virus clearance. However,
in the case of persistent antigenic stimulation (B) such as caused by HIV, HCV,
and HBV, there is continuous generation of effector immune cells that are

incapable of clearing the pathogen. This leads to a state of chronic
inflammation that in turn triggers regulatory pathways such as increased
production of suppressive cytokines and recruitment of Treg and MDSC to
dampen excessive immune responses and prevent tissue damage (136). But
as fate would have it, such potent regulatory responses also inhibit anti-tumor
effector responses leading to loss of tumor immune-surveillance and
subsequently cancer initiation and progression. In certain contrasting
scenarios such as IBD, impaired regulatory mechanisms (C) can result in
chronic inflammation, which initiates carcinogenesis. Furthermore,
uncontrolled B cell activation during HIV and EBV infections is associated with
increased risk of non-Hodgkin’s lymphoma (147). NO, nitric oxide; iNOS, nitric
oxide synthase.

of adequate numbers of Treg in circulation. In some cases, viruses
express homologs of immunosuppressive cytokines or cytokine
receptors, such as the well-described human cytomegalovirus
(HCMV)-IL-10 and EBV-IL-10 homologs (137, 138), which allow
them to directly influence Treg induction or modulate the immune
system via other mechanisms including impaired production of
pro-inflammatory cytokines and chemokines, as well as MHC
class II down-regulation (136). As mentioned earlier, viruses can
also promote Treg induction by disrupting the normal activation
cascade of dendritic cells and other antigen presenting cells. Fur-
thermore, inflammatory micro-environments are enriched with
type 2 macrophages (M2) and MDSC, which also enhance recruit-
ment of Treg, besides directly suppressing antigen-specific effector
T cells (19, 139, 140). Additionally, antigen-specific CD8+ Treg
are frequently detected in chronic HIV (141, 142), HCV (57,
143), and herpes virus infections (144, 145). The increased num-
bers of Treg and other immunosuppressive mechanisms serve
to actively prevent excessive immune activation and the asso-
ciated immunopathology, but by so doing, they block antigen-
specific effector immune responses that are essential for clearing
the pathogen and for tumor immune-surveillance. The result-
ing immune impairment allows chronic pathogen persistence and
an overwhelming state of recurrent inflammation, thus favoring
cancer establishment.

Besides the direct disruption of tumor immune-surveillance,
establishment of chronic inflammation creates a suppressive
tumor-promoting microenvironment, which is enriched with IL-
10, TGF-β, and other pro-inflammatory cytokines such as IL-17,
known to be angiogenic and to contribute to tumor cell survival
and growth (148, 149). In the presence of IL-6, TGF-β can fur-
ther up-regulate ROR-γt expression leading to enhanced Th17
differentiation (150–152) and increased risk of cancer progres-
sion (148, 153–155). Moreover, as discussed earlier, Foxp3+ Treg
in certain inflammatory environments can express IL-17, which
together with hypoxic conditions could play a role in generation
of cancer initiating cells (156). As highlighted in earlier sections,
inflammatory environments can also induce phenotypic and func-
tional impairments in immuno-regulatory cells thus leading to
dysfunctional immune-regulation and increased risk of cancer.
However, whether increased incidence of cancer in individuals
with chronic virus infection and inflammation is due to increased
suppression of tumor immunity as a result of increased fre-
quency and suppressive activity of immuno-regulatory cells, due
to failure of regulatory cells to prevent excessive immune acti-
vation and inflammation, or due to enhanced oncogenic poten-
tial of the carcinogen remains a subject of intense debate. In
this review, I will focus on the contradictory roles of immuno-
regulatory cells where they can cause cancer by either exerting
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Ondondo Intricate complexities of immune-regulation and cancer

potent suppression of effector immune responses that inhibit
tumor immune-surveillance (e.g., during chronic virus infections)
or through their functional impairment and inability to execute
effective suppression of pathogenic effector immune responses
(e.g., during IBD).

THE DELICATE BALANCE BETWEEN IMMUNITY AND
REGULATION IN HIV INFECTION AND DISEASE
Although HIV can exist in latent reservoirs for many years, it is a
chronic persistent virus characterized by the continuous presence
of infectious virus and thus chronic immune activation, persistent
inflammation, and concurrent CD4+ T cell loss are all observed
(157–159). Thus, increased numbers of fully functional regula-
tory mechanisms become necessary to counteract the ongoing
inflammatory processes. However, Treg, which are instrumental
in counteracting immune activation and inflammation by actively
suppressing effector immune responses can also be detrimental by
inhibiting T cell responses that control HIV replication. An appro-
priate immune response must therefore not disturb this delicate
balance, by aiming to maximize the “good” immune responses,
which control the virus while minimizing the “bad” immune
responses that cause pathology.

Although still a subject of intense debate, a number of studies
have demonstrated increased frequencies of Treg during HIV-1
infection and more especially in the chronic stages that mark
progression to AIDS (128, 160–163). Studies looking at tissue dis-
tribution revealed accumulation of Treg at sites of HIV infection
and replication such as the gastrointestinal mucosa and lymph
nodes (59, 60, 128, 164). With such increased frequencies and espe-
cially given the suppressive role of Treg, it follows that progression
of HIV-1 infection to chronic disease could in fact be a conse-
quence of suppressed T cell function. Indeed, robust CD8+ and
CD4+T cell responses (characterized by high proliferation, IFN-γ
production, and cytotoxicity), which correlate with HIV control
in a minority of infected people usually diminish during chronic
infection, coinciding with increased Treg numbers. Depleting Treg
was shown to restore the in vitro effector immune functions of
these cells (59, 165). Lower levels of Treg and a corresponding
higher level of HIV-specific T cell responses have been observed in
individuals who naturally control HIV-1 in the absence of HAART,
i.e., the LTNPs and Elite controllers (160). Furthermore, depletion
of Treg in cord blood samples of HIV-exposed uninfected neonates
(166) was shown to augment both CD4+ and CD8+HIV-specific
T cell responses. These findings, together with the observation that
Treg frequencies are reduced in HIV-infected patients on HAART
(160,164,167,168) provide compelling evidence that Treg impinge
on immune control of HIV and strongly support immunothera-
peutic interventions that reduce their numbers or impair their
functions.

Whereas depleting Treg or interfering with their suppressive
function might seem plausible in the context of immune function
restoration, in fact several studies indicate that reduced Treg fre-
quencies correlate with increased immune activation, which is in
turn significantly associated with higher plasma viral loads (169,
170). Treg can therefore prevent collateral damage during chronic
HIV infection by limiting immune activation, while at the same
time reducing the pool of activated CD4+T cell targets that would

become susceptible to HIV infection. Accordingly, it is thought
that the high frequencies of Treg found in highly exposed persis-
tently sero-negative (HESN) individuals (171) and in the in utero
HIV-exposed uninfected neonates (166) contribute to resistance
to HIV infection by significantly reducing the numbers of acti-
vated target CD4+ T cells. These studies suggest that Treg may be
beneficial at least to some extent, not only in HIV-infected individ-
uals where they could limit immune activation, but also in highly
exposed individuals with a greater risk of HIV infection. However,
given that LTNPs and elite controllers exhibit both lower levels
of immune activation and lower Treg frequencies (172), while at
the same time mounting robust HIV-specific immune responses
that inhibit virus replication, it is plausible to suggest that Treg are
dispensable in HIV immunity, although caution must be exercised
as LTNPs and elite controllers represent a very small proportion
of HIV-infected individuals, in whom protective HLA alleles are
over-represented.

Contrary to these findings, many studies document persistence
of immune activation in the presence of elevated Treg frequen-
cies, suggesting that perhaps the suppressive activities of the Treg
found in chronic HIV infection are not sufficient to completely
reverse the state of chronic immune activation. Indeed, it has
been demonstrated that higher frequencies of Treg exist in HIV-
infected individuals with progressive disease (173), but their ability
to suppress HIV-specific T cells is significantly reduced, which in
turn leads to inability to control HIV-associated aberrant immune
activation (111, 161, 174). This is in fact discredited by studies
demonstrating the existence of functionally suppressive Treg in
progressive HIV-1 disease (59, 165, 175), hence suggesting that
failure to reduce immune activation may be due to overwhelming
levels of persistent stimulation rather than functional impairment
of Treg. Thus, it is possible that high Treg frequencies found in
chronic HIV infection are a result of failed attempts to reduce the
state of chronic persistent antigenic stimulation (176, 177).

Faced with this paradox, timings of when to initiate interven-
tions remain critical to achieving desirable outcomes. Whereas,
immune-based therapies aimed at increasing the frequencies of
Treg such as IL-2 therapy may only serve to suppress anti-HIV
immunity and provide more targets for HIV, and thus not offer
clinical benefit earlier in HIV infection (178, 179), they might
indeed become useful during the chronic stages in order to limit
immune activation (169, 170). Conversely, depleting Treg during
the early stages of infection will allow for generation of robust
immune responses capable of controlling virus replication and
preventing establishment of latent reservoirs (126).

HIV-ASSOCIATED IMMUNE DYSFUNCTION PREDISPOSES TO
MALIGNANCIES
The existence of a few HIV-infected individuals with robust HIV-
specific immune responses who maintain very low virus loads for
many years without treatment and only progress to AIDS following
viral immune escape demonstrates constant immune-surveillance
that keeps the virus in check. In these individuals, a normal
balance between the effector and regulatory immune responses
exists, whereby effective immune responses occur without exces-
sive immune hyper-activation that causes T cell exhaustion and
functional impairment. However, in a majority of HIV-infected
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Ondondo Intricate complexities of immune-regulation and cancer

people, the immune system does not control virus replication,
leading to continuous immune stimulation with high antigen
loads and generates a large pool of immune-effector cells that
are by far inadequate in controlling the virus. This can be either
due to anergy, functional exhaustion, or immune escape (157), as
described earlier. Furthermore, HIV directly infects CD4+ T cells
and this leads to the progressive diminution of T helper functions
and immune incapacitation that marks progression to AIDS.

Besides these, a number of immuno-regulatory mechanisms
triggered to prevent immune activation and inflammation also
suppress immune-effector functions and sustain chronic virus per-
sistence. For example,during chronic HIV infection, the expansion
of Treg (180) with potent suppressive activity within mucosal tis-
sues not only contributes to persistence of HIV, but also reduces
immune vigilance and predisposes to HPV and cervical cancer.
Moreover, HIV-1 gp120 has recently been shown to induce IL-6
and a concomitant expansion of MDSC (181), which contribute
to immune suppression by modulating cytokine and cellular
responses as well as inducing the differentiation and expansion of
Treg (182). Large amounts of B cell activation-associated cytokines
such as IL-6 and IL-10 are produced during chronic HIV infec-
tion and can also increase the numbers and suppressive capacity
of MDSC leading to further suppression of effective immune
responses. Indeed, higher levels of MDSC are associated with
chronic progressive HIV disease (183). The decline of both IL-
6 levels and Treg numbers following HAART-mediated immune
restoration strongly supports their role in immune modulation
during HIV-1 progression. A highly immunosuppressive environ-
ment with increased numbers of Treg, MDSC, and suppressive
cytokines such as IL-10 and TGF-β is strongly associated with
increased risk of cancer (19, 182, 184, 185). Thus, HIV-1 can
be classified as indirect carcinogen that perturbs immune bal-
ance through immune suppression and a concomitant loss of
tumor immune-surveillance to set the stage for oncogenic tumor
viruses (186).

Another consequence of HIV-driven impairment of the
immune system is the hyper-activation and uncontrolled prolif-
eration of B cells, which not only favors secondary infection by
oncogenic viruses (187) such as KSHV and EBV but also increases
significantly the potential of chromosomal translocations and
oncogenic mutations. A few studies have linked HIV infection with
chronic B cell hyper-activation (147, 188) and lymphomagenesis,
for example, increased incidence of Burkitt lymphoma in HIV-
infected individuals or those persistently exposed to Plasmodium
falciparum in malaria endemic regions where their B cells are in
constant stimulation by these antigens (189). HIV-1 can also act
directly via gp120 to induce B cell activation and subsequent devel-
opment of lymphomas (190). Moreover, incorporation of CD40L
into HIV virions stimulates B cell activation via interactions with
CD40, resulting in production of B cell activating cytokines such as
IL-6, IL-8, IL-10, and GM-CSF (191, 192). Indeed, HIV-associated
lymphomas are often the aggressive B cell lymphomas, directly
supporting a role for HIV in altering the B cell phenotypic and
proliferative characteristics.

Therefore, the profound T cell dysfunction, progressive deple-
tion of CD4+ T cells, B cell hyper-activation, together with the
increased immuno-regulatory mechanisms all collude to actively

impede tumor immune-surveillance and create a permissive envi-
ronment for cancer initiation and progression. This is a classic
example of a “vicious cycle of immune responses” where an effec-
tor immune response to a pathogen (in this case HIV) is induced
during the initial stages of infection, but somehow fails to elim-
inate the pathogen, and regulatory mechanisms are triggered in
order to restore immune balance and limit excessive inflammation
and pathology, yet such regulatory mechanisms actively suppress
the anti-tumor immune-surveillance processes and predispose to
increased risk of cancer.

HIV-ASSOCIATED MALIGNANCIES
Cancer is a complex multistep process involving many molecu-
lar events, which together with the carcinogen or oncogenic virus
infection work in concert to generate a transformed cellular phe-
notype. However, immune response is an important extrinsic
factor that determines whether or not cancer occurs following
exposure to potential carcinogens. While the immune system
of healthy individuals limits proliferation of pre-malignant cells
by recognizing and deleting cells that express potentially onco-
genic viral proteins, these pre-transformed cells go unchecked and
become malignant in immuno-compromised individuals, hence
the increased incidence of cancer in transplant patients and those
with congenital or secondary immunodeficiency disorders. HIV is
not directly oncogenic but it is significantly associated with several
lymphoid malignancies known to arise in immuno-compromised
individuals who become infected with oncogenic viruses such as
HPV, EBV, or KSHV (7). Surveillance data estimates the risk of
developing NHL at 60- to 200-fold in people with progressive
HIV disease compared to the uninfected population, while that
of Hodgkin lymphoma (HL) is 8- to 10-fold, thus supporting the
active role of the immune system in controlling cancer. Plausi-
bly, HIV-mediated immune dysregulation contributes to immune
escape of these viruses thus allowing for proliferation and emer-
gence of stable populations of virally transformed cells that are not
efficiently recognized and eliminated by the host’s immune system
(187, 193, 194). A wide body of literature documents several AIDS-
defining malignancies in the pre-HAART era, but for the purposes
of illustrating how immune dysregulation sets a microenviron-
ment conducive for cancer development, this section will draw
examples from HIV-associated predisposition to cervical cancer
and KS.

HIV-1, KSHV, AND KAPOSI SARCOMA
The non-redundant role of host immunity in the control of
viral cancers is well-illustrated by KS, which is more prevalent in
untreated HIV/AIDS patients, mainly due to immunosuppression
(195). KSHV was discovered as the causative agent of KS in 1994
(196), however, infection with this virus alone is not sufficient
to cause KS in healthy immuno-competent individuals. Indeed,
the incidence of KS in the general population remains very low
(around 1/100,000), but increases dramatically to around 1/20
amongst HIV-infected people (197) and almost 1/3 HIV-infected
homosexual men in the pre-HAART era (198). Furthermore,
countries in which KS was endemic before the AIDS epidemic
have seen a sharp increase in the incidence, with almost half of
HIV-infected individuals who acquire KSHV infection going on
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Ondondo Intricate complexities of immune-regulation and cancer

to develop KS (199). However, within the endemic areas or in
the high risk groups, most HIV-negative KSHV-infected individ-
uals do not develop KS, indicating that HIV-associated immune
impairment predisposes to KS development.

HIV-1, HPV, AND CERVICAL CANCER
Human papilloma viruses are the main etiological factor for cer-
vical cancer (200). Of these, HPV-16 and HPV-18 are linked with
cervical and anogenital cancers hence are classified as high risk
genotypes. As with other cancers, the immune system is central
in the pathogenesis of HPV and cervical cancer. In immuno-
competent individuals, robust HPV-specific immune responses
comprising B and T cells are generated and these correlate with
spontaneous resolution of HPV (201, 202), demonstrating that
host immunity can be sufficient to clear HPV infection. In partic-
ular, a Th1 cytokine profile is instrumental in HPV clearance and
prevention of viral persistence. Thus, detection of both humoral
and cellular responses including T helper cells induces regression
of cervical lesions (203, 204), whereas T helper cell impairment
leads to cancer development (205). Natural killer cells also play a
protective role by directly lysing HPV-infected cells and initiating
regression of squamous intraepithelial lesions (SIL) (206, 207).

Despite the existence of strong HPV-specific immune responses
in HPV-infected individuals, progression to HPV-associated
malignancies does occur in some individuals due to escape from
immune-surveillance caused by immune dysfunction as discussed
earlier. Central to this is the systemic enrichment of Treg, which
correlates with HPV persistence and is frequently detected in
patients who develop high grade cervical intraepithelial neopla-
sia (208, 209). Furthermore, mucosal enrichment of Treg, which is
often associated with diminished cellular immunity in the cervical
mucosa has been observed and is linked with the severe forms of
cervical carcinoma (210, 211). Higher frequencies of HPV-specific
Treg are found in the stroma, intraepithelial tissues and tumor
draining lymph nodes of cervical cancer patients where they sup-
press alloreactive CD4+ responder T cells (212, 213). Depletion of
Treg in the in vitro experiments resulted in increased production
of IFN-γ. Besides enhanced Treg-mediated immunosuppression,
the profound immune dysfunction resulting from HIV-1 infec-
tion and the concomitant loss of CD4+ T cells collude to create
an environment permissive for HPV persistence and cervical can-
cer. This can be directly deduced from the increased incidence of
cervical cancer and prolonged persistence of SIL in immunosup-
pressed women with progressive HIV disease (214–216). In fact,
cervical cancer was designated as an AIDS-defining illness in 1993
(217), strongly implicating HIV-driven immune impairment as
a major factor favoring the progression from HPV infection to
cancer development.

IMMUNE RESTORATION OR HIV SUPPRESSION REDUCES
HIV-ASSOCIATED MALIGNANCIES
There is consensus that HIV-associated malignancies arise mainly
due to loss of immune-surveillance caused by a dysfunctional
immune system. Indeed, the severity of these malignancies corre-
lates positively with the degree of immune impairment as mea-
sured by the extent of CD4+ T cell depletion and HIV viral
burden. Moreover, the incidence of AIDS-defining malignancies

has significantly reduced since the wide-scale implementation
of HAART, strongly suggesting better immune control follow-
ing reconstitution by HAART or perhaps a direct impact of
HAART on the replication of EBV, HPV, and KSHV. Therefore,
it seems that interventions which limit virus production and pre-
vent chronic antigenic stimulation can effectively reduce immune
activation and inflammation, restore effector immune functions
through homeostatic equilibration of immuno-stimulatory and
regulatory mechanisms, and lead to reduced incidences of HIV-
associated malignancies. Recent studies indicate that the increased
frequency and suppressive function of Treg observed during
chronic HIV infection decreases significantly following HAART
initiation (167). This is accompanied by reduced levels of immune
activation and enhanced immune-effector functions, which are in
turn associated with decreased prevalence and increased regres-
sion of cervical lesions in HAART-treated HPV-infected patients
(218–220), thus supporting a role for immune reconstitution in the
control of HPV and associated cancers. These observations pro-
vide evidence for a strong causative link between HIV-mediated
immune dysregulation and the onset of HIV-associated cancers
(NHL, KS, and cervical cancer) whose incidence has reduced
significantly since the introduction of HAART.

HCV/HBV-DRIVEN IMMUNE DYSREGULATION PREDISPOSES
TO HEPATOCELLULAR CARCINOMA
Unlike HIV, which directly targets the immune cells (CD4+ T
cells) causing their deletion and loss of T helper functions, HBV
and HCV target the liver and replicate in hepatocytes. These
viruses have also evolved multiple mechanisms to escape immune
elimination and can establish chronic persistence and replicate
in infected hosts for many years. Epidemiological studies indi-
cate a strong link between chronic HBV/HCV persistence with
the development of liver disease, initially manifesting as chronic
hepatitis, and leading on to nodular fibrosis that can progress to
cirrhosis and eventually hepatocellular carcinoma (HCC). These
processes are characterized by inflammation and oxidative stress
owing to the influx of several cell types including NK, NKT, and
PMN leukocytes, which accumulate in inflammatory lesions in
the liver and contribute to inflammation and liver damage. In a
majority of infected individuals, robust and poly functional T cell
responses are generated causing clearance of acute infection, while
in a minority of those infected, both low frequencies and narrowly
focused virus-specific CD8+ T cell responses in the liver corre-
late with persistent chronic infection and increased risk of HCC
(221). Furthermore, defects in HBV-specific CD8+ T cells charac-
terized by exhaustion and increased expression of pro-apoptotic
mediators have been reported (222). Thus, although virus-specific
lymphocytes can be readily detected in inflammatory lesions in the
liver, they are often defective and not sufficient to clear virus infec-
tion (223). Moreover, weaker CD4+ T cell proliferative responses
have been reported (224).

Infection with HBV and HCV is known to induce IL-10 and
TGF-β (72, 73), which in turn induce the expansion of Treg to
maintain a tolerogenic environment in the liver. HCV-specific
impairment of dendritic cell function can also lead to increased
numbers of Treg, and these have been found in both the blood and
liver of patients with chronic HBV and HCV infection and HCC

Frontiers in Immunology | Tumor Immunity March 2014 | Volume 5 | Article 90 | 10

http://www.frontiersin.org/Tumor_Immunity
http://www.frontiersin.org/Tumor_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ondondo Intricate complexities of immune-regulation and cancer

(185), where they correlate with in vitro suppression of antigen-
specific effector responses (225). These effector responses were
enhanced by depleting Treg (54, 226). Overall, immune function
restoration and inhibition of viral replication following treatment
with anti-HBV drugs is associated with diminished Treg expres-
sion (227). Thus, persistence of weak, defective, and narrowly
directed T cell responses coupled with high numbers of immune-
regulatory cells and increased levels of suppressive cytokines act
to promote chronic liver disease and progression to HCC. Indeed,
patients with HCC often have increased Treg numbers in blood
and within tumors, and the tumor-infiltrating CD8+ and CD4+
T cells have been found to be dysfunctional (228), suggesting a
possible link between immune disruption and the pathogenesis of
HCC. Other factors such as chronic unresolved inflammation can
further support tumor growth via induction of angiogenic and
tumor survival signals (229).

IMMUNE DYSREGULATION IN INFLAMMATORY BOWEL
DISEASE AND COLORECTAL CANCER
Inflammatory bowel disease is characterized by an uncontrolled,
microbe-induced chronic inflammatory state that increases the
risk of colorectal cancer (CRC) by twofold (8, 9). These chronic
inflammatory responses also drive carcinogenesis of colitis-
associated cancer (230). Various cell types infiltrate the inflamed
mucosa including MDSC, M2 macrophages, and Th17 cells, which
promote tumor growth, and NK and CD8+ T cells, which either
target and destroy or inhibit proliferation of CRC cells. These
effects are mediated by cytokines such as IL-17A, IL-21, IL-6,
and TNF-α that create a tumor-permissive environment versus
IFN-γ, which exerts tumor-suppressive functions (231). IFN-γ
protects from carcinogenesis by activating cytotoxic T cells as
well as increasing the susceptibility of pre-malignant cells to cell-
mediated cytotoxicity, thus IFN-γ-producing Th1 cells correlate
with increased immune-surveillance and better prognosis in CRC
patients (232).

Although IL-4- and IL-13-producing Th2 cells have been asso-
ciated with increased tumor growth in humans (233) and in animal
models using IFN-γ−/− and IL-4−/− deficient mice (234, 235),
Th17 cells seem to be the most aggressive orchestrators of chronic
inflammation during IBD and have a significant role in the initia-
tion of CRC. This has been linked to IL-23, a cytokine known to
induce high numbers of Th17 cells and a concomitant accumula-
tion of pathogenic IL-17A+ IFN-γ+ effector T cells, which cause
intestinal pathology and correlate with poor prognosis in CRC
(153, 236–238). Indeed, high frequencies of activated Th17 cells
together with their signature cytokines are found in the intesti-
nal and serum samples of patients with IBD, and also within the
colon and blood samples from patients with CD. Furthermore,
IL-23-mediated accumulation of IL-17+IL-22+ innate lymphoid
cells (ILCs) in inflamed colons is associated with development of
invasive colon cancer (239–241), while increased frequencies of
IL-17+ILCs are often found in the intestines of patients with CD
(242). The tumor-promoting feature of Th17 cells largely arises
from secretion of large amounts of IL-17, which in turn induces
expression of pro-inflammatory factors such as TNF-α, IL-6, IL-1,
and iNOS, known to play a role in CRC pathogenesis (243). Mice
that are deficient in ROR-γt, the transcription factor of Th17 cells

were shown to be resistant to chronic inflammation in models of
colitis (244). Thus, immuno-regulatory pathways capable of lim-
iting the induction and function of pathogenic Th17 effectors cells
are required.

TREG PLAY A CRITICAL ROLE IN THE PATHOGENESIS OF IBD AND CRC
The pro-tumoral role of Treg in cancer establishment and pro-
gression is well-documented, and in fact a number of interven-
tions that deplete Treg lead to improved prognosis of cancer
patients. Furthermore, Treg depletion increases vaccine-mediated
anti-tumor immunity (245) and can lead to eradication of estab-
lished experimental tumors (210, 246). However, Treg play such a
critical role in the maintenance of normal gut mucosal immunity
by preventing chronic inflammatory responses to food antigens
and commensal microflora (247), that inhibition of their function
is associated with development of IBD (11, 12). Most astoundingly,
increased infiltration of Treg in CRC correlates with a favorable
prognosis (10), with several studies in experimental animal mod-
els providing evidence that Treg can prevent establishment of CRC
(248, 249). This is thought to be through initiation of potent
immuno-regulatory functions that prevent chronic inflammation,
which would otherwise predispose to cancer establishment and
growth. Under normal homeostatic conditions, high frequencies
of Treg are found in the gut as it is a preferential site for peripheral
Treg induction due to the abundant commensal micro-biota and
CD103-producing DCs, which are specialized in inducing the dif-
ferentiation of Treg from naïve CD4+ T cells (250, 251). However,
inadequate regulatory functions are a major characteristic defect
during IBD, suggesting alterations in the induction, maintenance,
or even suppressive function of Treg. This section highlights some
of the mechanisms of immune dysregulation that exacerbate the
inflammatory state of IBD to set a stage for CRC.

TREG INDUCTION AND FUNCTION ARE IMPAIRED IN IBD AND CRC
Impaired frequency and function of Treg is one of the mechanisms
of immune dysregulation that plays a central role in the patho-
genesis of IBD. This is strongly associated with IL-23, a cytokine
whose expression is increased in several human cancers including
CRC (252). IL-23R signaling suppresses both the differentiation
of Treg and IL-10 production by T cells, hence leading to intestinal
pathology (236). Such pathology could be prevented by transfer
of Treg or administration of Treg-related cytokines such as IL-10
and TGF-β1 (253). TGF-β signaling in tumor-infiltrating lympho-
cytes is associated with reduced tumor growth in animal models of
CRC (254). Crucially, the frequency of Foxp3+ Treg in the colon
increases in the absence of IL-23R signaling, indicating a role for
IL-23 in controlling the induction and expansion of Treg (255).
Since Treg are a source of both IL-10 and TGF-β, the key cytokines
in immuno-regulation, it is plausible that IL-23-driven loss of Treg
contributes significantly to immune dysregulation by overriding
the immunosuppressive pathways in the intestine and favoring
IBD and CRC development via generation of pathogenic Th17
effectors cells. Besides reduced numbers, Treg in IBD show altered
phenotype and function, attributed to the local cytokine milieu
arising from chronic inflammation of the intestinal mucosa. Per-
haps, normal Treg in circulation migrate to the lamina propria
during active inflammation in order to maintain homeostasis, but
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on encountering various cytokines within the inflamed mucosa,
they undergo phenotypic and functional modifications turn-
ing into dual inflammatory and regulatory Foxp3+IL-17+ Treg,
which produce large amounts of IFN-γ and IL-17, and moderate
amounts of TNF-α and IL-2 (102, 103).

IL-10 PROTECTS AGAINST IBD AND CRC
IL-10 deficiency increases susceptibility to IBD-associated CRC,
where it is associated with poor prognosis (256). Mice lacking
IL-10 were shown to be highly susceptible to colitis-associated
CRC following Helicobacter hepaticus infection, and this could be
prevented by exogenous administration of IL-10 (257–259), fur-
ther demonstrating a critical role for IL-10 in the pathogenesis of
CRC. It is thought that IL-10 deficiency leads to elevated levels of
TNF-α, IL-6, and IL-17, which in turn allow persistence of chronic
inflammation (260) thus promoting tumor growth.

BI-FUNCTIONAL IMMUNE-EFFECTOR CELLS CAN PROMOTE IBD AND
CRC
Intriguingly, a single cell type can exhibit bi-functional immune
characteristics by co-producing effector and suppressor cytokines,
thus may have the potential to exert both tumor-promoting and
tumor-suppressive functions, depending on the microenviron-
ment. For example, as mentioned above, CD8+ T cells express
cytotoxic molecules, which kill CRC cells in addition to secret-
ing IFN-γ, which augments the anti-tumor response (261, 262).
However, in some cases of IBD, infiltration of CD8+ T cells
does not correlate with improved prognosis (263) and this is
linked to elevated perforin and granzyme levels, which sustain
the tumor-promoting chronic inflammation (264). Accordingly,
perforin deficient mice develop less severe colitis and much fewer
tumors in experimental models of colitis-associated CRC (265).
Similar bi-functional characteristics have been observed in NKT
cells, which exert protective cytotoxic functions, but also secrete
Th1, Th2, and Th17 cytokines that could act as enhancers or
suppressors of tumor immunity. Increased infiltration of IFN-
γ-secreting NKT cells correlates with tumor immunity, which is
reflected in increased disease-free survival of CRC patients (266,
267). Conversely, Th2 NKT cells that secrete the immunosup-
pressive cytokine IL-13, may contribute to colitis-associated CRC
(268, 269). These studies demonstrate that CD8+ T cells and
NKT cells can simultaneously exert pro-tumoral and anti-tumoral
responses, and that perhaps pro-tumoral responses predominate
during progressive IBD and CRC. Arguably, intervention strate-
gies targeted at these bi-functional effector cells may result in
undesirable outcomes.

INTERVENTIONS
As discussed earlier, some settings such as inflammatory autoim-
mune diseases will require interventions that boost the immuno-
regulatory arm of the immune response. Such may include
immunotherapeutic agents that expand Treg numbers and
enhance suppressive function to effectively curtail chronic inflam-
mation. Therapeutic vaccines to restore immune tolerance could
benefit from adjuvants that induce adaptive Treg without gen-
erating functional effector cells (270). Other measures such as
restoration of TGF-β and IL-10, together with IL-2 administra-
tion can help to maintain Treg numbers and Foxp3 expression,

thus sustaining functional regulation. In other inflammatory set-
tings such as IBD and colon cancer, measures that enhance Treg
differentiation and expansion and restore suppressive function,
for example, blockade of IL-23 signaling with the concurrent
depletion of IFN-γ and IL-2 to impede generation of pathogenic
exFoxp3 Treg might be desirable. Additionally, induction of sta-
ble expression of site-specific homing and chemokine receptors
in Treg can confer the ability to migrate to preferential sites of
chronic inflammation, for example, CCR4 for migration to the
lung airways during allergic inflammation, CXCR4 for migration
to the bone marrow,and CCR4/CCR9/CD62L/α4β7/αE(CD103)β7

for migration to the intestinal mucosa of IBD patients. However,
in cases where immuno-regulatory responses are detrimental then
immune deregulation interventions are required. Such can include
administration of cytokines and/or antibodies that inhibit Treg
induction and expansion, suppressive function, and recruitment
via blockade of chemokine receptors (124). Interventions such as
concurrent CTLA-4 blockade and vaccination (271–273), com-
bined CTLA-4 and PD-1/PD-L1 blockade (274), and Treg deple-
tion (275–277) have been successfully used to ameliorate Treg-
mediated immune pathologies and cancer. Measures to reverse
exhaustion and restore immune function in chronic infections
include blockade of the PD-1:PD-L1/PD-L2 pathway and MDSC
development. PD-1/PD-L1 blockade restores HIV-specific T cell
function in vitro (33, 34, 278), and clinical benefit is also docu-
mented in cancer patients (279, 280). In some instances, combined
blockade of PD-1 and LAG-3 or PD-1 and TIM-3 synergistically
improves T cell responses leading to better virus control (43, 45).
Very recently, a study utilizing a mouse model of retrovirus infec-
tion showed that combining the blockade of inhibitory receptors
PD-1 and Tim-3, together with Treg ablation was more efficient
in reducing chronic virus load compared with either strategy on
its own (281). Functional blockade, developmental inhibition, or
physical deletion of MDSC was shown to enhance the efficacy of
cancer vaccines in animal models (282–284).

CONCLUSION
The role of the immune system in inflammation and carcino-
genesis is highly influenced by the microenvironment, thus some
disease settings can display unique characteristics where immuno-
regulatory processes are highly beneficial to the host but in other
cases quite detrimental and predispose to pathogen persistence
and increased risk of cancer. This calls for tailor-matched inter-
ventions, which are quite promising, however caution must be
exercised since blocking an inhibitory pathway might re-invigorate
the immune system to achieve disease control on one hand, but
exacerbate immune activation and inflammation on the other.
Overall, the timings of these interventions will be crucial in order
to achieve favorable outcomes.
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