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A matrix-based method of moments for fitting the multivariate
random effects model for meta-analysis and meta-regression
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Multivariate meta-analysis is becoming more commonly used. Methods for fitting the multivariate
random effects model include maximum likelihood, restricted maximum likelihood, Bayesian estimation
and multivariate generalisations of the standard univariate method of moments. Here, we provide a
new multivariate method of moments for estimating the between-study covariance matrix with the
properties that (1) it allows for either complete or incomplete outcomes and (2) it allows for covariates
through meta-regression. Further, for complete data, it is invariant to linear transformations. Our
method reduces to the usual univariate method of moments, proposed by DerSimonian and Laird,
in a single dimension. We illustrate our method and compare it with some of the alternatives using a
simulation study and a real example.
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1 Introduction

Multivariate meta-analysis is a fairly recent methodological development (e.g. van Houwelingen et al.,
1993, 2002; Berkey et al., 1998), which is becoming more commonly applied in medical statistics
(Jackson et al., 2011). Multivariate meta-analysis is used to synthesise multiple outcome effects from
separate studies (e.g. overall and disease free survival), whilst allowing for their correlation. Two types of
correlations may exist: within-study correlations, which indicate the association between outcome effect
estimates in each study, and between-study correlations, which indicate how the true outcome effects
are associated across studies. The within-study correlations arise when the same patients contribute
data to both outcomes in a study. The between-study correlation arises when (unknown) factors
causing between-study heterogeneity induce a correlation in the true outcome effects across studies;
for example studies with a larger than average treatment effect on overall survival will typically have a
larger than average treatment effect on disease free survival.

Multivariate meta-analysis possesses many advantages over its more established univariate counter-
part, including the potential for inferences for different outcomes to ‘borrow strength’ (Riley et al.,
2007) from each other. Jackson et al. (2011) discuss the advantages, and limitations, of multivariate
compared to univariate meta-analysis. Software has been produced in Stata to fit the random effects
meta-analysis model (White, 2009), and has recently been extended to multivariate meta-regression
models (White, 2011), and the R package mvmeta (Gasparrini, 2011) is now available.
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232 D. Jackson et al.: Multivariate meta-analysis and meta-regression

Here, we take the multivariate random effects model as the standard model. The fixed effect model
assumes that common underlying effects apply to all studies. We find this generally implausible: it
is a very strong assumption to assume that there is no between-study heterogeneity in any of the
outcomes included in the analysis. When fitting the multivariate random effects meta-analysis model,
however, we must estimate the between-study covariance matrix, which increases the computational
demands. We assume that within-study covariance matrices are available for all studies but recognise
that obtaining the within-study correlations is often a practical difficulty and that these values are
important (Riley, 2009). See Jackson et al. (2011) for a variety of methods for handling unknown
within-study correlations and Riley et al. (2008) for an alternative random effects model that does not
require them.

Several fully parametric approaches to estimation have been developed. These include maximum
likelihood, restricted maximum likelihood (REML; e.g. van Houwelingen et al., 2002; Jackson et al.,
2011) and Bayesian estimation (Nam et al., 2003). Maximum likelihood methods are invariant to
linear transformations but, especially in high dimensions, are much more computationally intensive.

Semi-parametric alternatives therefore have their advantages, such as the method based on U statis-
tics (Ma and Mazumdar, 2011). The method proposed by DerSimonian and Laird (1986) has also
been extended to the multivariate setting (Jackson et al., 2010; Chen et al., 2012). By estimating the
between-study covariance matrix by matching moments a valid, but not optimal, analysis may be
performed without requiring the assumption of between-study normality. The more general validity
of the non-likelihood-based methods may be considered advantageous because we can only invoke
the Central Limit Theorem to justify this assumption by the notion that the unobserved random
effects are the sum of several different factors. Despite this lack of optimality, the simulation studies
performed by Ma and Mazumdar (2011), Jackson et al. (2010) and Chen et al. (2012) suggest that
the semi-parametric methods perform well compared with likelihood-based methods when making
inferences about the treatment effect. However, the method proposed by Jackson et al. (2010) is not
invariant to linear transformations and the procedure described by Chen et al. (2012) cannot handle
covariates or missing outcome data. Since missing outcome data are a very common occurrence, it
is vitally important that estimation procedures handle them in an appropriate way. The aim of this
paper is to provide a new estimation method that overcomes the problems associated with the existing
methodologies.

This paper presents a multivariate generalisation of DerSimonian and Laird’s extremely popular
univariate method. The new method can handle missing data and can adjust for covariates in a meta-
regression, and reduces to the method of Chen et al. (2012) with complete data and no covariates.
Like the method by Chen et al. (2012), the new method is based on matrix operations and is invariant
to linear transformations. The rest of the paper is set out as follows. In Section 2, we present our new
method and derive its properties. In Section 3, we present some results from a simulation study and in
Section 4, we apply our methods to an example. We conclude with a discussion in Section 5.

2 A new method of moments for multivariate meta-analysis
and meta-regression

We present the general case for random effects multivariate meta-regression, and so include meta-
analysis as a special case where there are no study level covariates and intercepts alone are included
in the model. We let n and d denote the number of studies and the dimension (the number of study
outcomes under consideration) of the meta-analysis or meta-regression, respectively.

The multivariate random effects meta-regression model (Jackson et al. 2011; White 2011) is

Yi ∼ N(Xiβ, Si + �) (1)

for all studies i = 1, 2, . . . , n, where Yi is the d × 1 column vector of outcomes (or summary effect
measures) associated with study i, Si is the d × d corresponding within-study covariance matrix, �
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is the d × d between-study covariance matrix, Xi is the d × p design matrix for study i and β is the
p × 1 column vector containing the true effects. For a multivariate meta-analysis (no covariates), Xi
is the d × d identity matrix and β is the d × 1 column vector of average outcome effects. If instead,
covariate effects are included then the design matrix Xi contains further columns of covariates in order
to describe the multivariate meta-regression. We adopt the convention of treating the entries of Si as
fixed constants but these quantities are estimated in practice. If a study does not provide all outcomes
then, assuming these are Missing at Random (MAR), the model for the outcomes for study i is taken
as the marginal model from (1).

The estimate of � is of direct interest because this describes the correlations between the outcomes
and quantifies the between-study heterogeneity. Once � has been estimated, however, the standard
procedure for making inferences about β, which contains the parameters of primary interest, assumes
� = �̂ (Jackson et al., 2011). This approximation is justified provided that there is a sufficiently large
number of studies. This eases the computation because, once both the within and between-study
covariance matrices are regarded as known, all the vectors of outcomes Yi are treated as normally
distributed with fixed and known covariance matrices. Inference then proceeds as a weighted linear
regression were all weights are known. We adopt this standard procedure when implementing our
methodology below so that the only computational difficulty to overcome is the estimation of �.

2.1 Two Q matrices for multivariate meta-analysis and meta-regression

We begin by fitting the fixed effect model, that is (1) with � = 0, so that the residuals from this model
can be used to estimate the between-study covariance matrix. The fixed effects model assumes that
there is no between study heterogeneity and is computationally straightforward to fit using generalised
least squares because all within-study covariance matrices are regarded as known. We then obtain the
fitted d × 1 outcome vectors from this model, which we denote by Ŷi; this includes the fitted values for
any missing components of Yi. If there are no covariates then the fitted outcome vectors for all studies
are given by the fixed effect pooled estimates, for example.

Having obtained these fitted outcome vectors, we define our first d × d Q matrix as

Q =
n∑

i=1

Wi[Ri(Yi − Ŷi)][Ri(Yi − Ŷi)]
t, (2)

where t denotes matrix transpose, Ri is a d × d diagonal matrix containing the missing data indicator
of Yi; the jth entry of the leading diagonal of Ri is equal to one if Yi, j is observed and is zero if
Yi, j is missing. Wi is the d × d within-study precision matrix associated with study i. If all outcomes
are provided by study i then Wi = S−1

i but if some outcomes are missing then we compute the rows
and columns of Si corresponding to the outcomes that are available and obtain the inverse of the
resulting matrix of reduced dimension. Then we obtain Wi by including columns and rows of zero
that correspond to the unobserved outcomes whilst the other rows and columns of Wi are given by
the corresponding entries of S−1

i .
The pre-multiplication of the residuals by Ri in (2) ensures that those corresponding to missing

outcomes do not contribute to Q; the entries of Ri(Yi − Ŷi) corresponding to missing outcomes are
zero. Hence missing entries of the Yi vectors may be replaced by zero, or any other arbitrary value,
when computing Q. WiRi = Wi and Rt

i = Ri so that Q can be more conveniently evaluated as

Q =
n∑

i=1

Wi(Yi − Ŷi)(Yi − Ŷi)
tRi. (3)

Our second Q matrix is Qt , so that
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Qt =
n∑

i=1

Ri(Yi − Ŷi)(Yi − Ŷi)
tWi.

Both Q and Qt simplify to Cochran’s Q statistic in the context of a univariate meta-analysis and to
its established analogue in the context of a univariate meta-regression. That is, in the more usual
univariate notation (DerSimonian and Laird, 1986), for a univariate meta-analysis

Q = Qt =
n∑

i=1

wi(yi − ȳ)2,

where the wi are the reciprocals of the within-study variances and ȳ = ∑
wiyi/

∑
wi. Since the fixed

effect fitted outcome vectors are obtained without iteration, computing Q and Qt also does not require
any iteration.

An alternative and also natural Q matrix, of the form suggested by Jackson et al. (2010) is given by

n∑
i=1

W1/2
i [Ri(Yi − Ŷi)][Ri(Yi − Ŷi)]

tW1/2
i .

Another possibility is to use

Q + Qt

as the Q matrix. These matrices give rise to estimating equations that are similar to the ones that follow
in both form and derivation. However, the invariance property derived below in Section 2.5 also does
not apply when using these alternatives. Hence we prefer to use the proposed Q in Equation (3), its
transpose Qt and the procedure that follows, to these possibilities.

2.2 The expectation of Q and Qt

Following Jackson et al. (2010), we will use the method of moments to estimate �. In order to evaluate
the expectation of Q, and hence Qt and ultimately estimate �, we vertically stack the Yi into a single
nd × 1 column vector Y, where any missing entries are replaced by zero or any other arbitrary value,
and define a corresponding block diagonal nd × nd precision matrix W. Here, the i-th sub-matrix
along the block diagonal of W is Wi. We define the nd × nd matrix R = diag(Ri), which we take as a
fixed constant, and we show in Appendix that

E(Q) = btr(B) +
n∑

i=1

n∑
j=1

Ai, j�B j,i, (4)

where

A = (I(nd ) − H)tW

B = (I(nd ) − H)tR.

H = X(XtWX)−1XtW, X denotes the matrix produced by vertically stacking the Xi, and I(nd ) denotes
the nd × nd identity matrix. Here, we partition the nd × nd matrices A and B into n2 blocks of
dimension d × d and in (4) and (5) we denote the i-th by j-th sub-matrix of A and B by Ai, j and Bi, j ,
respectively. We use the notation btr(B) to denote the ‘block-trace operator’ of the nd × nd matrix
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B, defined as the sum of the n sub-matrices of dimension d × d along the main diagonal of B. The
dimension of btr(B) is therefore d × d . Because � is symmetric, it immediately follows that

E(Qt ) = (btr(B))t +
n∑

i=1

n∑
j=1

Bt
j,i�At

i, j . (5)

2.3 Obtaining estimates of � by matching moments

Equations (4) and (5) can be used to provide two alternative estimates of � but we will see in the next
section that these are very closely related. For estimation purposes we replace E(Q) and E(Qt ) with
their observed values, and � with its estimate, so that, for example (4) becomes

Q = btr(B) +
n∑

i=1

n∑
j=1

Ai, j�̂1B j,i, (6)

and we solve for �̂1, which is sandwiched between the Ai, j and B j,i terms. In order to make progress,
we use the vec matrix operator, where vec(M) denotes the column vector created by stacking the
columns of M, and the identity vec(AXB) = (Bt ⊗ A)vec(X), where ⊗ denotes the Kronecker product
(Henderson and Searle, 1981). Applying the vec operator and this identity to (6) gives

vec(Q) = vec(btr(B)) +
⎛
⎝ n∑

i=1

n∑
j=1

Bt
j,i ⊗ Ai, j

⎞
⎠ vec(�̂1). (7)

Equation (7) can then be solved for vec(�̂1) and hence �̂1.
The estimating Equation (7) makes it clear that the estimation procedure results in a system of

d2 simultaneous equations for the d2 entries of �. However, � is a symmetric matrix which means
that (7) provides a single estimate for the diagonal entries (the between-study variances) but two
estimates of each of the off-diagonal entries (the between-study variances). A natural solution to
resolving the difficulty of having pairs of estimates of the between-study covariances is to average
them. This is exactly what we ultimately do, but we justify this by using Qt to provide another system
of simultaneous estimating equations as explained below. For now, however, we have an interim
estimate �̂1 from (7), which is asymmetrical.

If
∑n

i=1

∑n
j=1 Bt

j,i ⊗ Ai, j is singular, then estimation using (7) fails, which indicates that the com-
parison of the magnitude of Q to its expected value is insufficient to result in d2 linearly independent
equations. This is appropriate in extreme cases where there are insufficient data to fit the model in
this way. For example, in the case of a multivariate meta-analysis (no covariates), where all studies
provide all outcomes, and where all studies’ within-study covariance matrices are identity matrices,∑n

i=1

∑n
j=1 Bt

j,i ⊗ Ai, j = (n − 1)I(d2 ). Hence, the estimation fails when n = 1, but otherwise estimates
are obtained. Since there is no information about the between-study variation when we have just a
single study, it is appropriate that the estimation should fail in such instances.

Similarly (5) results in

vec(Qt ) = vec((btr(B))t ) +
⎛
⎝ n∑

i=1

n∑
j=1

Ai, j ⊗ Bt
j,i

⎞
⎠ vec(�̂2), (8)

which, assuming that the estimation does not fail because of insufficient data, can be solved for vec(�̂2)

and hence �̂2 can be obtained. �̂2 is a second interim estimate that is not symmetrical.
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2.4 The relationship between the two estimates of � and a final estimate of �

Equations (7) and (8) give rise to estimates �̂1 and �̂2, respectively, but it is easily shown that these esti-
mates are very closely related. Let Pd denote the particular permutation matrix for d × d matrices with
the following two properties (Henderson and Searle 1981, their Equations (5) and (25), respectively):

vec(A) = Pd vec(At )

and

B ⊗ A = Pd A ⊗ BPd .

Then by pre-multiplying both sides of (8) by Pd , replacing vec(�̂2) with Pd vec(�̂t
2) and making use

of the above two properties immediately yields (7) where �̂1 has been replaced by �̂t
2. We therefore

deduce that �̂t
2 = �̂1. A simple way to obtain a symmetric matrix from a non-symmetric matrix A is

to calculate the sum A + At . Hence, by taking the average of the two estimates

�̂ = 1
2
(�̂1 + �̂2) = 1

2
(�̂1 + �̂t

1) (9)

we arrive at a symmetrical, but not necessarily positive semi-definite, �̂. This is equivalent to averaging
the pairs of estimates of the between-study covariances that result from (7), or equivalently these pairs
from (8). Both the estimates in these pairs estimate the same between-study covariances, so in large
samples the estimate from (9) will approximately solve both (7) and (8).

To address the fact that �̂ is not necessarily positive semi-definite, we write �̂ in terms of its spectral
decomposition

�̂ =
d∑

i=1

λieie
t
i ,

where λi is the i-th eigenvalue of �̂ and ei is the corresponding normalised eigenvector. We suggest
using

�̂+ =
d∑

i=1

max(0, λi)eie
t
i ,

to produce a ‘truncated’ symmetric and positive semi-definite estimate of �. This procedure reduces
to the univariate method of DerSimonian and Laird, and the corresponding method of moments for
meta-regression, in a single dimension.

2.5 Invariance properties of the estimator for complete data

If the data are complete, so that all components of Yi are observed, (3) becomes

Q =
n∑

i=1

Wi(Yi − Ŷi)(Yi − Ŷi)
t . (10)

Suppose we apply a non-singular linear transformation C to our data prior to analysis, so that the
transformed data are Y∗

i = CYi, S∗
i = CSiC

t and W∗
i = C−tWiC

−1, where C−t = (C−1)t = (Ct )−1.
Then calculating Q∗ using the transformed data, and comparing with (10), we see that Q∗ = C−tQCt ,
so that E(Q∗) = C−tE(Q)Ct . Hence, when we equate Q∗ = E(Q∗), when producing the estimate �̂1,
this is equivalent to solving C−tQCt = C−tE(Q)Ct , which can be expressed as

C−t(Q − E(Q))Ct = 0
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so that the solution of the estimating equation also satisfies Q = E(Q), the estimating equation prior
to transforming the data. More directly, if there are complete data then A∗

i, j = C−tAi, jC
−1 and B∗

i, j =
C−tBi, jC

t , so that btr(B∗) = C−tbtr(B)Ct . Writing (6) in terms of the transformed quantities, and using

these identities with Q∗ = C−tQCt , almost immediately yields �̂∗
1 = C�̂1Ct . Similar observations apply

to �̂2 = �̂t
1.

Therefore, the ‘untruncated’ �̂ possesses a highly desirable invariance property if the data are
complete: we obtain the same result if we analyse the data and then transform the estimate, or
transform the data and then perform the estimation. Since β̂ depends only on the estimated variance
structure, this estimate also possesses this invariance property if no truncation of �̂ is required. The
previously proposed method of moments by Jackson et al. (2010) does not possess this property,
however, a point we illustrate numerically using our example in Section 4.

Finally, if there are no covariates so that we have complete data in the context of a multivariate
meta-analysis, then the formulae for E(Q) and E(Qt ) simplify. Defining W+ = ∑

Wi, for example (4)
becomes

E(Q) = (n − 1)I(d ) +
(

W+ −
n∑

i=1

WiW
−1
+ Wi

)
�. (11)

This is a more obvious generalisation of the usual univariate result (DerSimonian and Laird, 1986)
and can be equated to the observed Q and solved without using the vec operator. Solving (11) to
obtain �̂1, and using our proposed estimate (9), immediately yields the estimator suggested by Chen
et al. (2012). Hence, our methodology is a more general version of theirs, where our proposal can also
handle missing outcome data and covariates.

2.6 Making inferences about the average outcome effects vector β

Having estimated the between-study variance matrix, inference for β proceeds by taking � = �̂ and
therefore weighted linear regression where all weights are known (Jackson et al., 2010; White, 2011).
Let Yo denote the stacked vector of the observed entries of Yi, let Xo denote its design matrix and let
Var(Yo) = �−1, where � is treated as fixed and known. Then

β̂ = (
Xt

o�Xo

)−1
Xt

o�Yo,

which is approximately normally distributed with covariance matrix

Var(β̂) = (
Xt

o�Xo

)−1

so that standard errors of the estimates can be obtained as the square root of the diagonal entries of
Var(β̂). Ninety-five per cent confidence intervals can be obtained as the estimates plus and minus 1.96
standard errors. This procedure was used to calculate confidence intervals in the simulation study in
Section 3, but quantiles from the t-distribution are sometimes used for this purpose (Jackson et al.,
2010).

3 Simulation study

In order to compare the proposed method to some of the alternatives, the simulation study by Jackson
et al. (2010) was extended using R (R Development Core Team, 2012). Initially n = 10 and d = 2
was used, without including any covariates, which provide a moderate number of studies and a two-
dimensional multivariate meta-analysis.

C© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



238 D. Jackson et al.: Multivariate meta-analysis and meta-regression

For each simulation, two sets of 10 within-study variances were simulated from 0.25 × χ2
1 , but

values outside the range (0.009, 0.6) were discarded. These two sets of within-study variances were
then ranked, and the first study was taken to have the largest pair of simulated variances, and so on, until
the last study had the smallest pair of simulated within-study variances. New within-study variances
were simulated for every meta-analysis in the simulation study. Study outcomes were simulated from
model (1) using means of zero, although this choice is immaterial. Between-study variances of 0, 0.024
and 0.168 were used because these values correspond to I2 statistics (the proportion of total variation
in the outcomes that is due to between-study heterogeneity) of 0, 0.3 and 0.75, respectively (Jackson
et al., 2010). Within- and between-study correlations of 0, 0.7 and 0.95 were used. The between-
study variance matrix for each simulated dataset was then estimated using the proposed method, the
previously proposed multivariate DerSimonian and Laird procedure (Jackson et al., 2010) and REML.
Inferences for β were also made using the three methods, in particular the proportion of nominal 95%
confidence intervals for the first entry of β, that contain the true value of zero were compared where
these intervals were computed as described in Section 2.6. A total of 1000 simulations were used for
each simulation run.

Some results from the simulation study are shown in Table 1, where we show the results that we
consider to be of primary importance. We show the estimates of the between-study variance and the
coverage probability of confidence intervals for the first outcome only, but these results for the second
outcome can be ascertained from other simulation runs and symmetry. Table 1 shows that the proposed
method performs very similarly to the previously proposed methods on average.

3.1 Further results and simulation studies

A very thorough simulation study, examining six different scenarios, was performed: (1) the situation
considered above with n = 10 and complete data; (2) n = 50 and complete data; (3) n = 5 and complete
data; (4) a t-distribution for the random effect and complete data; (5) missing data where half of the
first outcomes are missing completely at random; (6) meta-regression. In addition to the results shown
in Table 1, for all scenarios we calculated the number of times the two methods of moments required
truncating, the Monte Carlo error of the estimated effects and the empirical standard error of the
estimated variance components. We also extended the simulation study to include further runs using
the same parameter values as runs 10–17, but instead using within-study correlations of zero, to mimic
meta-analyses of diagnostic test accuracy. All these additional results, and the results in Table 1, are
available in the Supporting Information that accompanies this paper.

The results in the Supporting Information show that all three methods generally perform very
similarly on average. However, a few interesting conclusions can be drawn from these results, for
example the asymptotic efficiency of the REML estimates of the variance components can be seen
in the results for n = 50, but this more precise estimation does not appear to provide better inference
for the pooled estimates. The necessity to truncate moments based estimators was usually a very rare
event when n = 50 and between-study heterogeneity was considerable (I2 = 0.75) for both outcomes.
The only exception to this was in the final run where, to mimic diagnostic test accuracy studies,
the within-study correlation was zero but the between-study correlation was 0.95. This is perhaps
something of an extreme case, where the two outcomes of interest are quite highly correlated but there
is no within-study correlation. Evidently, without any within-study correlation to explain the often
highly correlated simulated outcomes, the two methods of moments required truncating much more
often than might be anticipated on the basis of the large sample size and the considerable marginal
between-study variances.

The results for n = 5 suggest that this sample size is too small to accurately apply all three methods
because coverage probabilities of nominal 95% confidence intervals in the range 0.85–0.90 were quite
common. However there is no evidence of bias in the pooled estimates, even when data are missing.
REML performed well when the random effects model is misspecified using a t-distribution; Ma and
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Mazumdar (2011) found that this was also the case for other random effects distributions. Finally,
the two methods of moments generally provided very similar rates of requiring truncation to ensure a
positive semi-definite estimated between-study covariance matrix, but the proposed method required
truncating more often when covariate effects were included in the final simulation study where a
multivariate meta-regression model was used.

To summarise, the results from the simulation studies reassure us that the proposed method generally
performs very similarly to the established methods on average and so is a viable alternative. This is also
the conclusion of Chen et al. (2012), whose method is equivalent to ours when there are no covariates
and no missing data, who consider alternative parameter values in their simulation study. However,
differences can occur for particular datasets as our example in the next section shows.

4 Example: Treatment for hypertension

We illustrate our method using a real example. The method has been implemented in the Stata
software mvmeta (White 2009; White 2011) which is available by typing net from http://www.
mrc-bsu.cam.ac.uk/IW_Stata/ within Stata. This example involves 10 studies that assess the effec-
tiveness of hypertension treatment for lowering blood pressure. Each study provides complete data
on two treatment effects, the difference in systolic blood pressure (SBP) and diastolic blood pressure
(DBP) between the treatment and the control groups, where these differences are adjusted for the
participants’ baseline blood pressures. A bigger reduction in blood pressure is a desirable outcome, so
negative estimates indicate that the treatment is beneficial. The within-study correlations are known,
so that the within-study covariance matrices are also known (Riley et al., 2008a), and the data are
shown in Table 2.

The results using the proposed method, and the previously proposed method of moments and
REML, are shown in Table 3. REML provides larger estimates of the between-study variances and so
results in larger standard errors for the outcome vector parameters, but we have strong evidence that
the treatment is beneficial for both outcomes.

In order to illustrate the invariance property possessed by our proposed method, we also performed
the analysis in terms of the two outcomes SBP-DBP (pulse pressure) and DBP. In the notation used
in Section 2.5, this corresponds to the transformation

C =
(

1 −1

0 1

)
.

REML and (because the data are complete and no ‘truncation’ was required to provide a positive semi-
definite between-study covariance matrix) the proposed method provides results that are invariant to
this transformation, that is Cβ̂ = β̂

∗
and C�̂Ct = �̂∗. However, as expected, the previously proposed

method of moments by Jackson et al. (2010) does not provide invariant results, despite also not
requiring truncation. For example, this method gives

Ĉ�̂Ĉt =
(

2.86 −0.97

−0.97 1.03

)
�= �̂∗ =

(
2.55 −0.93

−0.93 1.03

)
.

Fortunately, for this example, this lack of invariance does not have much impact on inferences for the
treatment effect parameters.

4.1 A multivariate meta-regression to investigate the implications of isolated systolic
hypertension

Three studies (studies 8–10, see Table 2) involve only subjects with isolated systolic hypertension
(subjects with high SBP, but normal DBP). We might therefore anticipate that the treatment effect will
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Table 2 Data from 10 studies that assess the effectiveness of hypertension treatment for lowering
blood pressure. SBP and DBP are the treatment effects on the systolic and diastolic blood pressures,
respectively. The within-study standard error corresponding to each estimate is given in parentheses
and the within-study correlations are denoted by ρ. Negative estimates indicate that the treatment is
beneficial. Isolated systolic hypertension (ISH) is an indicator for the inclusion of ISH patients only.

Study SBP DBP ρ ISH

1. −6.66 (0.72) −2.99 (0.27) 0.78 0
2. −14.17 (4.73) −7.87 (1.44) 0.45 0
3. −12.88 (10.31) −6.01 (1.77) 0.59 0
4. −8.71 (0.30) −5.11 (0.10) 0.77 0
5. −8.70 (0.14) −4.64 (0.05) 0.66 0
6. −10.60 (0.58) −5.56 (0.18) 0.49 0
7. −11.36 (0.30) −3.98 (0.27) 0.50 0
8. −17.93 (5.82) −6.54 (1.31) 0.61 1
9. −6.55 (0.41) −2.08 (0.11) 0.45 1

10. −10.26 (0.20) −3.49 (0.04) 0.51 1

Table 3 Results from the multivariate meta-analysis. The estimates are shown using the proposed
method, the previously proposed method of moments (Previous method of moments (MM); Jackson
et al., 2010) and REML. Standard errors for the parameters included in β are shown in parentheses.

Parameter Proposed method Previous MM REML

β1 (SBP) −9.17 (0.55) −9.13 (0.54) −9.50 (0.77)
β2 (DBP) −4.31 (0.36) −4.30 (0.36) −4.43 (0.48)
�1,1 2.03 1.95 3.92
�1,2 0.20 0.06 1.81
�2,2 1.05 1.03 1.83

be different in these trials. In particular we might expect the treatment, which appears to be generally
effective, to be less effective for DBP in these three trials. This is because there is less scope for the
treatment to be effective for this outcome and type of subject, because their DBP is less extreme to
begin with. In order to test the hypothesis that the treatment effects are different in these trials, the
indicator that the trial includes only ISH patients was included as a covariate for both outcomes in a
bivariate meta-regression.

The estimated regression coefficients associated with ISH are shown in Table 4. REML provides
larger estimates of between-study variance (results not shown) and so provides larger standard errors
than the moments based methods. The overall picture from Table 4 is that, because of the large and

Table 4 Results from the multivariate meta-regression. The estimated regression coefficients associ-
ated with ISH are shown using the proposed method, the previously proposed method of moments
(Previous MM; Jackson et al., 2010) and REML. Standard errors are shown in parentheses.

ISH regression coefficient Proposed method Previous MM REML

SBP 0.46 (1.56) 0.48 (1.41) 0.23 (1.87)
DBP 1.52 (0.57) 1.49 (0.61) 1.36 (0.95)
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positive estimated ISH coefficients associated with DBP, trials that include only ISH patients provide
smaller DBP treatment effects, as anticipated. However, the statistical significance of this conclusion
is sensitive to the estimation method used.

5 Discussion

We have developed a matrix-based multivariate extension of DerSimonian and Laird’s univariate
method. By handling both missing data and covariates, our method also extends the method proposed
by Chen et al. (2012). The moments-based estimator of the between-study covariance matrix that we
have developed possesses a desirable invariance property with complete data. The proposed method of
truncation does not preserve this property when it is used to ensure that the estimated between-study
covariance matrix is positive semi-definite, however. Likelihood-based methods, including REML,
possess good invariance properties, but these come at the price of being fully parametric and com-
putationally intensive. If a method for truncation could be developed, which preserves the invariance
property of the ‘untruncated’ estimate, then this might be considered preferable and this is currently
being investigated. Despite this, our proposed method of moments retains most of the advantages of
the other semi-parametric procedures: it is non-iterative, fast and, because the between-study covari-
ance matrix is estimated by matching moments, does not require the assumption of between-study
normality. However, it is not quite as transparent as its predecessors and it requires more sophisticated
matrix operations. Like its predecessors, since it does not take into account the uncertainty in the
estimated between-study covariance matrix, the proposed method requires a reasonable number of
studies in order to provide accurate inferences; for example, our simulation study suggests that n = 5
is too small even if there are no missing outcome data. The method can be used for any dimension
of multivariate meta-analysis, but the available data may place constraints on what is appropriate. If
binary data are modelled using normal approximations in model (1) and the outcome is rare, then
inferential procedures that use the binomial distribution directly are more appropriate. The proposed
method does not currently incorporate methods based on generalised linear mixed models, but this
provides a possible avenue for further work. Furthermore, the proposed method has not been shown
to possess any optimality properties, rather it has been derived as a natural and easily implemented
multivariate extension of one of the most popular univariate methods used in meta-analysis.

Although an advantage of the semi-parametric methods is that they require weaker assumptions
than those based on likelihood based methods, they also have their limitations. For example, reduced
models for the random effect, where perhaps all between-study correlations or variances are assumed to
be the same across outcomes, may be fitted using likelihood-based methods by adding these constraints
when performing the numerical maximisation. It is much less obvious how to impose these constraints
when using the method of moments. Reduced models for the random effect may be needed to identify
models with limited amounts of data and this is an important issue for further research. Quantifying
the uncertainty in the estimated between-study covariance matrix may also be of interest and this may
require some form of bootstrapping when the method of moments has been used. This too requires
further investigation.

We have applied our method to a variety of real examples. A large sample empirical investigation
examining its use compared to the various alternatives is of interest and may form the subject of future
work. In our experience, alternative estimation methods provide similar results across meta-analyses
as a whole, but can provide markedly different results for particular meta-analytic datasets. Examples
where the inferences resulting from alternative estimation methods differ are of interest and may help
us to better understand the features of data that result in this. A variety of multivariate estimation
methods are now available to the meta-analyst, so an assessment of the sensitivity of the model fit to
the procedure used may easily be performed. If very marked differences are obtained using different
estimation methods, then the reasons for this should be investigated, and these are most likely to occur
when there are insufficient data available to adequately identify the random effects model.
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In conclusion, we feel that we have produced a useful and computationally straightforward method
for multivariate meta-analysis and meta-regression. We propose that our method is, at the very least,
a useful addition to the existing methodologies.
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Appendix

In this Appendix, we derive the expectation of Q by forming a single model that describes the data
from all studies. We then evaluate the expectation of a larger matrix from which we can conveniently
evaluate E(Q) as given in Equation (4).

We vertically stack the Yi, with any missing values of the Yi replaced by zero (or any other arbitrary
value) into a single vector Y and define a corresponding block diagonal precision matrix Wp; Wp is
matrix W where any zero main diagonal entries are replaced by p; 1/p denotes the variance attributed
to the imputed zeros. The random effects model (1) for the imputed data is

Y ∼ N
(
Xβ, W−1

p + I(n) ⊗ �
)
, (A.1)

where X denotes the matrix produced by vertically stacking the Xi, I(n) denotes the n by n identity
matrix; I(n) ⊗ � is just a block diagonal matrix with n blocks of �. We recover model (1) for the
original data as p → 0+ but do not set p = 0 in model (A.1) because we make use of W−1

p . It is a
standard result that

Ŷp = X(XtWpX)−1XtWpY = HpY, (A.2)

where Ŷp is the fitted outcome vector obtained when fitting the fixed-effect model, that is model (A.1)
with � = 0. By direct evaluation and observation, we have that

WpHpW−1
p = Ht

p (A.3)

and

{(I(nd ) − Hp)
t}2 = (I(nd ) − Hp)

t, (A.4)

that is (I(nd ) − Hp)
t is idempotent. We define the matrix

Qp = Wp(Y − Ŷp)(Y − Ŷp)
tR, (A.5)

where R is a diagonal matrix containing the missing data indicator of Y. We have limp→0+ Wp = W0 =
W and limp→0+ Hp = H0 = H, so that limp→0+ Ŷp = Ŷ0 = Ŷ and limp→0+ Qp = Q0. From (A.1) and
(A.2) we have that

E[Y − Ŷp] = 0

so that, treating R as a constant and taking the expectation of (A.5), and upon making further use of
(A.2), gives

E[Qp] = WpVar[Y − Ŷp]R = Wp(I(nd ) − Hp)Var[Y](I(nd ) − Hp)
tR. (A.6)
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Combining (A.6) with the variance of Y in (A.1) gives

E[Qp] = Wp(I(nd ) − Hp)(W
−1
p + I(n) ⊗ �)(I(nd ) − Hp)

tR

so that, using (A.3) and (A.4), and then taking the limit p → 0+,

lim
p→0+

E[Qp] = E[Q0] = A(I(n) ⊗ �)B + B,

where

A = (I(nd ) − H)tW

and

B = (I(nd ) − H)tR.

Noting that W and R are block diagonal, we have that

Q = btr(Q0)

so that

E(Q) = btr(A(I(n) ⊗ �)B + B) = btr(A(I(n) ⊗ �)B) + btr(B).

Recalling that I(n) ⊗ � is a block diagonal matrix of n blocks of �, we have that

btr(A(I(n) ⊗ �)B) =
n∑

i=1

n∑
j=1

Ai, j�B j,i

so that

E(Q) = btr(B) +
n∑

i=1

n∑
j=1

Ai, j�B j,i

as given in Equation (4). An alternative Q matrix, of the form suggested by Jackson et al. (2010), is
given by

n∑
i=1

W1/2
i [Ri(Yi − Ŷi)][Ri(Yi − Ŷi)]

tW1/2
i .

If we define

M = W1/2(I(nd ) − H)

then the expectation of this alternative Q matrix can be shown to be

E(Q) = btr(MW−1Mt ) +
n∑

i=1

n∑
j=1

Mi, j�Mt
j,i

in a very similar way.
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