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Abstract

Peptides are attractive alternatives for the development of new therapeutic

strategies due to their versatility and low complexity of synthesis. Increasing

interest in these molecules has led to the creation of large collections of experi-

mentally characterized therapeutic peptides, which greatly contributes to

development of data-driven computational approaches. Here we propose CSM-

peptides, a novel machine learning method for rapid identification of eight dif-

ferent types of therapeutic peptides: anti-angiogenic, anti-bacterial, anti-can-

cer, anti-inflammatory, anti-viral, cell-penetrating, quorum sensing, and

surface binding. Our method has shown to outperform existing approaches,

achieving an AUC of up to 0.92 on independent blind tests, and consistent per-

formance on cross-validation. We anticipate CSM-peptides to be of great value

in helping screening large libraries to identify novel peptides with therapeutic

potential and have made it freely available as a user-friendly web server and

Application Programming Interface at https://biosig.lab.uq.edu.au/csm_

peptides.
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1 | INTRODUCTION

Peptides are versatile molecules that play essential roles
in signaling processes, such as growth factors, neuro-
transmitters, and anti-infectives. Given their lower

complexity of synthesis and production costs compared
to traditional protein-based drugs, peptides are attractive
candidates for developing new therapeutics and diagnos-
tics.1 An increasing number of peptides have been identi-
fied with a wide variety of therapeutic applications,
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including treatments for cancer,2 inflammatory diseases3

and as drug delivery mechanisms.4 Despite these efforts,
experimental screening of novel peptides remains a time
consuming and expensive endeavor.

Several computational methods have been proposed
to help identify and characterize the functional mecha-
nisms of peptides more efficiently4–10; however, despite
these relevant efforts, available approaches present vari-
able performance and lack of easy-to-use interfaces, limit-
ing their use to those with specialist knowledge in
addition to not providing mechanisms to facilitate inte-
gration within bioinformatics pipelines.

Here we expand our cutoff scanning matrix (CSM)
platform by proposing CSM-peptides, a novel suite of
machine learning (ML) approaches to identify thera-
peutic peptides for eight different classes: anti-
angiogenic (AAP), anti-bacterial (ABP), anti-cancer
(ACP), anti-inflammatory (AIP), anti-viral (AVP), cell-
penetrating (CPP), quorum sensing (QSP), and surface
binding (SBP). Our method explores physicochemical
properties and incorporates predictions of secondary
structure and disorder regions of peptide sequences
(Figure 1), which we show achieves equivalent or bet-
ter performance than alternative approaches. CSM-
peptides is a user-friendly web resource that can be
easily incorporated into analytical pipelines via an

Application Programming Interface (API) at https://
biosig.lab.uq.edu.au/csm_peptides.

2 | RESULTS AND DISCUSSION

2.1 | Common properties of active
peptides

Overall peptide length varied from 5 to 97 amino acids
long, with peptides from classes ACP and ABP showing
the highest average values among all other classes
(22 and 30 amino acids long, respectively). QSP peptides
were shown to be the shortest with average length of
11 amino acids long. This could be related to their role in
rapid signaling response in the cell, leading to the synthe-
sis of less complex signal molecules. In addition, at a neu-
tral pH, net charge for ACP, ABP, and CPP presented the
highest values ranging from 3.6 to 5.1, while QSP and
SBP showed values closer to 0. General physicochemical
properties for all peptide classes are summarized in
Table S1 in the Supplementary Material.

In terms of amino acid composition, for all peptide
classes, on average non-polar and positively charged
amino acids were enriched, including Glycine (G), Lysine
(K), Arginine (R), and Leucine (L), as opposed to

FIGURE 1 Methodology workflow for CSM-peptides. The development of CSM-peptides can be divided into four main steps: (1) data

are collected from the literature for eight different classes of therapeutic peptides; (2) features are calculated, including evolutionary scores

from substitution tables, physicochemical and indexes calculated based on each peptide sequence and predicted proportion of secondary

structure; (3) feature selection and model training for each peptide class separately; (4) best performing models are deployed into a

webserver and API publicly available

2 of 9 RODRIGUES ET AL.

https://biosig.lab.uq.edu.au/csm_peptides
https://biosig.lab.uq.edu.au/csm_peptides


negatively charged amino acids, such as D and E, which
showed low proportions across the eight different classes
of peptides investigated in this study. The latter has been
shown to be an expected characteristic of these molecules
since negatively charged amino acids may interfere dur-
ing the course of interaction with an also negatively
charged cell membrane.6 A comprehensive summary of
the proportion of the 20 standard amino acid residues for
each peptide class is displayed in Figure S1 and stratifica-
tion by residue type (polar, non-polar, aromatic, and
charged) is available in Table S2 in Supplementary
Materials.

2.2 | Predicting therapeutic peptides

After performing our greedy stepwise approach to feature
selection for binary classifiers for each peptide class sepa-
rately, the number of selected features per model varied
from 21 (AIP) to 93 (ABP). We observed, however, that
features representing physicochemical properties were
consistent across all peptide classes, most notably those
representing distributions of amino acid attributes
(e.g., hydrophobicity, charge, polarity, and solvent expo-
sure) were used by all models. In addition, BLOSUM
indices were selected by almost all predictive models.
Interestingly, features accounting for secondary structure
type and disorder regions were only selected together for
the ABP class, and separately for models built for the
AVP and CPP classes. Feature importances for each pep-
tide class are summarized in Tables S3–S10. Overall, the
importance of features was evenly spread for predictors
of all classes, except AIP and QSP, in which the percent-
age of charged residues, calculated via amino acid
composition-transition-distribution (CTD)11 using iFea-
ture, accounted for nearly 25% importance. Amino acid
CTD features have been previously shown to be an
important variable for predicting CPP,12 and in this
study, this property was present for nearly all other
binary classifiers with a more moderate contribution to
the final predictive models, including CPP.

Performance on training for all eight predictive
models, using their respective final set of selected fea-
tures, was assessed under 10-fold CV and results have
been summarized in Table S11 in the Supplementary
Materials. Overall, performances in terms of AUC were
robust with values ranging from 0.83 for AIP to 0.99 for
ABP. A closer inspection of true positive rate (TPR; sensi-
tivity) and true negative rate (TNR; specificity) indicate
that predictive models for classes AAP and SBP showed
the highest discrepancy between the two metrics, while
the rest remained consistent in their ability to correctly
identify peptides of these classes from others. We believe

the lower agreement between TPR and TNR on training
for the AAP and SBP sets (206 and 160, respectively) to
be related to the low number of entries available for these
two classes, limiting the outcomes of the machine learn-
ing algorithms evaluated. Surprisingly, the AIP class,
which has the largest number of entries for training,
showed similar performance on training from AAP and
SBP, suggesting that these molecules have a more com-
plex mechanism of action and would benefit from alter-
native methods for encoding protein sequence
information.

2.3 | Comparison with alternative
methods

Our peptide specific predictive models were further
assessed over two independent datasets and outcomes
compared with those reported on the PEPred study9 and
based on the results output from the PPTPP tool.10 CSM-
peptides outperformed both methods on the SBP class,
achieving an AUC of 0.94 on the main test set and 0.98 on
the alternative set (Figure 2). For CPP and ACP classes,
our method outperformed both PPTPP and PEPpred on
the alternative test set and achieved similar performance
on the main test sets. Interestingly, all methods had a drop
in performance for the AIP class corroborating our previ-
ous assumption that, despite using distinct modeling tech-
niques to encode and select features, solely representing
physicochemical properties are insufficient for machine
learning approaches which may underfit, possibly due to a
more complex mechanism of action for this class of
peptides,13 also corroborated by the low number of fea-
tures selected. In addition, we have compared the perfor-
mance of CSM-peptides for classes ACP and AVP with
AI4ACP14 and FIRM-AVP,15 respectively. In both cases,
the class specific predictors from our approach showed
superior performance when compared with the alternative
methods for the two blind tests used in this work. Interest-
ingly, performance on the alternative test set showed a
considerable drop in terms of Matthews correlation coeffi-
cient (MCC) and TNR, indicating that more negative
entries are being misclassified. These results may be
explained by the quality and amount of experimental data
available for most peptide classes, such as AAP, QSP, and
SBP with a total of 214, 400, and 160 entries used for train-
ing, respectively. We hypothesize this limitation to be the
main cause for preventing most algorithms to explore the
search space properly for the majority of classes, and con-
sequently limiting their ability to correctly distinguish
between positive and negative samples. This trend is more
evidently observed in such a diversified set of negative
samples as available in the alternative test set.
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Performances on both independent test sets are sum-
marized in Table 1 for all methods. PEPred results are
reported in terms of AUC as this is the only metric

reported in the study and at the time of writing this man-
uscript the server is down and neither the source code for
local installation is available for installation.

FIGURE 2 Performance of CSM-peptides on

10-fold CV and two independent blind-tests for

predictive models for eight classes of therapeutic

peptides. Results are shown as ROC curves where

green lines represent results on 10-fold CV, yellow

and red describe results of assessing the

performance on main and alternative test sets,

respectively. AAP, anti-angiogenic; ABP, anti-

bacterial; ACP, anti-cancer; AIP, anti-inflammatory;

AVP, anti-viral; CPP, cell-penetrating; QSP, quorum

sensing; SBP, surface binding
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Furthermore, given the limitation in terms of length of
peptides which could be analyzed by AI4ACP (≤50
amino acid long), the results for this method are reported
after removing such entries from main and alternative
test sets.

Given the high performance observed for most pep-
tide classes when predicting the test sets, we evaluated
the level of contamination between training and test sets
for each peptide class using three different cutoffs of simi-
larity (Table S12). Here we used the SequenceMatcher
module, available in the difflib Python package, similarly
to what has been described in a previous study for clus-
tering peptide sequences.16 Except for the AVP and QSP

classes, all entries in the test set are non-redundant to the
train set when using a cutoff of 75% similarity for all pep-
tide classes. Using a threshold of 85% similarity, the AVP
class was the only class with a small number of peptides,
which differ only by one amino acid from a single entry
in the training set. After removing this entry from the
training set and re-training the predictive model for this
class no significant drop in performance was observed.

Finally, additional non-redundant peptides were
retrieved from DRAMP17 for the ABP, ACP, and AVP
classes, comprising 3,019, 176, and 132 peptides respec-
tively. CSM-peptides achieved accuracies ranging from
61% on ACP class to 83% on ABP (Table S13).

TABLE 1 Performance comparison of CSM-peptides with other methods on two independent test sets for predictive models of each

therapeutic peptide class

Class Method

Main test set Alternative test set

AUC TPR TNR MCC AUC TPR TNR MCC

AAP CSM-peptides 0.76 0.57 0.92 0.53 0.86 0.67 0.86 0.18

PPTPP 0.77 0.71 0.78 0.50 0.75 0.71 0.70 0.10

PEPred 0.80 – – – 0.77 – – –

ABP CSM-peptides 1.00 0.98 0.99 0.97 1.00 0.96 0.98 0.90

PPTPP 0.98 0.92 0.96 0.89 0.96 1.00 0.93 0.61

PEPred 0.97 – – – 0.96 – – –

ACP CSM-peptides 0.97 0.90 0.90 0.80 0.83 0.87 0.50 0.15

PPTPP 0.87 0.80 0.81 0.62 0.71 0.80 0.38 0.07

PEPred 0.94 – – – 0.63 – – –

AI4ACP 0.49 0.88 0.1 �0.02 0.5 0.15 0.85 0.00

AIP CSM-peptides 0.71 0.43 0.93 0.43 0.54 0.67 0.35 0.02

PPTPP 0.70 1.00 0.04 0.15 0.39 0.08 0.83 �0.08

PEPred 0.75 – – – 0.63 – – –

AVP CSM-peptides 0.94 0.90 0.86 0.76 0.97 0.96 0.74 0.27

PPTPP 0.96 0.91 0.77 0.70 0.90 0.91 0.47 0.13

PEPred 0.94 – – – 0.95 – – –

FIRM-AVP 0.67 0.90 0.44 0.20 0.51 0.30 0.72 0.01

CPP CSM-peptides 0.99 0.90 0.96 0.87 0.97 0.85 0.98 0.78

PPTPP 0.96 0.86 0.88 0.75 0.85 0.86 0.55 0.17

PEPred 0.95 – – – 0.87 – – –

QSP CSM-peptides 0.98 0.90 0.95 0.85 0.94 0.95 0.87 0.24

PPTPP 0.94 0.80 1.00 0.81 0.85 0.75 0.77 0.122

PEPred 0.96 – – – 0.89 – – –

SBP CSM-peptides 0.94 0.83 0.91 0.75 0.98 0.87 0.97 0.51

PPTPP 0.77 0.75 0.66 0.41 0.84 0.66 0.87 0.17

PEPred 0.67 – – – 0.79 – – –

Note: Results are shown in terms of area under the ROC curve (AUC), sensitivity (TPR), specificity (TNR) and Matthew's correlation coeff (MCC). Cells filled
with a dash (�) indicate cases where results were not available or could not be generated.
Abbreviations: AAP, anti-angiogenic; ABP, anti-bacterial; ACP, anti-cancer; AIP, anti-inflammatory; AVP, anti-viral; CPP, cell-penetrating; QSP, quorum

sensing; and SBP, surface binding.
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2.4 | Web server

Users can query the website using a single peptide
sequence or providing a list of sequences in FASTA for-
mat for batch processing (Figure S2A) via the upload
option. Examples and format descriptions are available
both on the submission page and the help page via the
top navigation menu. If an email is provided, the user
will be notified of the results when they finish
processing.

The output page presents the results as a download-
able table (Figure S2B), where each row summarizes the
output for all eight binary classifiers for each peptide
class (AAP, ABP, ACP, AIP, AVP, CPP, QSP, and SBP)
for a particular entry. A probability score is shown upon
hovering the mouse cursor over the predicted label for a
given class. Here we used the default cut-off of >0.5 to
define the final predicted label as positive. In addition, a
“Detail” button is available for each entry to assist users
when comparing general physicochemical properties of a
given input peptide with the overall class distribution. A
detailed description with examples on how to run predic-
tions is available in the help page, and additional docu-
mentation for querying the web server using the API is
available at https://biosig.lab.uq.edu.au/csm_
peptides/docs.

3 | CONCLUSION

Here we presented CSM-peptides, a web platform for
characterizing peptide sequences for eight different clas-
ses of therapeutic peptides. Our approach integrates a
diverse range of physicochemical properties and
sequence-based properties tailored in individual predic-
tive models for each peptide class via supervised learning.
Overall, CSM-peptides shows equivalent or superior per-
formance over most recent approaches on the same blind
test, and robust accuracies on an independent set of pep-
tides for classes ABP, ACP, and AVP. More in-depth
research into classes of therapeutic peptides with a more
complex mode of action, such as AIP, is still needed, as
well as the quality and availability of experimentally
determined positive and negative peptides for the devel-
opment of more generalizable methods. Furthermore,
alternative deep learning and natural language proces-
sing (NLP) methods may represent an attractive venue
for encoding peptide sequences.

We anticipate CSM-peptides to be of great value to
the scientific community for the study of therapeutic pep-
tides and for a more rapid and effective screening and
characterization of novel peptide sequences. Our method
includes an API to assist more experienced users when

integrating our predictions into their research analysis
pipelines, and it is also freely available as a user-friendly
and easy-to-use server at https://biosig.lab.uq.edu.au/
csm_peptides.

4 | MATERIALS AND METHODS

4.1 | Datasets

Experimentally characterized peptides with activity for
eight different classes (AAP, ABP, ACP, AIP, AVP, CPP,
QSP, and SBP) were collected from previous studies.4–
8,18–20 Negative samples comprised entries without exper-
imental evidence for a respective class. Data were divided
into training and main test sets following an 80/20 split
with a balanced proportion between positive/negative
entries, except for the AIP and AVP classes where there
was an imbalance toward negative entries. In addition,
an alternative non-redundant test set was used to further
validate the models, using the same set of positive entries.
Given the lack of negative samples for each peptide class
available in the literature, we generated 2,000 negative
entries for each class of peptides using two approaches
that have been broadly implemented on for sequence-
based predictors of peptide activity21–25: (1) randomly
shuffling sequences from the positive class, which is
based on the hypothesis that the possibility of generating
an active peptide from a random sequence is very low26;
and (2) random peptides with no activity for any of the
eight classes were extracted from Swiss-Prot.27 Propor-
tions of positive and negative samples for each peptide
class on training and independent test sets are summa-
rized in Table S14.

4.2 | Feature generation and machine
learning

For each peptide, scores from amino acid substitution
matrices were extracted from the AAINDEX database28

and additional properties calculated using iFeature29 and
Peptides package,30 including amino acid composition,
interaction potential scores (summarized in Table S15),
and BLOSUM indices derived from physicochemical
properties that have been subjected to a VARIMAX anal-
ysis and an alignment matrix of the 20 standard AAs
using the BLOSUM62 matrix.31 As the AAINDEX proper-
ties are dependent on amino acid sequence length, here
we calculated average and variance values for each of the
531 scores available for each peptide sequence. The pro-
portion of secondary structures (helices, sheets, and
loops) were generated using S4PRED,32 a novel deep
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semi-supervised learning framework for predicting sec-
ondary structure components from protein sequences.
Finally, in order to incorporate a broader range of fea-
tures to be explored by the machine learning algorithms,
we also included calculations for the proportion of intrin-
sically disordered regions using IUPred2A.33

Prior to training the predictive models, and to coun-
terbalance the large number of features generated via
AAINDEX (1,174) and iFeature (1,593), we first removed
low discriminative features (properties with mostly iden-
tical values for all entries, e.g., all zeros) by applying the
VarianceThreshold filter, available on the Scikit-Learn
library,34 to select only features with a variance >0.1.
Feature selection was then carried out using a greedy
stepwise approach35,36 independently for each ML algo-
rithm, where for each feature, the performance on
10-fold cross-validation (CV) is evaluated against the tar-
get value, using Matthews Correlation Coefficient
(MCC). The best performing feature is then selected and
fixed in a group of selected features. The process is
repeated for each of the remaining features in combina-
tion with the previously fixed one in order to find the best
pair. The procedure continues until all features are
selected. The best performing subset of features are then
used for training the final predictive models.

Predictive models were built for three different algo-
rithms (ExtraTrees, GradientBoosting, and XGBoost) and
the final models were selected based on performance on
10-fold CV after feature selection. Feature importance
was assessed based on importance scores measured as
the total reduction of the criterion brought by the feature,
namely Gini importance, which is commonly used for
tree-based algorithms to assist with model interpretabil-
ity. Performance of predictive models was assessed based
on a variety of metrics, including F1-score, MCC, area
under the receiving operator curve (AUC), sensitivity
(TPR), and specificity (TNR). Final models were also
evaluated against two non-redundant test sets.

4.3 | Web server

CSM-peptides is implemented as a freely available user-
friendly web server. The server front-end is developed
using the Materialize framework version 1.0.0, while the
back-end is built with Flask (version 1.0.2), a framework
for web applications built on top of the Python program-
ming language. The web server is hosted on a Linux
Server running Apache2.
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