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Abstract: The Rous sarcoma virus Gag polyprotein transiently traffics through the nucleus, which is
required for efficient incorporation of the viral genomic RNA (gRNA) into virus particles. Packaging of
gRNA is mediated by two zinc knuckles and basic residues located in the nucleocapsid (NC) domain
in Gag. To further examine the role of basic residues located downstream of the zinc knuckles in gRNA
encapsidation, we used a gain-of-function approach. We replaced a basic residue cluster essential for
gRNA packaging with heterologous basic residue motif (BR) with RNA-binding activity from either
the HIV-1 Rev protein (Rev BR) or the HSV ICP27 protein (ICP27 BR). Compared to wild-type Gag,
the mutant ICP27 BR and Rev BR Gag proteins were much more strongly localized to the nucleus
and released significantly lower levels of virus particles. Surprisingly, both the ICP27 BR and Rev
BR mutants packaged normal levels of gRNA per virus particle when examined in the context of
a proviral vector, yet both mutants were noninfectious. These results support the hypothesis that
basic residues located in the C-terminal region of NC are required for selective gRNA packaging,
potentially by binding non-specifically to RNA via electrostatic interactions.
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1. Introduction

The retroviral Gag protein directs the assembly of new virus particles at the plasma membrane,
specifically selecting the viral genomic RNA (gRNA) from the milieu of cellular and viral RNAs.
The mechanism by which selective packaging occurs within the cell remains incompletely understood.
The Gag NC (nucleocapsid) domain is essential for encapsidation of gRNA and also plays an important
role in the subcellular trafficking of the Gag protein [1–6]. RSV Gag is initially synthesized in the
cytoplasm and then undergoes transient nuclear trafficking, a step that is required for efficient
gRNA packaging [7,8]. Mutants of Gag with reduced nuclear trafficking have lower levels of gRNA
incorporation, whereas enhancing nuclear localization restores gRNA packaging [8]. After particle
release, RSV Gag is cleaved into MA (matrix), p2, p10, CA (capsid), NC, and small spacer peptides.
The mature NC protein plays important roles during the early stages of infection.

Nuclear trafficking of RSV Gag is mediated by nuclear localization signals (NLSs) in the MA and
NC domains [9]. The NC region contains a classical nuclear localization signal (NLS) consisting of
basic residues that bind directly to the major cellular nuclear import factor importin-alpha, which then
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recruits importin-beta for nuclear translocation of Gag [9,10]. In the context of NC alone, this NLS
also acts as a nucleolar localization signal, with the majority of NC localizing within nucleoli [11].
The NLS in the Gag MA domain also contributes to nuclear transport, although it interacts with two
different host importins [9]. A nuclear export signal (NES) in the Gag p10 domain functions through
its interaction with CRM1/RanGTP export complex. Mutations of the p10 domain or treatment with
leptomycin B, a CRM1 inhibitor, result in accumulation of Gag in the nucleus with formation of
numerous nucleoplasmic and nucleolar foci [11–14]. These foci are dependent on the presence of the
NC domain and its nucleic acid-binding function [11,14,15].

The RSV Gag NC domain contains two Cys-His domains, or zinc knuckles, that bind RNA and
are required for specific gRNA packaging [16–19]. The basic residues in the Gag NC domain play
numerous roles in virus assembly, including promoting Gag–Gag interactions leading to dimer and
oligomer formation, non-specific and specific nucleic acid-binding, and gRNA encapsidation [20–23].
The RSV NC domain contains sixteen basic residues, however only eight are required to promote
Gag–Gag interactions and virus particle assembly [21]. Lee et al. performed several studies examining
basic residues in NC [21,22]. When the RKR residues immediately following the second zinc knuckle
were deleted, they found little evidence for binding of NC to the MΨ RNA using a yeast three-hybrid
assay [22]. In their follow-up work, they observed that the RKR deletion mutant was still able to
undergo Gag–Gag interactions [21], suggesting the importance of these residues in MΨ-binding, but
not in Gag–Gag interactions.

To further examine roles that the C-terminal basic residues in NC play in Gag subcellular
localization, virus budding, gRNA packaging, and infectivity, we examined deletions and substitutions
of basic residues derived from heterologous viral proteins with roles similar to NC. For this
purpose, we chose the highly basic residue motif (BR) of the herpes simplex type 1 (HSV-1) ICP27
protein, which contains an RGG Box RNA-binding domain [24]. ICP27 localizes to nuclear foci and
nucleoli [25–27], interacts with splicing components in nuclear speckles, [28] and binds intronless
HSV-1 RNAs for nuclear export [26]. As a second viral RNA-binding protein, we chose the HIV-1
Rev protein, which also localizes to nucleoli, contains an RNA-binding domain enriched in basic
residues, and binds to the Rev-response element to facilitate export of unspliced viral RNA from the
nucleus [29–31].

2. Materials and Methods

2.1. Expression Vectors, Plasmids, and Cells

The Prague C RSV Gag expression vector containing YFP (pGag-YFP) fluorophore was previously
described [14]. RSV NC was expressed from a pEYFP-N1-containing vector (Clontech, Mountain View,
CA, USA) described previously [9]. Proviral constructs were created by site-directed mutagenesis in the
NC domain of pCMV.GagPol (kind gift of Rebecca Craven, Penn State College of Medicine, Hershey, PA,
USA). To create the pRS.V8.Gag.∆61-73, pRS.V8.Gag.ICP27, and pRS.V8.Gag.Rev proviral constructs,
the NC region of each Gag mutant in pCMV.GagPol was inserted into pRS.V8 using SbfI-HpaI restriction
sites. The pGag.∆61-73-YFP construct was made using Q5 site-directed mutagenesis (New England
Biolabs, Ipswich, MA, USA). To make the pGag.ICP27-YFP and pGag.Rev-YFP constructs, the NC
region from pCMV.GagPol was exchanged with the NC coding sequence from pGag-YFP. Endonuclease
digestion was used to identify clones containing the mutations, and all positive clones were confirmed
using DNA sequence analysis. All experiments were performed using the quail fibroblast QT6 cell
line or the chicken fibroblast DF1 cell line [32,33]. Transfections were performed using the calcium
phosphate method [34].

2.2. Immunofluorescence

QT6 cells seeded onto a 1.5 mm glass coverslip were transfected with wild-type or mutant provirus
plasmids overnight, culture media was removed, and cells were fixed using 2% paraformaldehyde
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(PFA) in phosphate-buffered saline (PBS) supplemented with 5 mM ethylene glycol-bis(β-aminoethyl
ether)-N,N,N′,N′-tetraacetic acid (EGTA) and 4 mM MgCl2, and adjusted to pH 7.2–7.4 with
HCl or 3.7% PFA in 2× PHEM buffer (3.6% piperazine-N,N′-bis(2-ethanesulfonic acid)(PIPES),
1.3% 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 0.76% EGTA, 0.198% MgSO4,
pH to 7.0 with 10M KOH) [35]. Cells were permeabilized using 100% methanol at RT for 5 min,
and subsequently blocked with 5% goat serum (Rockland Immunochemicals, Inc., Limerick, PA, USA).
After one hour, the cells were washed using 0.1% Tween-20 in PBS, and incubated with a rabbit α-RSV
antibody (1:300) [36] and a Cy3-conjugated α-rabbit secondary antibody (1:100, Abcam). DAPI was
added at 5 µg/mL. Coverslips were mounted on slides using SlowFade reagent (Invitrogen, Carlsbad,
CA, USA) and imaged using a Leica AOBS SP2 confocal microscope with a 63×/1.4 oil objective at a 4×
zoom, with Cy3 excited at 543 nm and 4′,6-diamidino-2-phenylindole (DAPI) excited at 405 nm.

2.3. Confocal Imaging

For pNC.YFP constructs co-expressed with pFibrillarin.CFP, 0.2× 106 cells were seeded onto 35-mm
glass-bottomed dishes (MatTek Corporation, Ashland, MA, USA) and imaged using a Leica AOBS SP2
confocal microscope with a 63×/1.4 oil objective at a 4× zoom at 14 to 24 h post-transfection. Sequential
scanning settings were used to differentiate CFP (excitation at 458 nm, emission at 465–490 nm, and 50%
laser power) and YFP (excitation at 514 nm, emission at 530–600 nm, and 10% laser power) emission
spectra. The Gag-YFP wild-type and mutant proteins were imaged on a Leica SP8 confocal microscope
with a 63×/1.4 oil objective at a 4× zoom, with DAPI excited with the 405 nm UV laser at 20% laser
power using a photomultiplier tube detector and YFP imaged using the white light laser with a laser
line excitation of 514 nm using a hybrid detector.

2.4. Budding Analysis

Budding assays were performed as previously described in detail in [37]. Briefly, Gag expression
within cell lysates was labelled for 5 min using 35S-Met/Cys. Lysates were collected, then Gag
was immunoprecipitated using an α-RSV antibody and was resolved by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and quantified using a PhosphorImager
(Bio-Rad, Hercules, CA, USA). After 35S-Met/Cys labeling for 2.5 h, supernatants were clarified,
and virus particles were pelleted and immunoprecipitated using an α-RSV antibody and separated by
SDS-PAGE and imaged by phosphorimaging. Budding efficiency was calculated as a ratio of the CA
present in the media divided by the total amount of Gag expressed in the lysates. The release of the
wild-type RS.V8 was set at 100%, and all mutants were expressed as a percentage of the wild-type
level of budding.

2.5. Ribonuclease Protection Assays

QT6 cells were transfected with either wild-type or mutant proviral DNA constructs. Culture media
was collected after 48 h, cells were pelleted using a low speed spin, and the media was passed through
a 0.2 µm filter. Virus particles were pelleted by ultracentrifugation at 126,000× g through a 25%
sucrose cushion. After resuspension of the pellet, aliquots were removed for reverse transcriptase (RT)
assays. The mean RT values were used to normalize the amount of virus particles for each sample
as previously described [38]. Viral RNA was extracted using a QiaAMP viral RNA mini kit (Qiagen,
Hilden, Germany). Ribonuclease protection assays were performed as previously described [38].
A 318-nucleotide antisense probe transcribed with T7 RNA polymerase with [32P]CTP, spanning the
splice acceptor site of the env gene, was used to detect both unspliced (263-nucleotide fragment) and
spliced (183-nucleotide fragment) viral RNA as previously described in detail [39]. The unprotected
fragments of the RNAs were digested with RNase and the samples were separated by gel electrophoresis
and quantified using a PhosphorImager (BioRad, Hercules, CA, USA).
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2.6. Viral Infectivity Assay

Infection assays were performed as previously described in detail [37]. Supernatants were
collected from QT6 cells expressing either wild-type or mutant provirus after 48 h. Virus particles
were concentrated by ultracentrifugation at 126,000× g through a 25% sucrose cushion. RT assays
were performed, as described above, to normalize the amount of virus used for infection. Equivalent
amounts of RT counts from each concentrated virus preparation were added to naive DF1 cells.
Cells were then assayed for the presence of GFP, which is expressed from the RS.V8 provirus, by flow
cytometry (FACSCanto, BD Biosciences, San Jose, CA, USA). The percentage of cells expressing GFP
was measured every three days until all infectious virus constructs reached approximately 95% green
cells, or after 21 days for all remaining viruses. A minimum of three infectivity assays was performed
for each proviral construct from two separate transfections.

3. Results

3.1. Substitution of the ICP27 or Rev Basic Residue Motifs(BR) for Basic Residues in NC Altered the Budding
of Virus Particles

To examine whether the basic residues after the second Cys-His box in RSV Gag NC were
important for virus assembly, we deleted residues 61–73 in the context of the proviral construct pRS.V8
(pRS.V8.∆61-73) (Figure 1A), and a quantitative radioimmunoprecipitation assay was performed.
A representative experiment showing Gag expression within the cell lysates after a 5-min labeling
period is presented in Figure 1B. After detection of metabolically labeled Gag proteins released into
the supernatant, quantitation of virus release was performed by dividing the amount of CA in the
media by the amount of Gag in the cell lysates [37]. For RS.V8.∆61-73, we observed that budding was
not significantly changed compared to wild-type Gag (Figure 1C,D). To determine whether budding
would be affected by replacing the basic residue-containing region between amino acids 61-73 with
a stretch of basic amino acids from the viral RNA-binding proteins HIV-1 Rev and HSV-1 ICP27,
these heterologous BRs were inserted into this region of NC [40,41], forming the chimeric proviral
constructs pRS.V8.Rev and pRS.V8.ICP27 (Figure 1A).

To determine whether insertion of the BRs from ICP27 and Rev altered virus particle production,
budding efficiency for each mutant was compared to wild-type, which was set at 100% (Figure 1D).
RS.V8.∆61-73 was not significantly different from wild-type (147%; p > 0.5). RS.V8.Rev was reduced in
budding (12%; p = 0.0013), as was RS.V8.ICP27 (41%; p = 0.0253). These results indicate that the BR
from Rev and ICP27 negatively affects budding, but the complete removal of the BR in the C-terminal
region of NC (RS.V8.∆61-73) does not.
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Figure 1. Budding analysis of proviral basic residue motif (BR) restoration mutants. (A) Schematic
diagram of Rous sarcoma virus (RSV) NC and nucleolar restoration mutants. MA, matrix; CA, capsid;
NC, nucleocapsid; NT, N-terminal region; CH1, Cys-His box 1; L, linker region; CH2, Cys-His box 2;
CT, C-terminal region. Wild-type residues are shown for the C-terminal basic region. Dashed lines
represent deleted residues (∆61-73). Bold residues depict sequences used to replace the deleted amino
acids (ICP27 BR and Rev BR). (B) Gag expression within the cell lysates after a 5-min labeling period
with 35S-Met/Cys. After collection of cell lysates and immunoprecipitation using an α-RSV antibody,
the proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and visualized by phosphorimaging. Differences in molecular weights (predicted masses listed in
parentheses) were noticeable, with ∆61-73 mutant Gag (73 kD) running faster than wild-type (74.5 kD),
and both Rev (75.3 kD) and ICP27 (74.7 kD) running slightly slower in the gel. The arrow indicates
the position of the Gag band. (C) After radioactive labeling for 2.5 h, supernatants were clarified,
and virus particles were pelleted and immunoprecipitated using an α-RSV antibody (media samples).
Proteins were separated by SDS-PAGE and visualized by phosphorimaging. The arrow indicates CA
(25.8 kD). (D) The average of four independent budding assays is presented within the bar graph,
with the bars representing the standard error. * p-value = 0.0253, ** p-value = 0.0013 calculated by
Student’s t-test.

3.2. Subcellular Localization of the ICP27 BR and Rev BR Gag Mutants

The amino acid sequences derived from ICP27 and Rev are capable of general RNA binding as
well as facilitating nucleolar localization [24–27,29–31]. Therefore, we tested whether the addition of
these heterologous viral RNA-binding domains, which also serve as nucleolar localization signals,
would alter the normal trafficking patterns of RSV Gag. To investigate this possibility, we examined cells
expressing wild-type or mutant proviral constructs by immunofluorescence staining using a polyclonal
α-RSV antibody (Figure 2A). The wild-type Gag protein expressed using a proviral vector exhibited a
small amount of nuclear fluorescence, with the majority of the fluorescence signal in the cytoplasm,
forming discrete foci at the plasma membrane (Figure 2A, panel a). The ∆61-73 mutant showed similar
localization, with fluorescent signal primarily in the cytoplasm and along the plasma membrane,
and possibly even more strongly at the plasma membrane compared to wild-type (Figure 2A, panel b).
The Gag localization results correlate with the budding data from Figure 1, in that the average budding
efficiency of ∆61-73 was greater than wild-type, even though not statistically significant. Unexpectedly,
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although both RS.V8 ICP27 and Rev mutants contain the NES in the Gag p10 domain, they both were
concentrated in the nucleus and formed numerous foci in the nucleoplasm (Figure 2A, panels c and d,
respectively).
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Figure 2. Subcellular localization of Gag ICP27 BR and Rev BR substitution mutants. (A) QT6 cells
expressing wild-type or mutant proviral constructs were immunostained with anti-RSV antibodies
16 h after transfection to detect localization of Gag. Confocal microscopy images taken through the
central plane of the nucleus show the distribution of wild-type Gag (panel a), Gag.∆61-73 (panel b),
Gag.ICP27 (panel c), and Gag.Rev (panel d). (B) Plasmids encoding wild-type (panel a) and mutant
Gag.YFP proteins (panels b–d) were expressed in QT6 cells and fluorescence was detected using
confocal microscopy. (C) QT6 cells were co-transfected with wild-type YFP-NC (panel a; green) or
mutant YFP-NC proteins (panels b–d; green) and fibrillarin-CFP (red) as a marker for nucleoli, with the
overlay images showing colocalization (yellow).

To determine whether viral nucleic acids or proteins expressed from the proviral vectors affected
Gag localization, we expressed Gag fused to YFP using a CMV promoter (Figure 2B). Gag.YFP was
similar in appearance, with mostly cytoplasmic and plasma membrane fluorescence and a lower
amount of diffuse and focal nuclear signals (Figure 2B, panel a). The deletion mutant Gag.∆61-73
had similar localization compared to wild-type Gag (Figure 2B, panel b). However, when either the
Gag.ICP27.YFP or Gag.Rev.YFP mutants were expressed, they localized almost exclusively to the
nucleus, forming numerous nucleoplasmic foci (Figure 2B, panels c and d, respectively). Of note,
full length ICP27 forms nucleoplasmic foci in HSV-infected cells [24–26], whereas HIV-1 Rev localizes
to nucleoli under steady-state conditions [30].

When expressed by itself, wild-type NC localizes primarily to nucleoli [11] (Figure 2C, panel a).
By contrast, the NC.∆61-73 deletion mutant was nuclear-localized but excluded nucleoli (Figure 2C,
panel b). Substitution of the ICP27 or Rev BRs for residues 61-73 restored nucleolar localization of the
NC protein (Figure 2C, panels c and d, respectively). These data indicate that replacement of amino
acids 61-73 with either the ICP27 or Rev BR is sufficient to direct NC nucleolar localization.

3.3. Heterologous BRs Substituted in the Gag NC Domain Restore gRNA Packaging

The Cys-His boxes in RSV Gag specifically bind to the psi-packaging sequence [17,18,42],
although basic residues within NC also contribute to gRNA packaging [21,22]. To investigate the
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importance of basic residues in the C-terminal region of the Gag for gRNA encapsidation, we measured
the relative amount of gRNA in virus particles using a quantitative ribonuclease protection assay.
The amount of gRNA isolated from wild-type and mutant viruses was normalized using reverse
transcriptase activity, as described in Materials and Methods. We used a probe spanning the 3′ splice
acceptor site in env to quantitate the amount of spliced viral RNA and unspliced gRNA isolated
from purified particles. Representative autoradiograms are shown (Figure 3A), and the means of
at least three independent experiments for each mutant were plotted (Figure 3B). The amount of
gRNA detected in wild-type virions was set to 100%, and each mutant was compared to wild-type.
The Gag.∆61-73 mutant virus was significantly reduced in its ability to package gRNA (15% of the
wild-type level, p = 0.0001). The RS.V8.Rev and RS.V8.ICP27 viruses packaged RSV gRNA much
more efficiently, with levels of 73% and 78% compared to wild-type, respectively, although gRNA
incorporation for RS.V8.Rev was statistically lower than wild-type (p = 0.0278). These results indicate
that insertion of a heterologous BR restores incorporation of gRNA into virus particles at near wild-type
levels. When the ratio of spliced:unspliced viral RNA was examined, both BR insertion mutants
packaged nearly the same ratio as the wild-type virus. However, in the case of the ∆61-73 mutant
virus, the level of gRNA packaging was drastically reduced (15%), and the ratio of spliced:unspliced
viral RNA detected by the phosphorimager was increased when compared to the wild-type virus,
demonstrating a reduction in the specificity of the type of viral RNA incorporated into particles.Viruses 2020, 12, x FOR PEER REVIEW  7 of 13 
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Figure 3. Genomic RNA (gRNA) packaging efficiency of heterologous BR mutants. (A) Wild-type
RS.V8 or mutant proviral vectors containing the Gag.∆61.73 deletion or substitutions of Gag.ICP27
BR or Gag.Rev BR were transfected into QT6 cells. Virus particles were collected for 48 h and were
normalized using reverse transcriptase assay. Equivalent amounts of virus particles were used to extract
RNA, and ribonuclease protection assay was used to measure the levels of spliced and unspliced viral
RNA present. After hybridization of the 318-nt 32P-radiolabled antisense riboprobe, which spans the
3′-splice acceptor site in env, and digestion of the unprotected fragment with RNase treatment, the RNA
was separated by gel electrophoresis and visualized using a phosphorimager. Black lines represent
lanes that were removed and spaces between the gels represent results from independent experiments.
Arrows to the left identify nucleotide lengths, and arrows to the right denote the species of RNA (free
probe, unspliced gRNA, and spliced viral RNA). (B) The results of four independent experiments
are shown on the graph, with the bars representing standard error of the mean. * p-value = 0.0278;
** p-value = 0.0001 when compared to wild-type levels by Student’s t-test.

3.4. Viruses with Deletions of Basic Residues or Heterologous BR Substitutions in the NC Domain of Gag
Are Noninfectious

To determine whether the basic residues in the C-terminal region of Gag are required for virus
replication, we performed infectivity assays. Virus particles were collected from QT6 cells expressing
either wild-type or mutant proviral constructs, the particles were normalized by reverse transcriptase
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activity, and equivalent amounts of virus were placed on uninfected DF1 cells. The RS.V8 provirus
contains a GFP gene in the place of src, so the ability of mutant viruses to spread through the cell
culture was monitored by measuring fluorescence using fluorescence-activated cells every three days
for 21 days (Figure 4).Viruses 2020, 12, x FOR PEER REVIEW  8 of 13 
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Figure 4. Analysis of infectivity. Virus particles were collected from QT6 cells transfected with wild-type
pRS.V8 or mutant proviruses, as indicated. Particles were normalized and then used to infect naive
DF1 cells. Infected cells were passaged and examined every 3 days post-infection to detect expression
of GFP from integrated proviruses using flow cytometry. The percentage of GFP-expressing cells at
each time point was plotted. Neither the deletion mutant (∆61-73) nor either of the substitution mutant
viruses were infectious. The graph shown is the average of three independent infection assays with
error bars showing standard error of the mean.

The wild-type virus (RS.V8) was able to efficiently infect and replicate within cells,
reaching approximately 95% of cells expressing the GFP protein by day 6 post-infection.
The RS.V8.∆61-73 mutant was noninfectious, which was expected given the low incorporation
of gRNA. However, even though gRNA incorporation was restored by insertion of the exogenous
viral RNA-binding domains from ICP27 and Rev, these substitutions were unable to restore infectivity.
We cannot distinguish between the possibilities that these mutant viruses are defective in establishment
of infection and/or cell-to-cell spread.

4. Discussion

The NC domain of the RSV Gag protein is enriched in basic residues, which play a variety of roles
in virus replication [20–22]. To date, the functions of basic residues in NC have been primarily studied
using deletion mutagenesis, which produces negative or loss-of-function results. More informative are
genetic gain-of-function experiments, in which an essential function is reconstituted using functional
domains derived from heterologous proteins. In this report, we first deleted a region following the
Cys-His boxes of RSV NC that contains five positively charged residues, finding that Gag localization
and budding were not adversely affected, whereas gRNA packaging and infectivity were severely
compromised, and nucleolar localization of the mature NC protein was abrogated. The data suggest
that these basic residues do not affect general Gag–nucleic acid interactions that are needed for particle
assembly [43–45], but appear to be involved in the specificity of binding viral gRNA.

In an attempt to separate the contributions of basic residues encompassing amino acids 61–73
in RSV NC, we substituted the sequences from two different viral RNA-binding proteins [27,46] that
also contain nucleolar localization signals. Even though these sequences were derived from very
different viral proteins, those of HSV-1 ICP27 and HIV-1 Rev, the resulting chimeric proteins behaved
very similarly. The most striking feature was the re-localization of these chimeric Gag proteins to
the nucleus, with accumulation in discrete nucleoplasmic foci that resembled ICP27 nuclear foci in
HSV-1-infected cells [28,47,48]. In fact, quite surprisingly, the ICP27 and Rev Gag nuclear foci are very
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similar in appearance to RSV Gag treated with leptomycin B (an inhibitor of Crm1 nuclear export) or
with the introduction of a point mutant in the p10 NES of Gag that blocks nuclear egress [14,15].

What accounts for the accumulation of Gag in nuclear foci with the addition of BRs from Rev
and ICP27? The NC domain of Gag is a major site of Gag–Gag interactions mediated through
protein–protein or protein–RNA binding [23,49,50], so perhaps the BRs enhance Gag–Gag interactions.
We previously showed that Gag–Gag intermolecular interactions in the nucleus depend on the NC
domain and its RNA-binding ability [14]. In addition, the ICP27 and Rev RNA-binding domains may
interact with host nuclear factors, either proteins and/or RNAs, that serve to tether Gag more strongly
in the nucleus [28,47,51–54]. We previously reported that RSV Gag colocalizes with splicing factors [15],
as does ICP27 [28]. Whether Gag influences RNA splicing, as has been found for ICP27 [51], is not yet
known. It is also possible that the insertions of ICP27 and Rev BRs in NC alter the conformation of the
Gag protein, interfering with the function of the NES in p10, leading to nuclear retention of the mutant
Gag proteins.

The increased nuclear localization of the chimeric Gag proteins likely explains the budding
defect of the RS.V8.ICP27 and RS.V8.Rev viruses. These results provide further evidence that nuclear
trafficking of RSV Gag is intrinsic to the virus assembly pathway since enhancing nuclear localization
was linked to an assembly defect of these mutants. In spite of the defect in particle production, the
ICP27 and Rev chimeric viruses both restored gRNA packaging when compared to the mutant bearing
a deletion of basic residues 61-73 of the NC domain. This restoration of gRNA packaging could be due
to the RNA-binding capabilities of the RS.V8.Rev and RS.V8.ICP27 mutants, although it was somewhat
unexpected that the RNA-binding domains from heterologous viruses would confer packaging of
the RSV genome, maintaining the proper ratio of spliced:unspliced viral RNAs incorporated into
virus particles.

One possible explanation for the effect of the BR insertions is that the presence of several non-specific
RNA-binding domains may contribute to specific gRNA binding, although the mechanisms underlying
specificity of RNA recognition are not fully understood [55]. For example, RNA-binding domains rich
in RS or RG residues, such as the RGG box of ICP27, in combination with other basic sequences, have
been shown to mediate both specific and non-specific interactions with RNA [56]. The properties of
RNA-binding proteins have been extensively studied in serine/arginine-rich (SR) proteins involved in
RNA splicing [56,57]. SR proteins generally contain one or two of the RNA recognition motifs at the
N-terminus and an RS motif at the C-terminus. Typically, the RNA recognition motifs are involved
in recognizing the specific target RNAs, while the RS motifs participate in indirect protein–protein
and non-specific protein–RNA interactions that bring the SR proteins and the target RNAs within
close proximity [56,57]. Other common sequences typically found in RNA-binding proteins are
motifs enriched in R/K residues, in which four to eight residues in small patches form highly positive
regions that mediate molecular interactions. They frequently flank globular domains, assisting in RNA
binding [56]. Therefore, it is possible that the deletion of basic residues immediately after the second
Cys-His box in RSV Gag eliminates specific binding of the psi sequence, as previously suggested by Lee
et al. [22]. Introduction of additional basic residues in the ICP27 and Rev heterologous RNA-binding
domains, which contain 8 and 10 basic residues, respectively, restores the interaction with RSV RNA
via electrostatic interactions that bring Gag and gRNA in close proximity, allowing specific gRNA
binding through the zinc knuckles in NC.

Electrostatic interactions play a role in the binding of positively charged RNA-binding proteins
to negatively charged RNAs through both specific and non-specific mechanisms. We searched the
literature for cellular RNA-binding proteins with mechanisms that explain how non-specific electrostatic
interactions could contribute to specific binding to their cognate RNA molecules. We found that the
spliceosomal protein, U1A, uses a non-specific “lure” step followed by a specific “lock” step to bind
to its SL2 RNA partner (summarized in [58]). Short-range electrostatic interactions during the “lure”
step are proposed to attract the SL2 RNA to U1A, followed by the “lock” step, in which long-range
electrostatic interactions between the protein and RNA create specific binding. We hypothesize that
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RSV Gag could be utilizing a similar technique for binding to viral gRNA. The basic residues in
the C-terminus of NC could be involved in the initial electrostatic “lure” step, bringing gRNA in
closer proximity. This binding event would then allow the zinc knuckles in NC to specifically bind to
the psi sequence on the viral RNA. Thus, whether selective gRNA packaging in the chimeric ICP27
and Rev viruses is due to the addition of these heterologous RNA-binding domains or simply the
addition of additional basic amino acids is not clear. Further studies to examine this question would
be needed, perhaps by inserting a random sequence of basic residue sequences versus RNA-binding
domains that do not contain basic amino acids (KH domain or additional zinc fingers) to further dissect
the mechanism.

Although insertion of heterologous BRs from ICP27 and Rev into NC rescued selective
incorporation of gRNA into virus particles, these mutants were noninfectious. Because the mutations
were inserted into NC, the most likely explanation is that functions of NC in other steps of infection
were impaired, including gRNA dimerization [16,59,60], reverse transcription [61–65], transport of the
preintegration complex [66], or chaperone function [67,68]. We can conclude that nucleolar localization
of NC, which was restored in the ICP27 and Rev chimeras, is not sufficient for NC-mediated replication
activities early in infection. Further investigation into the mechanisms underlying the replication
defect of these chimeric viruses will be enlightening.

5. Conclusions

The work presented here demonstrates the importance of the basic residues after the Cys-His boxes
in the C-terminus of RSV NC in gRNA packaging. When this sequence was deleted, virus particles were
able to bud normally from cells, but were not infectious. However, when these residues were replaced
with heterologous basic residues from other viral RNA-binding proteins, the subcellular localization
of Gag became predominantly nuclear, and gRNA packaging was restored. Even though gRNA
packaging in the chimeras was increased to near normal levels, these viruses remained noninfectious.
These results suggest that the C-terminal basic residues in NC are important for facilitating gRNA
binding. A deeper understanding of the mechanism by which retroviral Gag proteins selectively
incorporate their genomes may be helpful in future antiviral and vaccine development [69–73].
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