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A single nucleotide polymorphism in the 3’-UTR of STAT3 
regulates its expression and reduces risk of pancreatic cancer 
in a Chinese population
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AbstrAct
Pancreatic cancer (PC) is one of the deadliest solid malignancies carrying a 

gloomy 5-year survival rate less than 5%. The signal transducer and activator of 
transcription 3 (STAT3) is a common transcriptional regulator, whose aberrant 
expression has been widely found in human cancers, including PC. Our current study 
aimed to illustrate the roles of common variants, in the three prime untranslated 
region (3’UTR) of STAT3, in modifying the risk of PC through two-stage case-control 
studies integrating biological experiments. We first explored the associations between 
two common variants (rs1053004 and rs1053005) and PC risk in 774 PC cases 
and 777 controls. Only rs1053004 T > C showed a significant association with a 
reduced risk of PC with an odds ratio (OR) and 95% confidence interval (CI) of 0.85  
(0.74–0.98). Then we attempted to validate the association in another 940 cases 
and 1398 controls, and the significant association persisted with OR (95%CI) of 0.86  
(0.76–0.97). Dual luciferase reporter gene assays indicated that C allele conferred a 
higher expression of STAT3 in three PC cell lines including Panc-1 (P = 3.0 × 10−3), BxPC-3  
(P = 6.7 × 10−5) and SW1990 (P = 4.0 × 10−3). In conclusion, the current study 
provided evidence that rs1053004 T > C in 3’UTR of STAT3 may decrease the risk of 
PC through up-regulating the gene expression. 

INtrODUctION

Pancreatic cancer (PC) is the fifteenth most common 
cancer in the world with extremely low 5-year survival 
rate at only ~5% [1]. Despite decades of efforts, there are 
still few early detection methods and effective treatments. 
These grim facts highlight pressing need to identify the 
risk factors of PC for primary prevention and targeted 
therapy. Many environmental factors might influence an 
individual’s PC risk [2, 3], among which cigarette smoking 
has been confirmed as the surest to date. Both current and 
former smokers have higher risk than non-smokers [4]. 
Approximately 25% of PC cases are attributable to smoking 

[5, 6]. Individuals with family history are prone to PC and 
risk rises with the increasing number of affected first-degree 
relatives [7], which indicates inherited genetic background 
may impact on susceptibility to PC. However, only a 
small part of sporadic PCs can be explained by the genetic 
variants identified by recent genome wide association 
studies [8–14], while some true susceptibility loci with 
moderate P values might have been overlooked due to 
stringent P-value threshold [15]. Therefore, the genetic 
susceptibility to sporadic PC is definitely worth exploring.

STAT3 is a member of the STAT protein family, 
which are mainly phosphorylated by the receptor or  
non-receptor associated kinases, in response to cytokines 
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and growth factors, and then form homo- or heterodimers 
that translocate to the cell nucleus where they act as 
transcription activators. They regulate cytokine-dependent 
inflammation and immunity, determining whether immune 
responses in the tumor microenvironment promote or 
inhibit cancer [16]. 

STAT3 plays a central role in many inflammatory 
pathways including nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) and interleukin-6 
(IL-6)-GP130-Janus kinase (JAK) pathways [16]. 
Considering that deregulation of transcriptional control is 
a central characteristic of cancers [17], and inflammation 
is a defined cancer-causing factor [18], it is reasonable to 
presume that alteration of STAT3 may be involved in the 
process of carcinogenesis. However, the roles it plays may 
be complicated and two-sided. In some circumstances, 
STAT3 is regarded as an oncogene [19–24], while in others 
its tumor suppressing and prognosis ameliorating effects 
have also been identified [25–28].

In pancreatic ductal adenocarcinomas (PDACs), 
constitutive activation of STAT3 by phosphorylation 
of Tyr705 has been reported in 30% to 100% of human 
tumor specimens, as well as in many PDAC cell lines [29]. 
Notably, epithelial Stat3 is required particularly during the 
progression of PanIN to PDAC, but not in the initiation 
of PanIN in mouse model [30]. Based on these findings, 
we hypothesized that common variants in STAT3 may 
contribute to the susceptibility to PC. Since 3′UTR often 
contains regulatory elements that post-transcriptionally 
regulate gene expression, we aimed at finding functional 
variants in this region. Thus we conducted two stage case-
control studies to evaluate the correlation between two 
common variants (rs1053004, rs1053005) in 3′UTR of 
STAT3, which were predicted most likely to have potential 
function, and risk of PC. Furthermore, luciferase reporter 
gene assays were performed for function verification.

resUlts

characteristics of population

A total of 774 cases and 777 controls passed quality 
control of stage one, and 940 cases and 1398 controls were 
included in stage two. The characteristics of the subjects 
are summarized in Table 1. The majority of cases were 
males, with 57.4% in stage one and 79.4% in stage two. 
The median ages of case/control groups in two stages were 
60/59 and 61/60, respectively. Cases and controls were 
adequately matched in sex and age in both stages.

Association analysis

Both of the two SNPs (rs1053004 and rs1053005) 
were successfully genotyped. The call rates in both stages 
were > 95%, and the genotypes in controls conformed 
to HWE (P > 0.05). In stage one, only rs1053004 T > C 

polymorphism was found to be significantly associated 
with a decreased PC risk (CC versus TT: odds ratio 
(OR) (95% confidence interval (CI)) = 0.71 (0.52–0.96); 
P = 0.025). While no significant association was found 
between genotypes of rs1053005 and PC risk (CC 
versus TT: OR (95% CI) = 0.80 (0.57–1.11); P = 0.176). 
Rs1053004 was further replicated in stage two (CC 
versus TT: OR (95% CI) = 0.70 (0.53–0.93); P = 0.013). 
Consistently, individuals carrying rs1053004 CC genotype 
had lower risk of PC compared with the TT genotype (OR 
(95% CI) = 0.72 (0.59–0.88); P = 0.002) in the combined 
samples. And rs1053004 also showed to be significantly 
associated with PC risk in additive model in both two 
stages (OR (95% CI) stage one = 0.85 (0.73–0.98); OR (95% 
CI) stage two = 0.86 (0.76–0.97)) and combined samples (OR 
(95% CI) combined = 0.86 (0.78–0.94)). Two other models 
(dominant, recessive models) were also demonstrated 
in combined samples. The genotype frequencies and 
detailed statistical results of rs1053004 and rs1053005 
are summarized in Table 2 and Supplementary Table 
S1, respectively. Also, results of stratified analysis of 
association between rs1053004 and risk of PC by gender 
was presented in Supplementary Table S2.

Dual luciferase reporter gene assays

We constructed two luciferase reporter plasmids 
containing rs1053004 T and C allele, respectively. In all 
the three PC cell lines, Panc-1, BxPC-3 and SW1990, 
luciferase activity was significantly higher in the C allelic 
plasmid compared with the T plasmid (P < 0.05, Figure 1). 
The results suggested that rs1053004 T > C in 3′UTR 
could up-regulate gene expression post-transcriptionally.

DIscUssION

STAT3 plays a pivotal role in a multitude of 
physiological and pathological processes [31–36]. Its 
abnormal activity and expression have been found in PC 
[24, 29, 30, 37]. Nevertheless, whether genetic variations 
in this gene affect PC risk has been barely investigated. 
In our current study, using two stage case-control studies 
integrating luciferase reporter gene assays, we found for 
the first time that rs1053004 T > C in 3′UTR of STAT3 
might decrease risk of PC through up-regulating STAT3 
expression. 

STAT3, a member of a transcription factor 
family, was first identified in 1994 as an IL-6-activated 
acute-phase response factor (APRF) [38]. Other from 
its transient activation in normal cells, STAT3 was 
often found aberrantly expressed and constitutively 
activated in a variety of malignancies [39], thereby was 
regarded as an oncogene in multiple cancers [20–23]. 
Nonetheless, the tumor suppressing role of STAT3 was 
also reported [25–28, 40, 41]. For example, STAT3 was 
found as a negative regulator of thyroid cancer since it 
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could activate transcription of the tumor suppressor  
insulin-like growth factor binding protein 7 (IGFBP7), 
and negatively regulate aerobic glycolysis [26]. In the 
context of lung cancer, STAT3 prevented disease initiation 
by maintaining pulmonary homeostasis under oncogenic 
stress [28]. Besides, loss of IL-6/Stat3 signaling in prostate 
cancer might bypass senescence and accelerates cancer 
progression via disrupting the ARF-Mdm2-p53 tumor 

suppressor axis [27]. In addition to these malignancies, 
other cancers were reported to benefit from STAT3 in 
phenotype and prognosis as well, such as breast cancer 
[40, 42], head and neck neoplasms [25], and brain tumor 
[43, 44]. In respect of PC, STAT3 was suggested to be 
frequently over-expressed in vivo and vitro [24, 29, 37] 
and play a pivotal role in the carcinogenesis of PC, while 
its anti-tumor effect in PC is scarcely reported so far. 

table 2: Association between rs1053004 and risk of Pc

Genotype

stage one

P

stage two

P

combined

Pcase control Ora case control Ora

case control
Ora

N (%) N (%)  (95% cIb)c N (%) N (%)  (95% cIb)c  (95% cIb)c

rs1053004

TT 345 (44.6) 310 (39.9) 1.00 414 (44.0) 564 (40.3) 1.00 759 (44.3) 874 (40.2) 1.00

CT 330 (42.6) 341 (43.9) 0.87 (0.70–1.08) 0.202 431 (45.9) 650 (46.5) 0.90 (0.76–1.08) 0.263 761 (44.4) 991 (45.6) 0.89 (0.77–1.02) 0.085

CC 99 (12.8) 126 (16.2) 0.71 (0.52–0.96) 0.025 95 (10.1) 184 (13.2) 0.70 (0.53–0.93) 0.013 194 (11.3) 310 (14.3) 0.72 (0.59–0.88) 0.002

Additive 0.85 (0.73–0.98) 0.023 0.86 (0.76–0.97) 0.017 0.86 (0.78–0.94) 0.001

Recessive 0.76 (0.57–1.01) 0.055 0.74 (0.57–0.96) 0.026 0.77 (0.63–0.93) 0.006

Dominant 0.83 (0.68–1.01) 0.062 0.86 (0.73–1.02) 0.077 0.85 (0.75–0.96) 0.011

aOR, odds ratio.
bCI, confidence interval.
cOR estimated with logistic regression adjusted for sex and age.

table 1: characteristics of subjects in this study
stage one stage two

Variables case N (%)  control N (%) χ2 P case N (%) control N 
(%)  χ2 P

Total 774 777 940 1398

Sex 0.045 0.833 0.657 0.674

Male 444 (57.4) 450 (57.9) 746 (79.4) 1120 (80.1)

 Female 330 (42.6) 327 (42.1) 194 (20.6) 278 (19.9)

Age(Median) 60 59 1.240 0.743 61 60 0.470 0.925

< 45 94 (12.1) 94 (12.1) 108 (11.5) 148 (10.6)

45~55 163 (21.1) 159 (20.5) 184 (19.6) 277 (19.8)

55~65 252 (32.6) 273 (35.1) 311 (33.1) 467 (33.4)

> 65 265 (34.2) 251 (32.3) 337 (35.9) 506 (36.2)

Figure 1: Dual luciferase reporter gene assays: the effects of rs1053004 on gene expression. The figure showed that compared 
to the construct with rs1053004-T, the construct with rs1053004-C had significantly higher luciferase activity in three PC cell lines. 
Unpaired Student’s t-test was used to evaluate the differences and p values less than 0.05 was considered significant with ** indicating 
p < 0.01 and **** indicating p < 0.001.
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rs1053004 lies in the 3′UTR of STAT3, the mutant 
C allele is predicted to cause binding site loss for some 
miRNAs (such as hsa-miR-31-5p and hsa-miR-99b-3p, 
predicted by MicroSNiper web tool [45]). Consistently, 
dual luciferase reporter gene assays demonstrated in 
three different PC cell lines that C allele was significantly 
associated with higher luciferase activity. We therefore 
inferred that, in Chinese population, the C allele of 
rs1053004 astricted the binding of miRNA to STAT3, 
thus increasing the expression of this gene with potential 
benefit, and consequently conferred individuals with CC 
genotype lower risk to PC compared with TT genotypes, 
notwithstanding the exactly anti-PC mechanism of STAT3 
still needs further investigation. 

To the best of our knowledge, this is the first study 
to investigate the association between genetic variants in 
STAT3 and risk of PC. Our work has three major strengths. 
First, two stage case-control studies with large sample 
size offer us enough statistical power to identify the 
association. Second, functional validation experiments not 
only indicated that the association might be reliable, but 
also provided the plausible underlying mechanisms of how 
this variant influenced risk of PC. Last but not least, our 
work suggests that STAT3 might exert positive effects in 
preventing PC, particularly in Chinese population, despite 
the stereotype that STAT3 was an oncogene. However, 
functional experiments such as RNA interference were 
still needed for deeper mechanism exploration. Besides, 
environmental factors such as smoking and obesity were 
not included in our current study. Further researches 
concerning gene-environment interaction will be required.   

In conclusion, we identified a regulatory SNP 
rs1053004 mapping to 3′UTR of STAT3 associated with a 
decreased risk of PC in Chinese population. Our findings 
could lead to new insights to the etiology of PC and 
provide a potential biomarker. Future studies conducted 
in different population and with deeper biological 
experiments are warranted to validate our results and more 
attention should be paid to the variants in STAT3 when 
investigating genetic susceptibility to PC.

MAterIAls AND MethODs

study subjects

We carried out a two-stage case-control study to 
investigate the association between variants of STAT3 
and risk of PC. Stage one included 774 cases and 777 
cancer-free controls, part of which were also involved in 
our previous studies [46–49]. Patients were consecutively 
recruited from January 2009 to September 2014 at 
Tongji Hospital of Huazhong University of Science 
and Technology, Wuhan, China. While controls were 
volunteers randomly selected from healthy screenings over 
the same period. In stage two, 940 cases were enrolled 
at the Peking Union Medical College Hospital, Beijing 

from January 2008 to December 2012, and 1398 controls 
were cancer-free individuals from a community cancer 
screening program for early detection from the same 
region over the same period. All cases were individuals 
with newly diagnosed, pathologically confirmed and 
previously untreated primary PC. The diagnosis of PC 
was confirmed by histopathological or cytological analysis 
according to the World Health Organization classification. 
Controls were frequency matched with cases by sex and 
age (interval of 5 years). Demographic characteristics 
(sex, age) were obtained from medical records. At 
recruitment, a 2-mL peripheral venous blood sample was 
collected from each subject with informed consent. This 
study was approved by the ethics committee of Tongji 
Medical College of Huazhong University of Science and 
Technology and Peking Union Medical College Hospital.

sNP selection genotyping and statistical analysis

It was primarily acknowledged that the 3′UTR often 
contains regulatory elements that post-transcriptionally 
regulate gene expression. For example, miRNAs 
usually interact with 3′UTR of target mRNAs leading to 
mRNA degradation and/or translational repression[50]. 
Accordingly, our hypothesis was that the variants in 3′UTR 
of STAT3 might affect its expression and further concern 
PC risk. We utilized the University of California Santa 
Cruz (UCSC) Table Browser (http://genome.ucsc.edu/
cgi-bin/hgTables) to retrieve variants in 3′UTR of STAT3, 
finding four SNPs (rs1053004, rs1053005, rs1053023 and 
rs3744483) with minor allele frequency greater than 0.05. 
Among which, rs1053005, rs1053023 and rs3744483 are 
in perfect linkage disequilibrium (LD) (r2 = 1, using 1000 
genome phase 3 data). While the LD relations between 
rs1053004 and others are slightly weaker (r2 = 0.8). Then 
we utilized SNPinfo Web Server (http://snpinfo.niehs.
nih.gov/snpinfo/snpfunc.htm) to predict the function of 
these polymorphisms. All of the four SNPs lie in putative 
microRNA targets, and rs1053005 is predicted to regulate 
more microRNAs′ binding than the other two SNPs in 
perfect LD (rs1053023 and rs3744483). Taken together, 
the results of LD analysis and functional prediction 
suggested both rs1053004 and rs1053005 as most 
promising SNPs, and to be subsequently genotyped.

Genotyping and statistical analysis

Genomic DNA was extracted from peripheral blood 
using RelaxGene Blood DNA System (Tiangen, DP319) 
according to the manufacturer’s instructions. Quantitative 
and qualitative DNA analysis was performed with 
Nanodrop. 

The two candidate SNPs were genotyped using 
a TaqMan assay on the ABI PRISM 7900 HT platform 
(Applied Biosystems, Inc.) in two stages. Genotyping 
analysis was conducted with Sequence Detection System 
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(SDS) Software v2.4.1. For quality control, 5% duplicate 
samples were independently reanalyzed in a blinded 
fashion. The call rate of candidate SNPs were over 95%. 

Deviation from Hardy-Weinberg equilibrium 
(HWE) in controls was examined by a goodness-of-fit χ2 
test. Demographic characters and genotype frequencies 
differences were assessed by Pearson’sχ2 test. Odds ratios 
(ORs) and 95% confidence intervals (CIs) were calculated 
applying unconditional logistic regression analysis adjusting 
for age and sex. For all analyses, statistical significance was 
set at P < 0.05, and all tests were two sided. All statistical 
analyses were conducted by SPSS Statistics 20.0.

Dual luciferase reporter gene assays

We chose psiCHECK™-2 Vector (Promega) to 
construct luciferase reporter gene plasmid since it is an 
ideal biosensor for miRNA-target interaction. This vector 
contains two kinds of luciferase gene, Renilla and Firefly. 
The former’s activity reflected STAT3 expression, as the 
3′ UTR of which was appended to the Renilla luciferase 
gene. Inclusion of the firefly luciferase reporter served 
as the internal control. The whole 3′UTRs of STAT3 
containing different alleles of SNP were cloned into 
the vectors (Genewiz). The reporter constructs were 
verified for sequence. Human pancreatic cancer cell lines 
Panc-1, BxPC-3 and SW1990 were used for luciferase 
reporter gene assays. The constructed reporter plasmid 
was transfected to the cells cultured in Dulbecco’s 
Modified Eagle Medium (DMEM) with high glucose 
(Gibco) supplemented with 10% fetal bovine serum 
(Gibco) and 1% Penicillin-Streptomycin (Gibco) under 
37°C in humidified atmosphere containing 5% CO2 
using Attractene Transfection Reagent (QIAGEN). After 
24 hours’ incubation, the cells were assayed for two 
luciferase activity with the Dual-Luciferase Reporter Assay 
System (Promega). Relative activities were evaluated by 
calculating the ratio of Renilla to Firefly. For each plasmid, 
three independent transfection experiments were performed 
with each in triplicate. The differences in reporter gene 
expression were examined by Student’s t-test.
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